

PRACTICAL GEOMETRY

THE MATHEMATICS FOR
GEOGRAPHIC INFORMATION
SYSTEMS

Andrew U. Frank

Draft manuscript
February 2006 v15

Frank: GIS Theory Draft V15 Feb.05 2

TABLE OF CONTENTS

Table of Contents 2

Foreword 10
History of Text 11
Teaching GIS 12
Acknowledgement 14

Part One Introduction 15

Chapter 1 What Is a Geographic Information SYSTEM? 17
1. Origins of Geographic Information Systems 17
2. Application Areas for GIS 19
Review Questions 21

Chapter 2 Focus of GIS Theory: Overview of Text 22
1. What Is ‘Geographic Information Systems Theory’ 22
2. Target of This Book 23
3. Formal Approach 25
4. Structure of the Book 26
Review Questions 27

Chapter 3 Information Systems 28
1. What Is a System? 29
2. Model 29
3. Information Systems 30
4. Geographic Information System 30
5. Data and Information 31
6. Information Systems as Model 32
7. Summary 34
Review Questions 34

Part Two GIS as a Repository of a description of
the World 35

Chapter 4 Formal Languages and Theories 37
1. Formal Languages 37
2. Formal Systems 43
3. Formal Theory 44
4. Order of a Languages 51
5. Typed Languages 51
6. Conclusion 52
Review Questions and Exercises 52

Chapter 5 Algebras and Categories 54
1. Introduction 54
2. Definition of Algebra 55
3. Duality 59
4. Functions Are Mappings from Domain to Codomain 59
5. Algebraic Structure 61
6. Image and kernel 64
7. Categories 65
8. Representation as Mappings: Practical Problems 68
9. Conclusions 69
Review Questions 70

Table of Contents 3

Chapter 6 Observations Produce Measurements 71
1. Representation Using a Language 71
2. Entities and Values 72
3. Types of Measurements 72
4. Functors 73
5. Measurement Scales 74
6. Nominal Scale 75
7. Ordinal Scale 76
8. Interval Scale 77
9. Ratio Scale 78
10. Other Scales of Measurements 79
11. Measurement Units 80
12. Operations on measurements 82
13. Combinations of Measurements 83
14. Observation Error 83
15. Abuse of Numeric Scales 84
16. Conclusion 84
Review Questions 85

Part Three Space and Time 86

Chapter 7 Continuity: The Model of Geographic Space and
Time 88

1. Different Geometries 88
2. Different Models for Different Applications 90
3. Space Allows an Unlimited Amount of Detail 92
4. Multiple Representation 94
5. Space and Time Allows Many Relations 94
6. Differentiation of Geometries by What They Leave Invariant 95
7. Different Types of Geometry Defined by Group of Transformations 96
8. Transformations Useful for Differentiation of Geometries 97
9. Map Projections 99
10. Summary 100
Review Questions 101

Chapter 8 Time: Duration and Time Points 102
1. Introduction 102
2. Experienced Time 103
3. Totally Ordered Model of Time 104
4. Branching Time (Time with Partial Order) 105
5. Duration (Time Length) 106
6. Instants and Intervals 107
7. Granularity of Time Measurements 107
8. Origin of the Time Line 108
9. Conversion of Dates and Arithmetic Operations with Dates 110
10. Summary 111
Review Questions 111

Chapter 9 Space: Metric Operations for Points and Vector
Algebra 112

1. Geometry on a Computer? 113
2. Distance 113
3. The Algebra of Vectors 114
4. Geometric Interpretation of Vector Operations in 2 dimensions 115
5. Generalization: The Module of n-Tuples over R 115
6. Subspaces 116
7. Points in Space: Position Expressed as Coordinates 116
8. Right Handed System of Vectors 117
9. Vector Is a Functor from Scalars to Points 117
10. Vector Operations 118
11. Coordinate Systems 122

Frank: GIS Theory Draft V15 Feb.05 4

12. Summary 122
Review Questions 123

Chapter 10 Linear Transformations of Coordinate Space 124
1. Linear Algebra—The Algebra of Linear Transformations 125
2. Linear Transformations 125
3. Transformations of Vector Spaces 126
4. Definition of matrix 126
5. Transformations between vector bases 131
6. Linear Transformations form a Vector Space 132
7. General Linear Transformations 133
8. Special Case: Similarity Transformations in 2d 135
9. Summary 136
Review Questions 136

Part Four Functors transform local operation to
spatial and temporal data 138

Chapter 11 Fluents: Values Changing in Time 140
1. Changing Values in Time 140
2. Synchronous Operations on Fluents 141
3. Fluents Are Functions 141
4. Intensional and Extensional Definition of Functions 142
5. The Functor Fluent 142
6. Discretization of Observations to Obtain a Finite Number of

Measurements 143
7. Transformations of fluents 144
8. Summary 144
Review Questions 144

Chapter 12 Map Layers 146
1. Introduction 147
2. Tomlin’s Map Algebra 147
3. Local Operations Are Homologically Applied Operations 149
4. Map Layers Are Functions 150
5. The Functors Layer 150
6. Map Layers Are Extensionally Defined Functions 151
Review Questions 152

Chapter 13 Convolution: Focal Operations for Fluents and
Layers 153

1. Introduction 153
2. Convolution for Fluents 154
3. Problem with Edges 156
4. Convolution in 2d for Layers: Focal Operations within Neighborhoods156
5. Other Focal Operations 158
6. conclusions 159
Review Questions 160

Chapter 14 Zonal Operations Using a Location Function 161
1. Definition of Zones 161
2. Closedness of Zonal Operations 161
3. Computational Schema of Zonal Operations 162
4. Number of Zones in a Layer 162
5. Zonal Operations with Meaningful Second Layer 163
6. Centroid and Other Moments 164
7. Set Operations on Zones 166
8. Summary for Zonal Operations 166
Review Questions 167

Table of Contents 5

Part Five Object Descriptions stored in a
database 168

Chapter 15 Centralizing Storage: The Database Concept 169
1. Input-Processing-Output in the Early Years of Electronic Data Processing169
2. Database Concept 169
3. Data Models 173
4. Historic Data Models 174
5. Conclusion 175
Review Questions 176

Chapter 16 A Data Model Based on Relations 177
1. Relations 177
2. Facts and Relations 178
3. Observations as Relations 179
4. Example Relations 179
5. Relation Algebra 180
6. Partial Order and Lattice 183
7. Relation Calculus 185
8. Allegories: Categories for Relations 186
9. Access to Data in a Program 188
10. data Storage as a Function 189
11. Finding Data in the Database 189
12. Storing Data in a Relation Database 191
13. Example Queries 192
14. Other Data Models 193
15. Advantages of the Relation Data Model 194
16. Alternatives 195
17. Summary 196
Review Questions 196

Chapter 17 Transactions: The Interactive Programming
Paradigm - 198

1. Introduction 198
2. Programming with Database 199
3. Concurrency 199
4. The Transaction concept 200
5. ACID: The Four Aspects of Transaction Processing 201
6. Long transactions in GIS 206
7. Granularity of Transactions and Performance 208
8. Summary 208
Review Questions 209

Chapter 18 Consistency 210
1. Introduction 210
2. The Logical Interpretation of a Database 211
3. Logical Assumptions When Querying a Database 212
4. Information System: a Database plus Rules 214
5. Redundancy 214
6. Expressive Power 215
7. Consistency vs. Plausibility Rules 216
8. Summary 216
Review Questions 217

Part Six geometric objects 218

Chapter 19 Duality in Projective Space: Infinite Geometric
Lines in 2d 219

1. Representation of Lines 220
2. Intersection of Two Infinite Lines 221

Frank: GIS Theory Draft V15 Feb.05 6

3. Projective Geometry 224
4. Dual Spaces: from Points to Flats 226
5. Representations of Points and Lines 229
6. Transformation of a Line in Dual Space 229
7. Lattices For Geometric Objects 230
8. Point—Line Relations: 232
9. Conclusions 234
Review Questions 234

Chapter 20 Generalization to n-Dimensions: Flats 235
1. Subspaces of n-dimensional space 235
2. Representations for Lines and Planes in 3-space 236
3. Join and Meet: Dimension Independent Geometric Operations 237
4. Duality in n-Dimensions 237
5. Orientation 238
6. The anti-commutative lattice of oriented flats 239
7. The dual of flats 239
8. Metric Relations 244
9. Conclusion 245
Review Questions 245

Part Seven Bounded geometric objects 246

Chapter 21 Point Set Topology 247
1. Topology Is Branch of Geometry 248
2. Definition of Neighborhood and Continuous Transformation 248
3. Metric Spaces 250
4. Interior, exterior, and boundary points 250
5. Boundary, Interior, Exterior 250
6. Open and closed sets 251
7. Closure 251
8. Connected 252
9. Intuition and Topology 252
10. Topological Constructions 254
11. Base and Subbase of a Topology 254
12. Summary 254
Review Questions 255

Chapter 22 Topological Relations 256
1. Introduction 257
2. Jordan's Curve Theorem 258
3. Topological Relations Based on Set Operations Only 258
4. Topological Relations for Simply Connected Regions 258
5. Conceptual Neighborhood for Topological Relations 260
6. Extensions of the Four Intersection Topological Relations 261
7. Cognitive Plausible Topological Relations 264
8. Allen’s Relations between Intervals in Time 264
9. Generalization to Topological Relations in Ordered N-Dimensional

