
Introduction to the Static Site
Generator (SSG)

Starts with the design goals and a review of the rationale for
a web site content manager. It then covers installation and the
instructions to adapt the program to serve your own homepage!

August 4, 2023

Contents

The Static Site Generator 2
My Goals with SSG 2
Installation and test for functionality 2

Installation and basic test for functionality 2

Build your site with SSG 4
Build your own site 4

The overall setup of a site 5
Details of the Settings for a site 5
Topical subdivision of content 6
Landing page 6
Resources directories 6

The structure of the page files 7
The YAML header 7
Web page content 7
Index pages 8



2 CONTENTS CONTENTS 2

Referencing images and other static content 8
Pages rendered as PDF 8

I Internal documentation 9

The programs to generate a web site1 available in 2018 did not 1 a.k.a. content management systems

satisfy my expectations but I felt that most of the tools required to
build a static site generator where available. Thus I embarked on
building Yet Another Static Site Generator adaptet to the needs of an
academic2. 2 The web contains a surpsing amount

of advice,from - a consultant, or older,
from 2012, by publisher, or - current
to go to a static site generator and
markdown, 2, - yet another commerical
service and - another howto

• searchable list of papers ready for download,
• texts readable in a browser but printable as pdf.

After a short introduction to the Static Site Generator SSG follow
the instruction to download and to adapt the program to produce
a personalized homepage. Not much to do other than organizing
content pages in directories, include title and abstract to each content
page and add a title and abstract tot the index.md page in each
directory.

https://theacademicdesigner.com/2020/how-to-make-an-academic-website/
https://www.elsevier.com/connect/creating-a-simple-and-effective-academic-personal-website
https://jayrobwilliams.com/posts/2020/06/academic-website/
https://jayrobwilliams.com/posts/2020/06/academic-website/
https://townsendcenter.berkeley.edu/blog/personal-academic-webpages-how-tos-and-tips-better-site
https://peerrecognized.com/website/
https://peerrecognized.com/website/
https://martinlea.com/how-to-create-an-academic-website/


The Static Site Generator

My goals for daino. What is different from other Static Site
Generators? The design goals and rationale and functionality
testing.

My Goals with SSG
My Goals with SSG

The use case is my own homepage3 with requirements typical for an 3 I will use the term site (or web site) for
a set of connected web pages (or just
pages) which can be accessed through
a web browser using the world wide
web technology4.

academic researcher. and should be built from available packages in
Haskell5.

5 especially pandoc and shake, which
reduces the effort to maintain the code
using using my “uniform” approach
to wrap packages in integratable
interfaces.

• Use an (inexpensive) host server6.

6 There are some servers free of charge,
e.g. github or google, but I prefer
indepence and looked for a basic web
server, which cost me Euro 3 per month.

• Allow me to use a page layout following Tufte css.

• Force a strict separation of content and presentation7.

7 here called dough and theme, which
is baked into the web site.

• Look for simple handling and long term stability.

Installation and test for functionality
Installation and test for functionality

I have tried a number of web site generator programs and found that
a test installation and checking the methods for customization is the
fastest way to identify what suits my requirements.

Such a test consists of two steps: (1) install and check funtionality
of installation with a test8 and (2) build your site. 8 The hello world test for a site

generator.

Installation and basic test for functionality

A basic test for functionality is:

• Clone or copy the code from github9. 9 git clone
https://github.com/andrewufrank/SSG

• Change into the ssg directory and install with cabal install
(or perhaps better with stack stack install) which produces
ssgbake, the program which converts (bakes) the content into a
static site.

• Run ssgbake -tswwhich produces a test site in your home
directory ~/bakedhomepagewhich is served on port 3000.

/Essays/SSGdesign/010Principles.html
https://edwardtufte.github.io/tufte-css/
/Essays/SSGdesign/03introUse/003buildsite.html
https://github.com/andrewufrank/SSG


4 the static site generator 4

• Open in your browser localhost:3000 and you should be
greeted by the landing page of the test homepage.

• Edit, for example, the file ssg/docs/site/dough/Blog/01blog1.md
and observe how the web page is adapting (after refreshing the
browser cache!).

If you are satisfied that the installation works, you can proceed to
build your own site!



