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City is an emergent and evolutionary 
complex system. Finding objective rules that
drive city generation process and defining 
their roles will help more objective 
explanation of urban patterns and more 
predictable decision makings in cities. This 
research expresses existence of objective 
rules in city generation process and intends 
to define some of these rules which are 
spatial in nature.

This research considers a city as a complex 
system consisting of open and closed spaces 
formed by arrangement of buildings. These 
buildings are gradually located in space by 
people decided to gain the maximum benefit
of the environment based on the local 
predictability provided by the physical 
reality without following any predefined 
plans defined by a third party. It defines an 
organic unplanned pedestrian city, i.e. a 
small city. The hypothesis is “the physical 
reality provides a concrete set of local 
spatial rules to optimally locate buildings 
accumulate to generate a city.” 

A computational model is developed 
studying the hypothesis. The model consists 
of a set of rules, a mechanism for combining
the rules and simulating their interactions, 
and algorithms for measuring some global 
urban patterns. Using this model, the 
following three questions are answered:

Q1. What is the minimum information 
required for a man to locate a suitable 
place for a building to live? 

A1. The minimum rule set defined in this 
research contains 7 simple spatial rules 
including (1) Distance-to-Center-of-
Gravity, (2) Distance-to-Road, (3) Free-
Space, (4) Adjoining-Free-Space, (5) 
Access-Space, (6) Adjoining-Access-
Space, and (7) Sun-Position. 
Application of these rules just requires 
the basic abilities to recognize 
proximity and neighborhood.

Q2. What is the decision making process for
combining these rules i.e. what is the 
simulation process? 

A2. Each simulation of the model starts by 
adding one or more buildings as seeds, 
and perhaps some roads in the 
environment. These entities can be 
imported into the model from a map or 
drawn and edited by the operator.

At each step of the simulation, one 
building and its required free space is 
added to the environment. The locations
of the building and its free space are 
defined by applying the rules to the 
existing spatial arrangement of the 
entities (roads, buildings, and free 
spaces) in the environment. 
Accumulation of the buildings and their
free spaces generates the expected city 
environment and patterns.

At first, location of the building (the 
closed space) is defined using Distance-
to-Center-of-Gravity and Distance-to-
Road rules, which interact with the 
environment at a global scale. One of 
the cells with the maximum normalized 
value is selected randomly.

Location of the required free-space for 
the selected building is defined by 
applying the rest of the rules follow this
order: 1) Free-Space, 2) Adjoining-
Free-Space, 3) Access-Space, 4) 
Adjoining-Access-Space, and 5) Sun-
Position. These rules interact with the 
environment at a local scale. They are 
applied in the order enumerated. The 
process of locating the free space stops 
when one possible cell is remained. If 
more than one possible cell is remained,
after the rules are applied, one of the 
cells is selected randomly. The Sun-
Position rule used, however, discards 
the random selection of free spaces and 



ensures that the possible locations for a 
free-space are always reduced into one 
cell.

The Sun-Position rule interacts at a 
local scale, although it has 
global/similar effect on all the 
locations. Avoiding dominance of the 
global effect of the Sun-Position rule, it 
is applied as the last rule, if more than 
one possible cell is remained.

Q3. Dose this knowledge suffice to generate 
a city by accumulation of these 
optimally located buildings?

A3. Three universal global patterns are 
studied using the computational model 
developed in this research including (1) 
The small-world network pattern, (2) 
The rank-order distribution of axial 
lines length following the power law 
pattern, and (3) fractal pattern. It is 
shown that these properties of the 
patterns generated using the model are 
similar to their real counterparts 
observed in cities and the generated 
patterns are statistically stable.

The small-world network pattern is 
characterized by p that defines the 
probability of a node to be connected to
the further nodes (Not the neighbor 
nodes). In real cities the value of log(p) 
ranges from 0.03 to 0.09 which covers 
the p value of the generated pattern. 
The value of log(p) for the generated 
pattern ranges from 0.05 to 0.09.