Spaces 265
10. Projections and Topological Relations 266
11. Symbolic Projection 267
12. Moving and Changing Regions 267
13. Conclusion 267
14. Review Questions 268

Part Eight Algebraic topology: Simplex and
Complex 270

Chapter 23 Geometric Primitives: Simplices 272
1. Introduction 272
2. Simplex Definition 273

Table of Contents 7

3. Topological View of Simplex 273
4. A Simplex Results from Joining of Simpler Simplices 274
5. Dimension, Rank, 274
6. Co-dimension 275
7. Orientation 275
8. Equality of Simplex: Permutations of Boundary Reverse Simplex 276
9. Boundary 276
10. Metric Operation: Length, Area, Volume, etc. 277
11. Test for Point in Simplex 277
12. Intersection Point of Two 1-Simplices 278
13. Interpolation and Contour Lines 279
14. Representation in Database 280
15. Conclusions 280
Review Questions 280

Chapter 24 simplicial complex 282
1. Introduction 282
2. Simplicial Complex 283
3. Directed Subcomplexes Represented as Chains 284
4. Topological Relations between 2d Simple Regions 287
5. Summary 288
Review Questions 289

Chapter 25 Operations for Complexes 290
1. Overlay Operation 291
2. Merging Complexes 292
3. Starting Case: Create Empty |Complex 292
4. Test for Position of Point in a Complex 292
5. Adding a Point to a Complex 293
6. Adding a Line to a Complex 294
7. intersection of simplicial complexes 295
8. Maintain Splitting History of a Line 296
9. Summary 297

Part Nine Aggregates of lines give Graphs 298

Chapter 26 Abstract Networks: Graphs 300
1. Introduction 301
2. Algebra of Incidence, Adjacency, and Connectivity 301
3. Special Types of Graphs 304
4. Planarity 307
5. Representations 307
6. Operations of a Graph Algebra 308
7. Operations on graphs 309
8. Shortest Path Algorithm in a Weighted Graph 310
9. Hierarchical Analysis of a Network 314
10. Summary 315
Review Questions 315

Chapter 27 Localized Networks 316
1. Operations for Embedded Graphs 316
2. Order of Edges around a Node 317
3. An Algebra to Store Cyclic Sequences: The Orbit Algebra with the

Operation Splice 317
4. Representation of edge as half-edge 318
5. Operations to Maintain Graph 319
6. Shortest Path in an Embedded Graph 320
7. Linear Reference Systems 321
8. Shortest path between points on edges 323
9. Overlay Operations on Graphs 323
10. Planar Embedded Graph 324
11. Optimization of a Network 324

Frank: GIS Theory Draft V15 Feb.05 8

Review Questions 325

Part Ten Cells 327

Chapter 28 Cells: Collections of Simplexes to represent
Cartographic Lines 329

1. Introduction 329
2. Cells 330
3. Representation and Interpretation of Cells 332
4. Conversions between Dimensions 333
5. Implementation of General Geometric Operations 334
6. Special Operations for 0-Complexes 334
7. Special Operations for 1-complex 336
8. Conclusion 337
Review Questions 337

Chapter 29 Subdivisions are Partitions of Space 339
1. Introduction 339
2. Definition of Partition 339
3. Polygonal Graph 340
4. Euler operations on subdivion 341
5. Invariants Used for Testing Partitions 343
6. Construction of Partition from Collection of Lines—Spaghetti and

Meatballs 343
7. Conclusions 344
Review Questions 345

Chapter 30 Graph Duality for Topological Data Structures346
1. Graph Duality 346
2. Voronoï Diagrams Give 'Area of Interest' 349
3. Voronoï Diagrams Structure Empty Space 350
4. Barriers and Non-Point Sources 350
5. Delaunay Triangulation Is the Dual of a Voronoï Diagram 350
6. Algebra to Maintain a 2d Manifold 352
7. Topological Data Structures 354
8. Summary 357
Review Questions 358

Part Eleven Temporal Data for Objects 359

Chapter 31 Movement in Space: Changing Vectors 360
1. Introduction 360
2. Moving Points 360
3. Functor Changing Applied to Vector 361
4. Distance between moving objects 361
5. Accelerated Movements 362
6. Events 362
7. Special Case—Bounded, Linear Events 363
8. Movement of Extended Solid Objects 363
9. Movement of Regions 364
10. Asynchronous Operations for Movements 364
11. Summary 366
12. Review Questions 366

Chapter 32 Spatio-Temporal Databases Constructed with
Functors 367

1. Introduction 368
2. Concept of Time 369
3. World Time Perspective 369
4. Database of Changing Values 372
5. Database Time 372

Table of Contents 9

6. Errors and Corrections 373

Part Twelve Afterwards 375
1. Formality Leads to Consistency 375
2. Is That All? 375
3. Categories and GIS Theory 376
4. Review 377

Bibliography 379

Index 379

FOREWORD

I want to tell a story—the story of geographic information
systems (GIS). It is a story in small chapters, which are
combined to form the complex whole. I believe that the
complexity of the world results from the composition of small
and simple components. The chapters of this book describe the
concepts, which combine to produce the complex Geographic
Information System. We observe that the same operations are
repeatedly used and often implemented in different ways.

I write this text to show that there are mathematical
principles behind the construction of Geographic Information
Systems and to present these principles as a formal theory. These
principles are the same for all applications of GIS. They are
based on various parts of mathematics and are likely to be
independent of the rapidly changing technology and valid for
decades.

Formal treatment is necessary to overcome the
terminological confusion in GIS. Geographic Information
Science connects with many different, well-established sciences:
Computer Science, Information Science, Geography, Geology,
Surveying, etc. Each of these has a long and well-established
tradition of terminology. There is no single terminology that
suits all participating scientists and misunderstandings caused by
differences in terminology are rampant in the GIS literature. I
select an algebraic treatment—and the corresponding
terminology—because it allows integrating in a single coherent
picture the treatment of geometric, temporal and descriptive
information. Algebra links to category theory, where I believe
the definitions of many problems of semantics will ultimately
become feasible. I use transformations, mappings, morphism,
and functors to stress the relevant structural invariants that must
be preserved when representing real-world phenomena in
computers.

The rules for composing components to construct a complex
system is sometimes addressed as design principles or
patterns(Alexander, Ishikawa et al. 1977; Gamma, Helm et al.
1995). Unlike computer scientists, I use here methods to

Foreword 003 11

compose functionality based on a mathematical framework:
category theory and in particular functors are the guiding
principles to identify components and to compose them.
Composition is only possible if the components are ‘clean’ and I
will put more effort to establish the foundation than is usual; this
will be compensated later when composition is effortless(Wadler
1989);(Frank 1999).

The goal of the book is to cover in a formal way all the
theory necessary to understand the core of a Geographic
Information System including temporal data necessary to
represent change. The focus on formal processing of spatial data
results in a number of hotly discussed topics in GI being left out:
• Ontology of geographic data and the Semantics of data;
• Aspect of implementation and performance of algorithms;
• User interface and interaction;
• Approximations, uncertainties, and error.
These limitations are necessary to allow concentrating on what
we know well before we start addressing what we do not know
and perhaps will never know. I have presented my understanding
of these areas in other publications (Frank 1991; Frank 2001;
Frank 2003) [ref frank 2004] and expect that a division of the
discussion in formal theory of geographic data handling,
separated from ontology and semantics, performance and user
interfaces leads to a well-structured, effective discussion. The
contribution here is restricted to areas where I assume that our
current understanding will remain valid for many years.

In a nutshell: this text embraces a constructive approach to
GIS Theory: I want to show how a GIS is constructed from a
small set of primitive notions and axioms defining them. The
analytical approach to consider the applications in the world and
deduce the necessary theory will be covered in a separate book
with an ontological focus(Frank to appear).

HISTORY OF TEXT
Some parts of the text go back 20 years, to course notes on
formal aspects of geographic information systems, which I wrote
to support my teaching at the University of Maine (Frank 1985)
and the research program that I stated there is still very much the
program I follow now (see insert). A comprehensive approach
was started in the text I wrote for a graduate course in spring
2000 at the University of California in Santa Barbara. I have

Frank: GIS Theory Draft V15 Feb.05 12

improved and rewritten it for teaching my course “GIS Theory”
at the Technical University Vienna.

[This text] provides a quite generic treatment, suitable for the
discussion of any complex information system that deals with a
significant part of reality…Often enough a spatial information
system is discussed as if it were only a computerized mapping
system. … Computer cartography is the subject of a number of
courses and a few books have recently appeared on the topic.
They discuss how maps can be drawn using a computer and
show results that are achieved using typical software packages.
Their focus is on the graphical process of map creation and to a
lesser degree on map design; very little is said about the source
and organization of knowledge about the world that is necessary
to draw the map. …
[These] texts on spatial information systems take a radically
different approach, trying to encompass the problem of
constructing systems that will collect, maintain, and disseminate
spatial information. It will be shown that it is clearly beneficial
to discuss these problems in context and to understand the
interaction among their different components. Using this view,
a map is a spatial information system and can be analyzed in
these terms, from data collection to map usage. This treatment
strives for theoretical correctness and for the formal analysis
and specification of a spatial information system. It is based on
the observation that many of the problems with present day
systems start with shortcuts and seemingly reasonable
abbreviations, which later turn out not to be correct and which
demand extensive remedial countermeasures. We start with the
assumption that “a good theory is the most practical tool” and
try to find the principles human cartographers intuitively apply.
We try to cast them into a formal language that we can then use
to program computerized information systems.