Build your site with SSG

The steps necessary to build a site.

Build your own site

Copy the content of the ssg/docs/site directory to where you
would like to locate your homepage and rename it to myhomepage or
whatever directory name you fancy.

I would start git in this directory to achieve a flexible backup on
the site with git init. A suitable .gitignore is already in the
copied directory and may required adaptation.

Adapt the file ssg/docs/site/settings3.yamlminimally10 10 For more details

with a editor for program text files (i.e. not office) for:

• the location of folders, at least for

– dough: the folder with the source of your site
– baked: the foler where you expect the generated site (could be,

for example, /var/web/ or ~/bakedhomepage)

• the port the server is using, when run ssgbake -s (default is
3001)11 11 The possible switches are - -s to

start a server, - -q for quick, meaning
not to produce pdf files, - -w to watch
files changing and re-bake them
automatically.

• menuitems: the first levell of subdirectories for the web page
files.

After adaptation restart with ssgbake in the directory of your
homepage and the homepage will be produced, adapted to your
needs.

Customization is

• in the settings file, and in
• web page files in the subdirectories to the dough directory.

The example site in ssg/docs/site/dough contains examples
for the settings file and for web pages with solutions for different
uses, e.g. references to images, literature.

All easily customizable aspects are in files and no new compilation
of ssg is needed12. 12 Recompilation may be needed for

new versions of ssg or new versions
of compilers; it is recommended, but
probably not required, to delete the
baked website and rebuild it completely.

Under the dough directory you can include content, typically
organized in subdirectories. Each web page corresponds to one file,
including the files linking other files in subdirectories.

Journals/SSGdesign/03introUse/004settings.html
Journals/SSGdesign/03introUse/004settings.html
Journals/SSGdesign/03introUse/005pageheader.html


The overall setup of a site

The file describing the overall setup of a site.

Details of the Settings for a site
Details of the Settings for a site

I will use the term site (or web site) for a set of connected web pages
(or just pages) which can be accessed through a web browser using
the world wide web technology13. 13 Following the seminal ideas of Tim

Berners-LeeThe settings are all collected in a single YAML file14. The annotated 14 The current specification of YAML,
but there are perhaps better explana-
tions

file for the currently running site can probably serve as a concrete
example.

The settings start with siteLayout, which gives the directories of
the sources for

• theme: where the details of the appearances of the content are
fixed,

• dough: the source text for the web pages,
• baked: where the converted files for the web site go; this may be
/var/www/html15, 15 The default web root for NGINX

• masterTemplateFile: the template which determines the layout of
the converted html - probably use the one provided and adapt later
if necessary.

• blogAuthorToSupress: name or names of the authors of most of
the material on a site, which should not be repeatedly shown as
authors

The content must use the keywords that the theme set up; it is
possible to produce with the same theme (i.e. the same directory with
the same files) different web sites from different source directories.
It is likewise possible to produce different baked directories
which are independently served from different theme and the same
content files.

The localhostPort gives the port used by the server created
with the -s switch of ssgbake.

The siteHeader: needs values for sitename:, byline:,
banner (an image16 to place by default at the top of all pages) with a 16 preferably wide and narrow; 1024 by

330 pixels works wellbannerCaption, a text which can be read if the image not visible.
Last, the entries of a static menu are given as menuitems: which is

shown as a ribbon under the banner page. They consist of a

https://yaml.org/spec/1.2.2/
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html
/settings3.yaml


7 the overall setup of a site 7

• navlink: wich is a relative adress to a directory, usually within
the dough folder.

• navtext: the text shown for the link.

The settings file is read each time ssgbake is started and content
is baked; changes are burnt into the converted site and after changes,
the site should be rebuild17. 17 Just delete the bakedHomepage

directory and rebuild with ssgbake.

Topical subdivision of content
Topical subdivision of content

Usually the content of a site is divided in some topics, e.g. contact,
publications, blog. The content for each topic, i.e. the markdown
files, are collected in these directories.

Additionally an index.md file must be added, which serves
as a introduction to the content; a sort of table of content is
appended automatically and facilitates navigation with clickable
links.

Landing page
Landing page

The landing page, i.e. the page shown when the URL of the site is
opened. It typically contains a general introduction and links to the
major pieces - possibly with some explanation.