The rank-order distribution of axial 
lines length pattern is characterized by 
the exponents of the power law 
distributions fitted to its truncated and 
un-truncated distributions their inverses
denoted as alpha and z-alpha. In real 
cities, the alpha decreases towards 2 
and the z-alpha increases towards 1 
when local structure of space 

dominates. The alpha exponent of the 
generated pattern is around 2.684 (with 
stddev = 0.316) and its z-alpha is round 
1.45 (with stddev = 0.11) that represent 
the significant role of the local rules, 
causing the emergence of more short 
axial lines.

The fractal pattern is characterized by 
fractal dimension denoted as D. In real 
cities the value of D is around 1.7. The 
D for the generated pattern is around 
1.65.

It is shown that the generated pattern 
and the mentioned characteristic values 
are statistically stable using different 
initial values. It represents the required 
universality of the generated patterns 
like the three patterns studied.

The discussions admit that the global rules 
lead cities toward generation of longer and 
less fractured passages. It represents the 
existence of a rather steady growth of free 
spaces in the simulated environments. The 
local rules, however, break this steady 
growth in favour of faster changes at a local 
scale. The model still allows for slow and 
steady growth at a global scale, however. 
The effects cause the emergence of a 
hierarchical environment. Such an 
environment supports the generation of life-
like structures like cities.

The patterns generated in the model as the 
result of local interactions of the seven 
simple spatial global (2 rules) and local rules
(5 rules). The effects of the Access-Space 
and the Adjoining-Access-Space local rules 
are more significant in altering the global 
spatial structure, causing the emergence of 
alley-like passages around the roads (Fig. 3).

The other results of the research are the 
algorithms implemented for measuring the 
properties of the three patterns studied. 
These algorithms are (1) Automatic 



generation of connection graph and 
computing the clustering and mean-shortest-
path value of the graph, (2) Automatic 
extraction of axial map and regression of the
length of axial line to the power law 
distribution, and (3) Automatic measurement
of the fractal dimension using box-counting 
method. All these algorithms are 
implemented for the raster representation of 
space generated by the simulation model.

The further work suggested are regeneration 
of other global urban patterns which may 
require extending the rule-set defined here 
and increasing the efficiency of the methods 
developed for measurement of the 3 urban 
patterns studied in this research and 
investigating the rasterization effect on these
methods.

Fig. 3.  A sample simulation using all the rules. Boxes
represent buildings/closed-spaces, dots represent pas-
sages/free-spaces,  and  the  lines  represent  the  axial
lines.



Appendix A – The Global Urban 
Patterns
This section summarizes the specifications 
of the patterns studied in this research. The 
following sections are excerpts from the 
following papers:

1. Rezayan, H., Delavar, M. R., Frank, A. 
U., & Mansouri, A. (2008). Spatial Rules 
Generate Urban Patterns: Emergence of
the Small-World Network. Lecture Notes
In Geoinformation and Cartography 
(LNG&C): Headway in Spatial Data 
Handling, 13th International Symposium
on Spatial data Handling, 533-556.

2. Rezayan, H., Delavar, M. R., Frank, A. 
U., & Mansouri, A. (2010a). Spatial rules
that generate urban patterns: Emer-
gence of the power law in the distribu-
tion of axial line length. International 
Journal of Applied Earth Observation 
And GeoInformation (accpeted to be 
published).

3. Rezayan, H., Delavar, M. R., Frank, A. 
U., & Mansouri, A. (2010b). Spatial rules
that generate urban patterns: Emer-
gence of the Fractal Urban Pattern. Un-
der Review.

The Small-World Network

Small-world network is a class of random 
networks that its nodes are connected by 
both long and short links (Salingaros, 2004).
Then each node in the small-world network 
can reach most of the other nodes by a small
number of steps, although most of the nodes 
are not neighbors (Fig. A.1). 

Fig. A.1. The small-world network stands between a
regular and a random network. It is highly clustered
like a regular graph, yet with small characteristic path
length,  like a random graph.  Here  p represents  the
probability  of  connecting  a  node/vertex  to  far
nodes/vertices, rather than immediate nearest neigh-
bor nodes. It is defined by node's degree. In this fig-
ure, nodes have 4 degrees (Watts and Strogatz, 1998).