Excerpt from 1985 course material(Frank 1985)

Nearly 20 years later, cartography still influences GIS
teaching. Cartography has two closely related foci:
communication of spatial knowledge and analysis of spatial
situations using maps. Waldo Tobler, one of the original
members of the ‘quantitative revolution in geography’ in his
Ph.D. thesis (Tobler 1961) gives a framework for analytical
cartography based on transformations. His insight to give a
mathematical formulation to traditional cartographic methods
will be continued here. However, (carto-) graphics and computer
analysis should be separated (Frank 1984; Frank 1985) to
liberate the GIS from the limitations of the paper map.

TEACHING GIS
I use this text for a second course in GIS in the last year of an
undergraduate degree or the first year of graduate studies. The
students have attended before an introductory course and used

Foreword 003 13

some commercial GIS software to work on example problems,
which lead them to a basic understanding of the typical GIS
applications.

The "GIS Theory" course is a three credit course of 15
weeks duration, where one part of this book is presented per
week. Engineering students have covered before discrete
mathematics course in linear algebra and vector and matrix
operations. The material in these chapters need only be reviewed
to connect it to GIS, but the text is self-contained and not
dependent on any special math requirements beyond high school.

I do not know of another textbook intended for a second,
rigorous GIScience course. The question what to include and
how to structure is not less difficult then for the introductory
course where several text books exist with different content.
During the 1980s, I divided my teaching in a course on the
storage and retrieval of geographic data and another one
covering geometric aspects of geographic data processing. This
division became obsolete as the integration of databases and
graphical data processing into mainstream progressed.

For a post-graduate course we asked users 1993 what to
include and how to structure the material. The result were three
volumes: theory, implementation, and usage(Unwin 1990; Kemp
1993; Kemp, Kuhn et al. 1993). Later, the focus moved towards
understanding what the input data meant and how to interpret the
results produced by the GIS: spatial cognition and ontology
{Frank, 1995 #348; Frank, 1995 #349; Frank, 1995 #350; Frank,
1997 #175}. Students—especially students in an engineering
curriculum—had difficulties to grasp the questions of semantics,
data quality, etc. while at the same time learning the technical
aspects of Geographic Information Systems. An attractive course
outline based on different aspects of cognitive space (Couclelis
and Gale 1986) did not include enough of the basic knowledge
necessary for use; I abandoned it as yet another attractive but not
pedagogically suitable guideline.

The approach followed here is novel as it concentrates on the
part of the GIS theory we can explain with formal
(mathematical) methods. It should appeal to engineering and
computer science students, but also to students in a graduate
program in geography with a bend to formal sciences. Our
knowledge of Geographic Information Science has sufficiently

Frank: GIS Theory Draft V15 Feb.05 14

increased during the past years to cover the fundamental aspects
in a formal way.

The translation of the formulae to code and to demonstrate
that this is sufficient for a model of a GIS was done in parallel to
the writing of this text. It demonstrated that this foundation is
comprehensive and no major holes are left. A number of typical
GIS application questions can be solved with the theory
presented here. Nevertheless, I invite students, fellow teachers,
and researchers in GI Science to send me suggestions for topics I
left out and inform me of errors in the presentation.

ACKNOWLEDGEMENT
A very large number of people have contributed in one or the
other form to my understanding of GIS.

PART ONE INTRODUCTION

A GIS integrates data describing different aspects of the world and how they
are distributed space and time. It has been visualized as a "layered cake"

(
Figure 1): different aspects of reality are represented as layers,
which are coordinated. GIS software must facilitate exploitation
of thematic data with respect to location and time. A GIS
contains functions to manipulated geographic data and is
separated from other programs that treat text, photographs, etc.,
but integration of geographic data with other data in a single
environment has started.

This short first part of the book surveys the territory of
Geographic Information Systems. It explains my understanding
of what a Geographic Information System is and which major
applications I think of. A brief history of GIS over the past 25
years should give some historic perspective.

Geographic Information Systems
today are computerized systems,
which treat geographic data.
Geographic data processing is the
processing of data that has a relation
to the world (see chapter 3).

Frank: GIS Theory Draft V15 Feb.05 16

The second chapter gives an overview of the text and how it
is structured. It details also what is left out and justifies the
focus.

The third chapter describes the GIS as a repository of a
description of the real world. It establishes terminology and
gives the frame for the rest of the book and explains the
generally used terms system, model, etc.

Figure 1: The layered cake: GIS brings
together data related to the same location
in space

Overview of Text 17

Chapter 1 WHAT IS A GEOGRAPHIC INFORMATION
SYSTEM?

Geographic Information Systems—commonly abbreviated as
GIS—have evolved in the past 35 years from systems for
specialists to produce maps with computers to programs that
ordinary people use to solve ordinary problems: GIS is used for
planning of urban development, make thematic maps for
newspaper articles and help with the navigation in our cars.

This chapter lists the different strands of evolution that lead
to present day GIS and reviews some application areas: each
discipline and application area has contributed its own
conceptual framework and terminology, influences that are still
felt today.

1. ORIGINS OF GEOGRAPHIC INFORMATION SYSTEMS
The roots of Geographic Information Systems can be seen in
different developments that all introduce electronic data
processing to some parts of geographic practice. Several, more
or less comprehensive descriptions of the history of GIS exist
(Tomlinson, Calkins et al. 1976; Rhind 1991; Rhind 1991;
Kemp, Kuhn et al. 1993; Frank 1995; Mark 1997). David Rhind
gives a graphical representation of the family tree of today’s
systems(Maguire, Goodchild et al. 1991).

The pioneering work of Roger Tomlinson introduced
electronic data processing to the gigantic task of managing the
natural resources of Canada. He coined the name of Canadian
Geographic Information System in 1967(Tomlinson 1984). The
Canadian GIS maintained maps showing an inventory of the
natural resources of the Canadian territory—a task that was
beyond what could be achieved with manual cartography.

At about the same time, researchers at the Harvard Graphics
Lab computerized the classical method of overlaying maps for
cartographic analysis used in urban and rural planning with
translucent paper sheets (McHarg 1969; Steiner and Gilgen
1984). The computerized system can combine more layers than
cartographers using paper maps and it can integrate data from
different sources and in different scales(Chrisman, Dougenik et

Frank: GIS Theory Draft V15 Feb.05 18

al. 1992). For example, different administrative boundaries and
census data can be combined with topographic maps.

The researchers at the Harvard Graphics Lab moved on to
the commercial world. Jack Dangermond founded the
Environmental Systems Research Institute (ESRI) in 1969. It
provided geographic data processing and analysis services. In
1980 they offered for sale their programs under the name of
ArcInfo, geared primarily to planners. David Sinton (1978) left
the Harvard Graphics Lab to join Intergraph, which—together
with Synercom—was one of the leading companies to produce
GIS for public utilities.

The US Bureau of the Census investigated the use of
computers to produce the maps to organize the collection of
census data in the field. They had mathematically trained staff,
including James Corbett(Corbett 1975), Marvin White (White
1979; White and Griffin 1979) and later Alan Saalfeld, who
made early theoretical contributions, which lead to the widely
used, standardized, topological Dual Independent Map Encoding
(DIME)(Corbett 1975).

The utility of the electronic computer to automate the labor
intensive tasks of cartography was recognized early on. The
Experimental Cartographic Unit of the Ordnance Survey UK
focused on the computer-assisted production of high-quality
printed maps(Rhind 1971; Tobler and Wineberg 1971). Using
the computer to produce topographic maps, to construct thematic
maps, and to maintain the large collections of relatively simple
line graphs for public utility and real estate cadastre became
possible(Messmer 1984).

In Germany, a group working on the conversion of cadastral
maps to computer databases (Automatisierung der
Liegenschaftskarte ALK) was active since 1970(Neumann
1978). This project is not completed yet and holds most likely
the record for the longest running GIS project ever! In 1973 the
preparation for the conversion of the Austrian cadastre started
and the conversion was completed in 1984(Hrbek 1993). Public
utilities reported successful and cost effective use of early GIS
that integrated computer drawn maps with the corresponding
administrative databases(Frank 1988).

These different applications lead to different communities of
users and developers, with limited communication. The series of

Overview of Text 19

AutoCarto conferences began in 1974.In 1978 the two first
"general" GIS conferences were organized in the USA by the
Harvard Graphics Lab (Dutton 1978) and in Germany by the
Geodesists of the Technical University of Darmstadt(Eichhorn
1979). Application oriented and regional conferences emerged in
the USA and Europe during the 1980s. In 1984 the Spatial Data
Handling Conference (SDH)(Marble 1984) started {Marble,
1984 #1724; Blakemore, 1986 #10384}.