The landing page of the homepage will be produced from the file
index.md in the root (dough) folder of your homepage using the
theme given in the settings file; no special rules or provisions!

Resources directories
Resources directories

Directories to include resources18, e.g. images or pdf files19, which 18 resources is a reserved name for
directories in SSG; these directories
are not searched for web content and
should only contain static content,
which is references from other pages.
19 currently only files with extensions
jpg, JPG or PDF are dealt with, but ex-
tension is a simple change in the Haskell
source, specifically in Shake2.hs.

are references in other web pages and served can be added wherever
convenient. Their location are mentioned in the references included in
the source texts for the web pages they reference.



The structure of the page files

The structure of the source files for the web pages consist of a
header (using YAML syntax) and the page content written in
markdown.

The YAML header
The YAML header

The first part of each web page describes the page. It is fenced off
from the page content proper by --- lines above and beyond. It
follows the YAML syntax:

---
title: text which becomes the title of the page
abstract: typically a multi line text describing the page.

It becomes the abstract of the page and is shown
together with the title on the index pages.

author: the author of the page,
there is a mechanism to suppress this
for the author of a site
([see](/Essays/SSGdesign/004settings.html))

keywords: some descriptive keywords.
date: 2019-03-05
image: if present a reference to the image file

which will become the pages banner
(if blank, the default site banner image is used).

bibliography: a reference to the `bib` file
version: publish or draft
visibility: public or private
---

Web page content
Web page content

It is followed by the text written as markdown.

• titles are marked with # and ##, which give second and third level
titles20. 20 The text after the title: keyword in

the header gives the first level.
For more details of the (Pandoc) markdown syntax see.

https://pandoc.org/MANUAL.html#pandocs-markdown


9 the structure of the page files 9

Index pages
Index pages

The structure of the site is revealed to the user through index
pages21. They list the titles and abstracts of the web pages included 21 index.html files

in a directory, starting from the root in a hierarchy. The pages are
clickable and permit navigation22. 22 In addition to the ribbon under

the banner image which is always
linking to the major subdivisions, listed
in the settings file and clickable
sitename.

The index pages must be started by the author of the site as a file
index.mdwith keywords

• indexPage: true
• indexSort: title

where the indexSort field indicates the order in which pages
are listed. A sort by title sorts the pages by their filename, which
permits to use filenames starting with a number to achieve a specific
order.

Alternatives are sort by data or reverseDate (newest first).

Referencing images and other static content
Referencing images and other static content

The references can be either absolute to the web root23, i.e. the 23 I.e. starting with “”.

directory in which the dough is placed or relative to the location to
the current page file24. 24 The directory name, not starting with

“”.Remember that the references must include the .html extension
of the files in the baked form and not the md extensio of the original
content files.

It is often useful to place the static content in a resources direc-
tory25 in the same directory as the pages for a topic. 25 with exactly this name!

Pages rendered as PDF
Pages rendered as PDF

For every web page transformed to html a corresponding pdf
is produced, using the KOMA tools for latex and rendered as a
scartcl.

The pdf format uses footnotes at the foot of the page, whereas
the footnotes in the web output are pushed to the margin26. The 26 Tufte style

bibliography in both output formats are at the end of the page.



Part I

Internal documentation



11 11

The internals of the Static Site Generator (SSG).

Some of the more interesting aspects of the internal design of daino
are given here; mostly useful when improving the code.

Produced with ‘daino’ (Version versionBranch = [0,1,5,3,3], versionTags = []) from /home/
frank/Desktop/myHomepage/Essays/SSGdesign/03introUse/index.md with latexTufte81.dtpl

arguments booklet

/home/frank/Desktop/myHomepage/Essays/SSGdesign/03introUse/index.md
/home/frank/Desktop/myHomepage/Essays/SSGdesign/03introUse/index.md

	The Static Site Generator
	My Goals with SSG
	Installation and test for functionality

	Build your site with SSG
	The overall setup of a site
	Details of the Settings for a site
	Topical subdivision of content
	Landing page
	Resources directories

	The structure of the page files
	The YAML header
	Web page content
	Index pages
	Referencing images and other static content
	Pages rendered as PDF

	I Internal documentation