Watts and Strogatz (1998) compared the 
mean-shortest path length and the clustering 
coefficient of regular, small-world, and 
random networks. They define the mean-
shortest path length as "… the number of 
edges in the shortest path between two 
vertices, averaged over all pairs of vertices. 
(Watts and Strogatz, 1998)" The clustering 
coefficient is also defined as the average of 
edges exists between neighbours of a vertex 
to maximum number of edges between them
over all vertices. The maximum number of 
edges that can exist between the n vertices is
n*(n-1)/2 for an undirected network.

Watts and Strogatz (1998) showed that the 
mean-shortest path length of a small-world 
network and random networks are similarly 
small, but the clustering coefficient of a 
small-world network is larger than what is 
expected for random networks (Fig. A.2). It 
means that a small-world network has few 
high degree nodes, known as hubs, and the 
rest of the nodes are peripheral, low degree 
nodes. It brings stability against changes 
may happen in the peripheral nodes. It 
makes the small-world network pattern 
reliable enough to support life of networks 
like World Wide Web or a city.



Fig. A.2. The mean-shortest path length L(p) and the
clustering coefficient C(p) for the family of randomly
rewired graphs with 1000 nodes which have 10 de-
grees.  The x-axis  represents  the  probability  of  net-
works (p) in logarithmic scale.  The values are nor-
malized using L(0),  C(0) for a regular lattice. (Watts
and Strogatz, 1998)

Degree-distribution of the small-world 
network fits the power-law distribution. It 
means that the small-world network is scale-
free. The small-world network also 
encourages movement for it inherits the 
predictability of regular networks and 
accessibility of random networks.

For a network of spaces in a city, the mean-
shortest path length represents how far you 
should go to be able to reach urban facilities 
like stations and shops. The clustering 
coefficient reflects how stable and reliable 
these accesses are, considering the 
continuous changes may happen due to 
human activities, like accidents or 
constructions, or environmental conditions 
(e.g. bad weathers) that can hinder or block 
normal flows in a city. These are the basic 
characteristics of an urban structure, which 
is alive (Salingaros, 2003).

Distribution of axial line length 
according to power law

Hillier and Hanson (1984) define an axial 
line as the longest straight line that can be 
drawn from an arbitrary point in space. 
Axial lines represent convex spaces. They 

connect together to form an axial map that is
a geometrical representation of space.

In studying the pattern of free spaces and 
intermittency in cities, Carvalho and Penn 
(2004) evaluate the rank-order distribution 
of axial line length (Eq. A.1) in 36 cities 
from 14 countries according to the power 
law (Fig. A.3). Following the power low 
means that the distribution is scale-free and 
has hierarchical structure emerged through a
bottom-up process of gradual generation.

Eq. A.1

where size is the length of an axial line 
divided by the average lengths of axial lines 
(length/avg(lengths)),

rank is the ranking of the axial 
line, within a list of the axial lines sorted in 
descending order of length, which is then 
divided by the maximum rank of all axial 
lines (rank/max(ranks)),

 (zeta) is the slope of the trend 
line, and

b is the y interception of the 
trend line.

Fig. A.3.  [a] The rank-order  distributions of  axial
line length in 36 cities from 14 countries (Carvalho
and Penn 2004, p. 10). The axes have a logarithmic
scale.  The dashed line shows the truncation line at
ln(length/<length>) = 0.2 or length/<length> = 1.221
where <length> represents average length.

Carvalho and Penn (2004) fit the Eq. A.1 to 
the upper tail of the distribution truncated at 



ln(length/avg(length)) = 0.2 or 
length/avg(length) = 1.221 (Fig. A.3) where 
“… data are visually the most linear 
(Carvalho and Penn 2004, p. 4)”. They state 
that “the length of urban free space 
structures represented by axial lines, display 
universal features, largely independent of 
city size, and is self-similar across 
morphologically relevant ranges of scales 
with [alpha] exponents 2 and 3 (Fig. A.4).” 
(Carvalho and Penn 2004, p. 4). The alpha 
exponent is defined as the inverse of the zeta
exponent (Eq. A.2).

Eq. 2

where  (zeta) is the slope of the trend 
line shown in Eq. A.1.

Fig. A.4.  Distribution of the inverse of the alpha ex-
ponent (Eq. 2) (or zeta exponent in Eq. A.1) derived
from the graph shown in Fig. A.3 (Carvalho and Penn
2004, p. 10). The stable region of the alpha exponent
is shown in gray where the alpha exponent is lower
than 2.