The US National Center for Geographic Information and
Analysis was the result from a national competition(Abler 1987;
Abler 1987; NCGIA 1989); it is a consortium of the University
of California Santa Barbara, the New York State University
Buffalo, and the University of Maine—two geography and a
surveying engineering department—connected by a common
research agenda (NCGIA 1989a). It organized numerous
research meetings, called specialist meetings, to document the
state of the art and to identify research questions [ncgia
publication list]. Researchers associated with the NCGIA
initiated several successful series of bi-annual conferences:
• SSD for large spatial databases in 1989(Buchmann, Günther

et al. 1990); this conference takes a Computer Science
perspective and discusses spatial access methods, query
processing, etc. for geographic information. It is now called
SSTD for Symposium on Spatial and Temporal Databases.

• COSIT for Spatial Information Theory (COSIT) in
1992(Frank, Campari et al. 1992; Frank and Campari 1993),
collecting contributions from an interdisciplinary range of
disciplines: human geography, cognitive science,
mathematics, computer science, etc.

• GI Science conference is held bi-annually and addresses the
whole field of Geographic Information Science(Caschetta
2000).

2. APPLICATION AREAS FOR GIS
Humans live in the spatial environment; all human activities
require space and management of space—from real estate
markets to urban planning(Abler, Adams et al. 1971). Space
controls aspects of human interaction(Hillier and Hanson 1984;
Hillier 1999). Humans are navigating in space and require
information about the location of desirable locations and the path
to them. All human activities require space. It is estimated that

Frank: GIS Theory Draft V15 Feb.05 20

80% of all data contains some relation to space—which indicates
how prevalent spatial aspects in information handling are and
that nearly all decisions are influenced by spatial information or
the outcome of the decision has spatial effects.

Application areas for GIS are many and a systematic
classification difficult. In the abstract, three roles for a GIS are
sometimes differentiated:
• maintain an inventory of some objects in space;
• analyses of spatial situations, mostly for urban and regional

planning; and
• mapping of geographic data.

The management of resources located in space is of
universal importance. GIS help to manage the environment,
forest and mineral resources. Decision support systems provide
tools for the analysis and assessment of the impact of planned
actions. Improvement in the management of land is the result of
using cadastre, facilities management systems, forest information
systems, etc. Improvement in land management contributes to
the economic development of a country.

GIS are used in urban and regional planning. Computers
produce comprehensive graphical presentations of the current
situation and the systematic evaluation of options in the planning
process and visualize different scenarios.

The maintenance of large map collections—topographic
maps produced by National Mapping Agencies and the
collection of maps showing the lines of a public utility, e.g., the
gas or water lines buried in the streets of a city—were the
dominant applications in the 1980s.

The combination of cartographic—mostly graphical—data
with descriptive data permits analytical use of the data: one can
identify objects and regions based on some criteria. For example,
the water authority can identify all water mains, constructed
from a troublesome material, and thus produce a plan for
preventive maintenance of its water distribution network. This
reduces interruption of services to customer and also cost for
repair. Similar analytical functions help the forest manager to
identify the forest stands to cut during the next years.

Geographic information is used in business. For example,
the decision to locate a new multiplex cinema or the selection of
bank branch offices that should be closed is both dependent on

Overview of Text 21

the spatial distribution of potential clients around the locations.
The analytical functions in a GIS produce the information on
which rational decision can be based.

The different applications, but also the different disciplines
contributing historically to GI Science used different concepts of
GIS. The graphical paradigm of cartography—a truthful
graphical representation of the real world—remains influential
for GIS and GI Science (MacEachren 1995) and clashes with the
paradigm of knowledge representation that dominates
administration, database design, and decision support systems,
which all build conceptual models of reality(Kent 1978;
Lockemann and Mayr 1978). Today, the limitation is the lack of
tools for the integration of temporal data(Frank 1998).

In general GIS are used to make decisions: users retrieve
information that they think is relevant for their decision and use
it to improve their decision. This is, incidentally, the only use
one can make of information.

REVIEW QUESTIONS
• What were the first functions GIS precursors fulfilled?
• When was the first GIS (with this name) constructed? For

what purpose? By whom?
• How can the application of GIS be classified in three large

groups?
• What are the primary application areas of GIS? (Name five)
• What is the difference between GIS and cartography?
• Describe the evolution of GIS.
• Do you believe that 80% of all decisions we make involve

spatial information? Give examples for decisions that are not
influenced by spatial information and the outcomes do not
influence space.

The only use of information is to
improve decisions.

Frank: GIS Theory Draft V15 Feb.05 22

Chapter 2 FOCUS OF GIS THEORY: OVERVIEW OF TEXT

How to understand GIS? How can we explain software that took
hundreds of person-years to write and have manuals many
hundred pages long? The commercial GIS courses train people
on how to use a GIS product and explain GIS concepts from the
perspective of a product(ESRI 1993). An academic course must
be independent of products and focus on the core of a GIS.

1. WHAT IS ‘GEOGRAPHIC INFORMATION SYSTEMS
THEORY’

In general it is assumed that Geographic Information Systems
are a tool and do not have a theory. Many have pointed out that
there is no science of hammers and similar tools and have
suggested a science of Geographic Information Science
(Goodchild 1990; Goodchild 1992; Goodchild, Egenhofer et al.
1999) and denied the existence of a theory behind GIS.

A number of applied sciences—what may be called ‘topical’
sciences—work on problems that connect to space; for example
population studies or hydrographic research. Geography
concentrates not on the ‘topical’ aspects of an application, but on
the general understanding of processes in space(Abler, Adams et
al. 1971). Geographic Information Science is investigating the
questions of treatment of geographic information in general—it
is an abstraction from different parts of geography and related
sciences. Geographic Information Science investigates
commonality between the different methods to treat geographic
information and to establish some coherent body of knowledge
as a common foundation for geographic analysis.

Geographic Information Systems Theory concentrates on the
representation and treatment of description of geographic facts
and processes. It is the science of Geographic Information
Systems, which are the technical systems with which geographic
information is treated. GIS are used in most spatial sciences. GI
science is a substantial subfield of geography. GIS theory is a
subfield of GI science, founded on mathematics and computer
science, with contributions from geodesy and measurement
sciences(Krantz, Luce et al. 1971).

The theory of GIS is intentionally a theory of the tool, a
theory of the hammer so to speak. There exists, despite the
aforementioned opinions to the contrary, a theory of hammers: it

GIS theory is to GIS what physics to
hammers is!

Overview of Text 23

is physics, in particular mechanics, which deals with movement
of masses, levers, impulse transfer from one mass to another
upon impact, etc. The theory of GIS, presented here underlies the
implementation of the currently available commercial GIS
programs. To overcome two of the most obvious shortcomings
of today’s commercial GIS software, the GIS theory must show
how different representations of space can be integrated and
contain methods to deal with temporal aspects—including
changing values, processes, etc. This will be explained here.

2. TARGET OF THIS BOOK
The purpose of this book is to describe methods that are used in
Geographic Information System software. It stresses the
concepts that remain likely invariant under the changes that are
brought on by technology—from ever faster CPU to the
revolution of the World Wide Web. It seems futile to teach
students facts that are immediately superseded by the rapid
advances of technology, only formal theories do not change.

The description concentrates on what the functions in a GIS
do, not how they are implemented. I think it is necessary to
understand the basic algorithm before one starts to decide on its
implementation. Implementations involve trade-offs depending
on the particulars of the application and the current state of
technology(Frank 1991). Much of what is currently maintained
as ‘well-known’ rules in GIS software design depends probably
more on past technology than we are aware of. Some of these
'well-known' rules may be patently wrong today, made obsolete
by new technology and its different performance characteristics
and the relevance of others for tomorrow’s implementation
doubtful.

Identifying the concepts—independent of application and
technology—helps to separate what is logically necessary and
what is baggage that was once necessary but can be shed today
to construct lean systems. The novel aspect of this treatment is
the focus on the construction of a formal theory of GIS software.
The integration of time into GIS is a first demonstration of its
usefulness.

A theory of geographic data processing can be developed if
one is ready to leave out areas where we have only limited
knowledge:

Mathematical truth does not change
with the years!

Excluded:
- Ontology and semantics of data
- User interface
- Errors and uncertainty in the data
- Performance

Frank: GIS Theory Draft V15 Feb.05 24

• Ontology and Semantics: All aspects of the meaning and use
of the data in real world are excluded(Frank 2001; Frank
2003). We assume that data with fixed and known
interpretation is fed into the system and the results are
interpreted in the same context, the details of which are left
out. This excludes all considerations of what the data means,
how it relates to the reality it represents and how treatment in
computer systems of spatial information corresponds to the
human cognitive abilities.

• User interface: The communication between user and GIS is
necessary to effective use of GIS technology. It is closely
linked to questions of semantics and for the same reasons
excluded here(Frank 1982; Egenhofer and Frank 1992).

• Errors and uncertain data: Current GIS deal well only with
data that is precisely known. Real world situations are neither
well-defined nor precisely known. Understanding spatial data
processing in the precise case contributes to handle imprecise
and erroneous data later (Goodchild and Gopal 1990;
Burrough and Frank 1996; Goodchild and Jeansoulin 1998;
Heuvelink 1998; Shi, Fisher et al. 2002; Frank and Grum
2004; Frank and Grum 2004; Pontikakis and Frank 2004).

• Performance: Technology advances affects primarily how fast
operations perform(Frank 1991). Transformation to convert a
naïve algorithm to a more performing one are studied in
computer science and is left here to the implementer(Bird and
de Moor 1997).

Some will argue that the topics excluded are all the really
interesting and difficult ones—and I readily agree. These
excluded topics are difficult because they appear currently as ill
posed problems, not amenable in the form they are presented to
formal treatment. There are no criteria available to determine the
‘best ontology’, to compare two implementations or to judge the
effectiveness of a user-interface. The topics excluded are those
that link the formal treatment of geographic data to its use, to the
give and take of the world, to politics and power. In this book I
try to cover all the areas that I see fit today for formal treatment.
I hope to provide a firm ground for future approaches to some of
the problems excluded here. Without this clear separation, we
taint the description of the things we presently understand with
our ignorance in other areas.

GIS Theory is similar in what it
covers to standardization.

Overview of Text 25

It is interesting to note that the focus used here—excluding
application areas, performance or the specifics of interaction—is
similar to the point of view taken by current standardization
efforts, especially in the Open GIS Consortium (OGC 2000) and
the ISO TC 211(ISO 2004). Standards—if understood
correctly—must concentrate on fixing what should be done and
leave the different vendors free to select how they want to
achieve it.

3. FORMAL APPROACH
Each part of mathematics comes with its own terminology. To
integrate them in a single system, a common notation is
necessary. This was the overall purpose of the monumental effort
by Whitehead and Russell writing the Principia
Mathematica(1910-1913), but also of the French project
Bourbaki. These two groups saw in set theory the foundation and
attempted to build all other parts of mathematics on this base. I
follow here the lead of theoretical computer science using
algebra (Goguen, Thatcher et al. 1975) and category
theory(Asperti and Longo 1991). Standard engineering
mathematics, mostly calculus, is useful, but discrete mathematics
and algebra (Mac Lane and Birkhoff 1991) are required for GIS
Theory(Ehrig and Mahr 1985; Ehrich, Gogolla et al. 1989).
Category theory provides a general framework to integrate
different parts of mathematics, for example set theory and
analysis, linear algebra, topology but also graphs, formal
languages, and the theory of finite automata (see xx). To make
the text self-contained, these foundations are reviewed as far as
they are used.

The focus of the book is on the concepts and not the
implementation, thus a mathematical notation using the
framework of category theory (Pitt 1985; Barr and Wells 1990;
Herring, Egenhofer et al. 1990; Asperti and Longo 1991; Walters
1991; Pierce 1993; Frank 1999) is usually sufficient. In a few
rare exceptions, programming languages must be borrowed,
where I prefer the Functional Programming Language(Backus
1978), using the syntax and semantics of Haskell (Hudak,
Peterson et al. 1997; Peterson, Hammond et al. 1997; Bird 1998)
and the imperative language Pascal(Jensen and Wirth 1975). No
knowledge of these languages is assumed.

Frank: GIS Theory Draft V15 Feb.05 26

4. STRUCTURE OF THE BOOK
The text consists of eleven parts. This introduction explains the
relation between the world, GIS and GI Theory. The second part
sees the GIS as a repository of a description of the world. It
introduces the formal languages and methods to build theories
and uses them to describe measurements.

The third part covers continuous space and time. It
introduces time points and vectors to represent points in space,
with the pertinent operations, and develops a general theory of
spatial transformations.

Part four then constructs functions that operate on map
layers (like figure 1.1xx) or time series from functions relating
properties of points.

With the fifth part we enter the world of objects in space and
how descriptions are stored in a database. Sharing of data among
many programs leads to the centralization of data where it can be
accessed with standardized functions. To maintain this data
consistent for long periods of time, despite many concurrent
users, requires special approaches.

The sixth part concentrates on infinite geometric objects:
infinite lines, planes, etc., the relations between them and
operations applicable to them. It uses projective geometry to give
a most general and dimension independent description.

The seventh part focuses on geometric objects with
boundaries: line segments, triangles, etc. The simplest geometric
objects for each dimension are called simplices and operations
applicable to them, again independent of dimension, are given.

The eight part looks at cartographic lines and how they
structure space. It uses algebraic or combinatorial topology to
discuss spatial subdivisions and the operations that leave the
Euler formula for polyhedron invariant.

The ninth part discusses aggregates of lines, which form
graphs. Practically are graphs that represent street or stream
networks.

The tenth part specializes to a special form of subdivision,
namely triangulation. It shows how they are constructed and
used for the representation of Digital Terrain Models, or for the
determination of service areas around service points using the
Voronoï diagram, which is the dual of the Delaunay

Overview of Text 27

triangulation. It also gives a method to compute intersections
between arbitrary geometric figures.

Part eleven covers temporal data for moving objects. It
demonstrates that the framework is general enough to treat
moving objects. Spatio-temporal database with the necessary two
time perspectives are constructed as databases with changing
content.

Each part consists of short chapters, which are generally
motivated by a practical example of geographic data processing.
These examples connect the theory to concrete applications of
GIS. The summary at the end of each chapter indicates what
concepts to retain and links them to the following chapters. Each
chapter contains also a list of review questions.

REVIEW QUESTIONS
• What is the focus of GIS Theory? Compare with GIScience.
• Why is the content of GIS Theory similar to the efforts to

standardize GIS functionality to achieve interoperability
between GIS managed by software from different vendors?

Chapter 3 INFORMATION SYSTEMS

The Hitchhikers Guide to the Galaxy is an indispensable
companion ... In case of major discrepancy it is always reality
that’s got it wrong. (Adams 2002, 172)

In order to understanding the world (Figure 2a), we construct
representations of it, for example as a topographic map (Figure
2b). In this chapter, the relations between reality and
representations are explored. We will see that Information
Systems are models of reality such that a correspondence exists
for some operations and objects in the world and their
representation in the model; we say that the model (i.e., the
topographic map) has an interpretation. The interpretation for a
map is given as natural language terms in the map legend. A GIS
is useful as far as it is a true model, which means that there is a
mapping between reality and information system that preserves
structure.

This chapter gives intuitive definition for often used but
seldom defined terms like system, model, and data. It shows how
they relate and how I intend to use them in this book.

Figure 2 (a) Reality—a landscape near Geras with (b) the corresponding map

Morphism: a structure preserving
mapping.

Information Systems 29

1. WHAT IS A SYSTEM?
The word system is often used, not always with a clear
understanding what is meant. General systems theory
(Bertalanffy 1973) emerged from biology and considers a
system as a delimited collection of interacting parts (Figure 3).
The system has a boundary. Closed systems have no exchange
with their environment; all interactions are among elements
within the system boundary (Figure 5). Open systems interact
with elements outside the system boundary (Figure 4). Systems
that can maintain their internal state constant are called
homeostatic (Figure 6). Figure 7 gives the familiar heating
control system as an example for a feedback loop to stabilize the
temperature in a room.

To consider something as a system, it is necessary to give
its boundary and its interaction with the environment, the
elements are identified and their interactions described.

Interactions between elements can be material or informational.
Systems are often analyzed in a hierarchical fashion. Starting
with a coarse decomposition, it is possible to decompose and
study each part, e.g., the thermostat (in Figure 7) may be
considered again a system with interacting parts.

2. MODEL
A model represents a system that is a part of reality. The model
railway I played with as a boy (Figure 8) represents a real train
that I was not allowed to play with.

Models are used for the study and prediction of the behavior
of a system without affecting the original; they are necessary,
whenever experimenting with the real system is impossible,
hazardous, or expensive. Scientists and engineers build formal
models of systems in which they are interested and work with
the model instead of the real system. We do not want to build
bridges with a trial and error method—some hold up and some
crumble—nor do we want to test the effects of major accidents
in nuclear power plants! We build models – computational or
reduced scale – and use theory to predict the outcome of
operations, without the risk or expenses of real systems.

Figure 3: A system, its boundary, its
elements and the interaction between them.

Figure 4: Open System

Figure 5: Closed System

Figure 6: Homeostatic system with
feedback-loop

Figure 7: Self stabilizing heating system
with feedback loop

A system is a conceptualization, not a
reality. Different systems can be
identified at the same location.

Figure 8: Railway and model

Frank: GIS Theory Draft V15 Feb.05 30

A model is an ‘image’ of a part of reality (Figure 9). The
appropriateness of the model is determined by the usefulness of
information it provides about the part of reality modeled. What
elements and what relations from the real world should be
included in the model? This is a question of how to limit the
system that is modeled. There are many trade-offs to consider in
choosing a model. Making a model more complete by adding
detail is not necessarily make it more accurate. The inclusion of
more detail makes the model more difficult to use or introduces
too many uncertainties, such that the results are less reliable than
what we achieve with a simpler model.