The alpha exponent decreases (Fig. A.3) as 
the distribution of the axial line length leans 
more toward longer axial lines (Fig. A.4). 
Carvalho and Penn (2004) discuss this effect
as an increase in the dominance of the global
spatial structure (Fig. A.4). The increase of 
the alpha exponent represents an increase in 
the dominance of the local spatial structure. 
This effect can be represented using the 
median length of axial lines. The existence 
of more short axial lines moves the median 
length of axial lines toward their minimum 
length and vice versa.

Fractal Pattern of Cities

“Fractals, a term coined by its originator 
Benoit Mandelbrot (1983), are objects of 
any kind whose spatial form is nowhere 
smooth, hence termed irregular, and whose 
irregularity repeats itself geometrically 
across many scales. In short, the irregularity 
of the form is similar from scale to scale, 
and the object is said to possess the property
of self similarity or scale invariance. (Batty 
and Longely 1994, p. 3)”

A fractal pattern is specified by its 
dimension also denoted as D. It measures 
the similarity of different levels of space, or 
self-similarity, and the space filling property
of a pattern. Higher fractal dimension 
represents more fractured geometry that fills
the space more and vice versa.

Different definitions are presented for fractal
dimension based on the methods used for 
measurement of fractal dimension. Although
these definitions usually result in very 
similar fractal dimensions for a pattern, each
definition and its measurement method are 
computationally suitable for a specific kind 
of structure. For example the similarity and 
the geometrical methods of measuring 
fractal dimension are suitable for regular 
patterns while the box-counting and the 
correlation methods are more appropriate for
irregular patterns like urban structures. 
Between the box-counting and the 
correlation method, the box-counting is 
simpler for measuring the fractal dimension 
of urban patterns (Batty and Longely 1994). 

The box-counting method is used in this 
paper. It is based on counting the number of 
boxes cover a pattern at different scales (Eq. 
A.3).

Eq.
A.3

Where D is the fractal dimension,



N is the number of boxes 
required to cover a pattern, and

s is the scale in which the 
measurement is carried out.

The similarity of fractal dimension at 
different scales shows how self-similar is the
structure of a pattern and the processes that 
generated it. Ideally, fractal dimension of a 
fractal pattern is similar at different scales 
and equals the ratio of Log(N) to Log(1/s). It
represents complete self-similarity in the 
pattern.

In reality, fractal dimension changes from 
scale to scale and the ratio of Log(N) to 
Log(1/s) is not similar at different scales. In 
this case the slope of the line fitted to the 
distribution of Log(N) to Log(1/s) is 
considered as fractal dimension. Sum of the 
squared residuals (SSRES) of the fitted line 
represents the amount of the changes or the 
stability of the fractal dimension.

The similarity of fractal patterns in cities 
and their fractal dimensions are investigated 
by Anas et al. (1998). They evaluated a 
number of large cities and concluded that 
their fractal dimension is about 1.7. 

Although a specific range for fractal 
dimension of urban structures is not 
accepted, the pervasiveness of fractal 
patterns in cities is admitted (Salingaros 
2003, Batty and Longely 1994, Anas et al. 
1998). The fractal properties might also 
change through the time during the 
generation and evolution of cities (Batty and
Longely 1994, Benguigui et al. 1999). In a 
period a city might grow following fractal 
pattern but not in another period. The 
periods which a city does not follow fractal 
pattern correlates with the periods that city 
plans are executed in favor of creating long 
links, like main roads and highways, and 
destroying short links especially pedestrians 
(Salingaros 2003).

“Only older, pre-modernist cities are 
[completely] fractal, because they work on 
all scales (Salingaros 2003).” These are 
organic, unplanned pedestrian cities, mostly 
small cities. They are also called pedestrian 
cities (Salingaros 2004) or car-free cities 
(Crawford 2002) as their structures foster 
pedestrian movement. This structure can 
also be founded in surviving historical 
regions of cities, commercial areas, some 
suburbs, and urban-villages (Fleming 2000, 
Spears 1997), where pedestrian passage is 
the main medium of movement.


	Appendix A – The Global Urban Patterns
	The Small-World Network
	Distribution of axial line length according to power law
	Fractal Pattern of Cities