Many models are reduced scale artifacts that are similar in
shape and have similar behavior. We call these analog models
(Figure 8). Maps are graphical models of reality (Figure 2b).
Computational models are constructed with symbols
manipulated according to rules in a computer (see Part 2),
simulating the behavior of the system. The observations in the
real world must be in a known relationship to the representations
in the model as shown in Figure 2. The mapping from a real
system onto a formal system is what makes the model useful.
Mathematically we can see a situation similar to a
homomorphism (see later chapter 5), which is a mapping that
preserves (algebraic) structure.

3. INFORMATION SYSTEMS
An information system is one that has the main task to produce
information (Figure 10); other aspects of the physical data
processing machinery, e.g., the consumption of energy and the
production of heat are disregarded. Information systems contain
data and programs that are used to answer queries of human
users. An information system may not connect directly to the
data but to other information systems to obtain the answers on
behalf of its users (Figure 11); this gives an easy approach to
separate user interface issues from the management of the data.

4. GEOGRAPHIC INFORMATION SYSTEM
A geographic information system is an information system
where data is related to physical (geographic) space and
operations exploit the data with respect to the spatial location of
the objects represented. For each GIS one must determine the
region of the world it is describing; this amount to a definition of

Figure 9: The connection between real
system and model

Figure 10: An information system contains
data and programs to process the data; it
answers questions

Figure 11: Users connect indirectly to an
information system through the net

Information Systems 31

a part of the world as a system, which is of interest and
represented in the GIS. The GIS with the data is, of course, also
a separate system, consisting of electronic equipment, programs,
procedures, etc.).

Not every collection of data with some geographic
references makes a GIS: there must be analytical functions
programmed, which allow users to analyze the data with respect
to spatial location. For example, a telephone directory is not a
GIS. It contains addresses but does not allow spatial questions—
one cannot ask "What is the closest police station to this phone
number?" A GIS geocodes the addresses and then use the
coordinates to answer this and many similar questions.

5. DATA AND INFORMATION

5.1 INFORMATION
The term information will be reserved for contributions to the
users' mental models. Information is only that which humans
perceive and add to their mental models, and is not the raw
material, that is, data or documents, from which they get this
information. Only signs that can be perceived and interpreted by
humans should be called information. Information is relevant
only as it is used to make decisions that lead to actions.

This definition excludes a number of things that are often
considered information. For example, a telephone directory is
not, by itself, information, as humans do not ordinarily read and
comprehend it. We rather use it as an information system for
extracting the information we need when we want to call
someone.

5.2 DATA AND DOCUMENTS
The word data will be used for symbols represented in a formal
language and assumed to have a fixed and known interpretation.
Data are in a form accessible to computer hardware, e.g.,
encoded and stored on media that are accessible to computers.

The word document denotes information recorded in a
natural language. Documents require a human to interpret their
content. Examples are the registry of deeds, libraries, and maps.
Documents are not information unless they are read by a human
user, but it is also not data, as it cannot be manipulated within a
formal model.

Information is an answer to a
human’s question.

Frank: GIS Theory Draft V15 Feb.05 32

Data is in the formal realm—linked by the interpretation to
the physical reality—and is thus amenable to mathematical rigor.

6. INFORMATION SYSTEMS AS MODEL
An information system is useful if the information in it
corresponds to the situation in the real world, if it is a
(computational) model of a part of reality. If we ask the
information desk of the Austrian Railways Company “what is
the next train from Vienna to Graz” and get the information that
one is leaving at 12:20 p.m. at Wien-Südbahnhof we expect this
information to correspond to the real world event when the train
leaves the station and we will be ready at the platform a few
minutes earlier. The train information system accessible at
www.oebb.at is a model of some aspects of the Austrian railway
system.

For the information system to inform about the world there
must be a defined relationship between the data and the objects
in reality. We say that information is correct, if it follows the
conventional, agreed interpretation of the data(Kent 1978). The
mapping between data and real objects must preserve the
structure that exists between the objects: the connection between
‘train to Graz’ and ’12:20 pm’ must be the same as the relation
between the train and its time of departure. It is not sufficient
that we model the elements of the system, but we have also to
model the relations between the elements (Figure 9). We will use
the term interpretation for this relation between the features in
the world as we experience them and the things in a computer
program. The computer program with a known interpretation is a
model—similar to a small mechanical model used to see how a
machine works (Figure 8).

In mathematics this mapping is described as morphism: a
structure preserving mapping. The real world objects and their
connections must have the same structure than the corresponding
data objects and the links between them. Algebra gives a
succinct definition of structure (see Part 2, chapter 6). Asking
about the path of the train from Wien to Graz must result in the
information about the stations that the train will call at. If this
correspondence does not exist the information obtained from the
information system is not useful; a system that informs us that
the train leaves at 12:20, but arriving at the station at 12:10 we
just see the train pulling out of the station is useless, because the

Figure 12: Train information system as a
model

Data =
Signs (symbols) in a formal
language.
Information =
Material for constructing mental
models.
Document =
Signs in a natural language that
needs human interpretation.

Correct data = Interpretation of the
data corresponds to reality.

Interpretation: a convention to
connect symbols to real world
phenomena.

Information Systems 33

information is not correct, not following the conventional
interpretation of what '12:20' etc. means..

6.1 CORRECTNESS OF AN INFORMATION SYSTEM
Users of information systems assume implicitly that they gain
the same information, i.e., the same mental models, by
consulting the information system, as they would by going out
and gathering the information themselves through direct
perception of reality (Figure 13).
• You assume that the telephone number you receive from

directory assistance is the same you would obtain by going to
a person's home and reading it from their phone.

• The tax assessors consulting their lists of parcels and
frontages assume that the results are the same as if they went
out and measured for themselves.

Data stored in the database of an information system must be
correct to be useful, that is, faithful representation of the
structure in reality. A computerized system cannot, by itself,
guarantee factual correctness; it has no way of going out and
checking that the grass is green, that the moon is not made of
cheese, or that the house at 16 Maple Street has fourteen
windows. To assert correctness, we have to leave the information
system (the formal model) and compare it with reality (Figure
14).

Within the information system, formal checks can only
assert the weaker notion of consistency, which means that the
database must be free of internal contradiction (see chapter 18).
For instance, the database should never contain information at
the same time that the building at 16 Maple Street has 8 and 14
windows; if we find information that the train to Graz leaves
Südbahnhof at 12:15 and 12:20 we are confused and wonder if
there are really two different trains or rather one of the two times
is wrong – but which one?

6.2 AN INFORMATION SYSTEM AS A FORMAL MODEL
The abstract view of an information system retained sees it as a
system of symbols together with an interpretation that links the
formal symbols to reality (Figure 2). A computerized
information system is a formal model of a part of reality. The
formal system, executed by the computer, operates on symbols
that have an interpretation in the model perceived by people.

Morphism: a mapping that preserves
algebraic structure.

Figure 13: The information system
provides the same information than
investigating reality

Figure 14: The Banana Jr. computer
inspects correctness of the data in the
world

Frank: GIS Theory Draft V15 Feb.05 34

Information systems are useful if the mapping between symbols
and real objects preserve this structure.

All operations of computers are symbol manipulation.
Human users tend to interpret computer operations differently,
for example as a numerical computation, or even as a complex
operation like booking an airline passage. The internal operation
of a computer is never anything more than a manipulation of
symbols according to formal rules laid down in programs.
Computers represent symbols internally in bit patterns. Hardware
and software operations are built to manipulate those patterns in
a way consistent with our understanding of arithmetic or logical
operations.

7. SUMMARY
A GIS is a representation of a part of reality. The interpretation
of the symbols stored and treated in the GIS link the model to a
part of reality. The treatment of the symbols in a useful
information system corresponds to the part of reality represented.
In the remainder of this book the rules for symbol manipulation
that preserve the intended geographic interpretation will be
discussed.

REVIEW QUESTIONS
• What is the definition of an information system; what is

specific about a geographic information system?
• In what sense do computers know about a train leaving?
• What is the (only) use of information?
• Why is an ordinary phone directory an (non-automated)

information system, but not a GIS?
 What is the difference between information and data?

• What is the difference between correctness and consistency?
• What is an interpretation of a model?
• What is a structure preserving mapping? What is meant by

structure in this context?

PART TWO GIS AS A REPOSITORY OF A
DESCRIPTION OF THE WORLD

Observations of the outside world are stored in the information
system. Observations are the linkage between the real world in
which we and the GIS operate (Figure 16). A description of the
GIS must start with observations, measurements and how they
are represented in the GIS. This part introduces methods to
construct symbols to represent the result of observations and to
manipulate these as well as methods to measure information
content. Observation processes per se are discussed in the
ontology and are not investigated in this book.

In general, I will use the term observation for the process
that connects the real world with the realm of information;
measurement will be used for the representation of the result of

an observation, measurements are often, but not always
expressed on a numerical scale.

The previous chapter reviewed the concept of an information
system, which is a system that stores and transforms symbols.
Symbols represent the outside world in an information system. In
order to describe the theory of GIS, two issues must be
addressed:

• the representation of values obtained from observation

of reality,

• the rules for transformations of representation (i.e.,

data processing).

The first chapter introduces formal languages to produce
representations for the results of the observations in an
information system. First order predicate calculus is an example
of a formal language, widely used for the description of
information systems(Gallaire 1981; Gallaire, Minker et al. 1984).

The second chapter reviews algebras and categories, which
seem more apt to represent processes that change the world.

Figure 16: Observations of the world are
put into the GIS

Terminology:
Observation (processes) results in
measurements.

Frank: GIS Theory Draft V15 Feb.05 36

Category theory is considered as the theoretical foundation of
computation(Asperti and Longo 1991).

The third chapter discusses what operations can be applied to
measurements. It starts with Steven’s classical scales of
measurement (Stevens 1946) and the limitations on operations
they each impose. It links the scales of measurement to well-
known algebras, like monoid, group and field and motivates the
introduction of the concept of homomorphism.

Chapter 4 FORMAL LANGUAGES AND THEORIES

Information systems use computers to manipulate symbols
according to some formal rules, called programs. In this chapter
we discuss the rules for the construction and manipulation of
symbols, which are then used to represent facts describing the
world.

Programs instruct computers to perform certain actions.
Computer systems follow the rules laid down in the program
when executing it. The result of a program with a given input are
determined – if we see different results, then there must be
additional inputs which vary between execution. Two computers
may execute the same program differently: we say that they
interpret the program differently; they use different dialects of
the same programming languages, e.g., different extensions of
the common standard language.

Programs are written in a formal language with a well-
defined semantics. Programs have a different appearance and are
more complicated than the axioms of the formal system we
encountered in mathematics classes. Nevertheless, they are
formal definitions of systems. In this book we concentrate on
studying formal systems, which are introduced in this chapter.

1. FORMAL LANGUAGES
A formal language is a set of symbols that represents the
vocabulary of the language and a set of rules how they can be
combined to form legal well-formed formulae in the language.
Formal languages are an abstract concept and the analogies to
the vocabulary and the syntax of natural languages is limited.
Natural languages have complex rules for the formation of words
or sentences {de Saussure, 1995 #9510}. Applying the
production methods described here for formal languages to
natural languages has met with limited success(Chomsky 1980).

1.1 DEFINITION FORMAL LANGUAGES
A set of symbols (words, technically often called tokens)
together with a set of rules for their combination, forms a
language. The set of symbols is often called the alphabet and
compares with the lexicon (vocabulary) of a natural language.

Language = A set of symbols + rules
for their combination.

Formula = A syntactically correct

sequence of symbols in a
language.

Theory = A formal language + rules

concerning valid relationships
within the language.

Formal System or Calculus = A

language + rules for the
transformation of formulae in
other formulae.

Frank: GIS Theory Draft V15 Feb.05 38

The rules for the combination can be called the syntax of the
language—roughly equivalent to the grammar of a natural
language. A symbol or valid combination of symbols constructed
applying the production rules is a well-formed formula. When
using a programming language, we speak of a syntactically
correct program.

In general, languages are thought of as producing linear
sequences of symbols, similar to the text in a natural language.
This is not a restriction; languages to construct spatial, two
dimensional, arrangements have been explored in biology
(Lindenmair grammars) and in spatial planning(Hillier and
Hanson 1984).

1.2 STRINGS OF AN ALPHABET
A language is constructed from an alphabet, which is a finite set
of symbols. These symbols can be combined to words; the set of
all words of infinite length over an alphabet A is described as
A*.

Alphabet A = {a,b}
A* = {a, b, aa, ab, bb, ba, aaa, aab, aba, abb, baa, bab, bba, bbb, aaaa, aaab,

…}
Strings are sequences of symbols over an alphabet. Strings with
the operation concatenation ++, which merges two strings, form
a monoid, which is a semi-group with a unit (namely the empty
string ""). String concatenation is not commutative: a ++ b ≠ b
++ a; ++ gives a non-commutative monoid; other monoids are
commutative.

Monoid <S, ++, "">
 associative a ++ (b ++ c) = (a ++ b) ++ c = a ++ b ++ c
 identity "" ++ a = a ++ "" = a

The length of a string is the number of elements in it. The
number of different strings in A*, where A contains k different
elements with length exactly l is kl. This can be seen by
comparing the elements in A to the digits of the base k; with l
digits we can form kl different numbers.

String <S, length>
 distributive length (a) + length (b) = length (a ++ b)

1.3 LANGUAGES DEFINED WITH PRODUCTION RULES
The alphabet for a language consists of three different sets of
symbols:

Syntax: rules of combination of
symbols to well-formed formulae.

021 Languages 39

• a close set of fixed symbols T, called the terminal symbols,
• a set of non-terminal symbols N, which are not part of the

language (N and T must be disjoint),
• a special non-terminal symbol S, which is called the start

symbol.
Only the terminal symbols appear in well-formed formulae of
the language. For many languages, the terminal symbols are
characters or numbers. Other languages have terminal symbols
that are words, e.g., BEGIN and END in Pascal. The non-
terminal symbols appear only in rules that lead to intermediate
steps in the production of a language. For example, the language
A* above is produced by

S ::= a | b | a S | b S.

Production rules explain how a symbol is replaced with other
symbols in the course of the production of a well-formed
formula of the language. Production rules have the form

n ::= u
where n stands for a non-terminal symbol and u is a sequence of
terminal and non-terminal symbols. The production rules contain
always a rule that translates the non-terminal start symbol S into
a production. Production rules are applied repeatedly till all non-
terminal symbols are replaced and only terminal symbols appear.
An example for a simple language RN (which stands for a
simplified form of Roman Numerals) with an alphabet containing
the non-terminal symbols S and N and two terminal symbols I
and + is given with two production rules:

Example language RN:
S :: = N | N "+" N (1)
N ::= "I" | "I" N. (2)

The rule (2) is recursive: the non-terminal N appears on the
left and the right side. Therefore, the language can produce an
infinite number of well-formed formulae, namely I, II, III, … but
also I + II, etc. Legal well-formed formulae in a language are all
the sequences of terminal symbols that can be produced by
repeated application of the production rules till the string does
not contain any non-terminal symbols.

The production rules are usually written in Backus-Naur-
Form (BNF). The BNF language is a formal language; it is a
meta-language to describe other languages (the target language).
BNF can be described in BNF, which is something like the
famous Baron Münchhausen pulling himself out of a bog by his
own hair! BNF uses the following terminal symbols:

In a production rule "|" stands for
choice, either the left or the right part
is selected.

Frank: GIS Theory Draft V15 Feb.05 40

::= is replaced by, or, produces
| or (select one or the other)
[] optional (zero or one times)
{} any number (zero, one, several times)
() parentheses can be used for grouping
" " quotes enclose terminal symbols

The production rules of BNF are:
syntax ::= { statement }
statement ::= identifier ::=" expression
expression ::= term { "|" factor }
term ::= factor { factor }
factor ::= identifier | "(" expression ")" | "["
expression "]" |
"{" expression "}"
identifier ::= string
string ::= character { character }
character ::= "A" | "B" | ... | "a" | "b" | ...

1.4 PARSING
Production rules are used to produce well-formed formulae, but
are equally useful to determine if a given sequence of symbols
represents a legal well-formed formula in the language.
Compilers use production rules to analyze a given program and
decide if it is a correct syntax, i.e. a well-formed formula in the
programming language. An input text is parsed into tokens (see
Figure 17 and Figure 18). In many cases, a program to parse the
input can be produced automatically from the production rules.
Parsing the string III of the language RN give the parse tree
shown in (Figure 17), where the branches of the tree are labeled
with the rule and the selection from the rule, which was used.

1.5 EXAMPLE LANGUAGE: A SMALL SUBSET OF ENGLISH
A small language patterned after rules for the construction of
simple English sentences should help to understand the concepts.
The alphabet is:

Start Symbol: S
Non-Terminal symbols: {S, NP, VP, Det, N, V}
 (standing for sentence, noun phrase, determiner, verb pharse, noun, verb

respectively)
Terminal Symbols: {"the", "a", "Peter", "student", "professor", "saw", "met",

"talked to"},
and the production rules are:

S ::= NP VP (1)
NP ::= "Peter" | Det N (2)
VP ::= V NP (3)
Det ::= "the" | "a" (4)
N ::= "student" | "professor" (5)
V ::= "saw" | "met" | "talked to" (6)

With this grammar, well-formed formulae can be derived using
the steps:

1. Start with the start symbol

Figure 17: Parsing III from RN

021 Languages 41

2. Repeat till no non-terminal symbols are left:
replace a non-terminal symbol with (one of the choices) of the right hand

side of the associated production rule:
This produces for example:

S
NP VP rule 1
Peter VP rule 2.1
Peter V NP rule 3
Peter saw NP rule 6.1
Peter saw Det N rule 2.2
Peter saw a student rule 4.1 and 5.1

Other choices would give other well-formed formulae like:
A student talked to the professor

Parsing is the reverse process, where a well-formed formula of a
language is given and the sequence of rules applied for its
production are determined; one can think that the meaning of a
well-formed formula is in the sequence of production rules used.
Figure 18 shows the parse tree for "The professor saw Peter".

1.6 THE LANGUAGE OF PROPOSITIONAL LOGIC
The language of propositional logic gives rules how well-formed
logical formulae are constructed. Its terminal symbols are:

"(", ")", "not", "and", "or", "implies", "=", and symbols to represent propositions
like P, Q, etc.

 "and", "or", "implies", "=", and "not" are special symbols called Boolean
operators

The non-terminal symbols are: literal, wff (for well formed
formula), variable, constant, operator, predicate, term, and
atomic formula, usually shortened to just atom. The language in
BNF is:

wff ::= literal | (wff "or" wff) | (wff "and" wff)
 | (wff "implies" wff) | (wff "=" wff)
literal ::= ["not"] atom
atom ::= proposition
proposition ::= "P" | "Q" | …

The language just describes the appearance of a wff of
propositional logic. Examples of wff are

not (P or Q) = not P and not Q
P or not P.

Examples for well-formed formulae are:
Mortal (Socrate),
Human (Socrate),
if Human (x) then Mortal (x).

1.7 LANGUAGE PRODUCES REPRESENTATIONS
The syntax of a language enumerates a set of words of the
language. They are all distinct and can be used as constants to
describe things. Such collections of representations are called
domains and the symbols tokens or (data) values. Programming
languages describe data types in a form similar to the BNF.

Figure 18: Parsing 'the professor saw
peter'

Frank: GIS Theory Draft V15 Feb.05 42

Consider the recursively defined data type tree; a tree is either a
leaf or a tree combining two trees. This is defined in a program
language (here Haskell (Peyton Jones, Hughes et al. 1999) as:

Tree = Leaf | (Tree, Tree).

The similarity to BNF is striking: Tree is a non-terminal symbol,
Leaf and "(", "," and ")" are terminal symbols. A small tree
would be (Leaf1 (Leaf2, (Leaf3, Leaf4))) (Figure 19).

1.8 INFORMATION CONTENT OF REPRESENTATION: THE
INFORMATION MEASURE OF SHANNON AND WEAVER
The information content in a well-formed formula of a language
corresponds to the number of binary choices that are necessary to
select this well-formed formula from all the possible well-
formed formulae in the language of equal length. Assume a
situation like Figure 20: A sender encodes a message (i.e. a well-
formed formula) and the receiver tries to reconstruct the same
message from the symbols received. The information content of
the message is the minimal number of binary signals a sender
must transmit to a receiver to enable him to recreate (re-select) a
message from all possible messages (Shannon 1938; Shannon
and Weaver 1949)
The information content of the representation is—following
Shannon—

H = ld card (s)
where ld is the logarithms dualis and card (s) the number of
different messages the sender may send and the receiver is
prepared to receive. If a message has length l and is encoded
with an alphabet of k symbols, then the number of different
messages is kl (see 1.2 above) and the information content is

H = ld kl = l * ld k.
H is the maximum amount of information content a sequence of
symbols (tokens) from one representation can carry. Information
content is linear in the length of the string and the sum of the
content of two messages is the same as the content of the
concatenated message:

H (a) + H (b) = H (a ++ b).
If the symbols are not selected with equal probability, then the
information content of a representation must take into account
the probability to select a symbol and the formula becomes:

H = - K Σ (pi ld pi).

This can be used to optimize the representation; tokens that are
selected more often are represented by shorter and tokens that

Figure 19: A simple tree

Figure 20: - Sender – channel – receiver

Information content increases
linearly with the length of a message.

021 Languages 43

are selected rarely are represented by longer strings of simpler
tokens.

2. FORMAL SYSTEMS
A formal system or calculus consists of a language and rules for
the transformation of representations into other representations.
These transformations are called evaluation, if a complex
expression is reduced to a simpler one. An example from
arithmetic is: 3 + 5 is 8; an example from logic is: "When it rains
I use the umbrella" and "it rains" follows "I use the umbrella".

2.1 EVALUATION RULES FOR THE TRANSFORMATION OF
REPRESENTATIONS
A formal system has rules for the transformation of well-formed
formulae. These are rules, which say that two well-formed
formulae are equivalent and we can transform one into the
other(Carnap 1958). For example, logical proof uses the rule
modus ponens, which says "(A implies B) and A implies B". The
language RN with the two following rules is a calculus. The
well-formed formulae II + III can be evaluated to IIIII.

Rule 1: Ix + y = x + Iy
Rule 2: I + y = Iy.
II + III apply rule 1 gives
I + IIII apply rule 2 gives
IIIII.

Rewriting is the principle behind the evaluation of functional
programming languages (like Haskell(Peyton Jones, Hughes et
al. 1999)) or logical expressions in the language Prolog(Clocksin
and Mellish 1981).

2.2 PREDICATE CALCULUS
Predicate calculus models human rational thinking in a formal
system(Lakoff and Johnson 1999; Lakoff and Núnez 2000).
Logic discusses the deduction of the truth value of some
combinations of logical propositions for which truth values are
given(Sowa 1998p. 20). Only well-formed formulae have truth
values and are either true or false, other combinations are just
meaningless.
Examples:

& a (not wff because & needs 2 parameters)
(~b) & a (wff)

Propositional logic is a calculus—a symbolic computation based
on fully defined rules. Predicates are expressions formed
according to the rules for propositional logic (see above 1.6), like

Evaluation is the simplification of an
expression (wff) till it cannot be
further simplified.

Lower case letters stand for
variables!

Frank: GIS Theory Draft V15 Feb.05 44

q (x), p (a, b), which can be used to represent facts like mortal
(Socrates) or relations like son (Robert, Henri). The calculus of
predicate follows rules that we intuitively accept as logical.

Syllogisms—formulae that are always true, independent of
the values assigned to P and Q —are often used in explaining
reasoning. Given the predicates P, Q, and R and the truth values
T and F (for true and false, correspondingly) the following
identities hold:
• Idempotent laws:

P and P = P
P or P = P

• Identity laws:
P and F = F
P or F = P
P and T = P
P or T = T

• Complement laws:
not F = T
not T = F
P and not P = F
P or not P = T
not not P = P

• Commutative laws:
P and Q = Q and P
P or Q = Q or P

• Associative laws:
P and (Q and R)=(P and Q) and R

P or (Q or R) = (P or Q) or R
• Distributive laws:

P and (Q or R =(P and Q) or (P and R)
P or (Q and R)=(P or Q) and (P or R)

• Absorption laws:
P and (P or Q) = P
P or (P and Q) = P

• DeMorgan's Rules:
not (P or Q) = not P and not Q
not (P and Q) = not P or not Q

• Modus ponens:
((P implies Q) and P) implies Q

• Modus tollens:
((P implies Q) and not Q) implies not P

• Modus barbara:
((P implies Q) and (Q implies R))

implies (P implies R)

These rules can be used to simplify complex expressions. For
instance, the following Pascal conditional statement is difficult
to decipher:
IF NOT ((name < > "Bob") OR (count < = 72)) THEN…

After the application of DeMorgan’s rule, we obtain an
equivalent expression that is much easier to read:
IF (name = "Bob") AND (count > 72) THEN…

Modus ponens is most often used for logical conclusions,
such as
IF all humans are mortal
AND Socrates is human
THEN Socrates is mortal.

3. FORMAL THEORY
We are interested in a formal system where some facts and rules
are interpreted as true and deduce other true statements. A
formal theory is a mechanism whereby rules are employed to
associate an initial set of well-formed formulae with all others. If

Some useful terminology:
Given P implies Q:
converse: Q implies P.
inverse: not P implies not Q,
contrapositive: not Q implies not P.

a conjunction consist of some
propositions joined by AND,

a disjunction consist of some
propositions joined by OR.

In an implication, A => B, A is the
antecedent, B the consequent.

021 Languages 45

the appropriate associations can be made, the other wff's are said
to be true in, or proven in, or deduced from, the theory.

3.1 TRUTH VALUES
In a formal logic system, atomic formulae (predicates) are
assigned values (called truth values: True or False). The initial
assignment of truth values must be made by some agent external
to the logic system; there is nothing intrinsically true about a
formula. Mathematicians call an assignment of truth values an
interpretation (in the sense of(Tarski 1977), similar as above in
chapter 3). Most wff are either true (provable) or not; they can
either be derived from the axiom set using the rules or they
cannot. Gödel has shown that using unusual mechanism in an
infinite universe, it is possible to construct formulae which
neither can be proven, nor can we show their
negation(Hofstadter 1985). Using a typed calculus avoids this
problem.

3.2 BOOLEAN OPERATORS
The Boolean operators and, or, not, =, and implies are in the
calculus defined by truth tables; these are equivalent to the
syllogism given above (in 2.2); their meaning does not
completely correspond to our everyday understanding of the
corresponding natural language terms.

P not P
true false
false true

The table above simply states that if P has a value true assigned,
not P is false and vice versa. The next table shows the values
obtained for P and Q, P or Q, P = Q, P implies Q and Q if P, for
different assignments of True and False to P and Q.

P Q P and Q P or Q P = Q P implies
Q

Q if P

true true true true true true true
true false false true false false false
false true false true false true true
false false false false true true true

P implies Q is false if and only if P is true and Q is false. If P is
true the results depend on the value of Q (which seems "logical"
in the ordinary sense); however, if P is false, it doesn't matter
what Q is! The result is always true, which may surprise and
does not correspond to our natural language ideas of what
implies means. What it is saying, however, is something like: "If
you start with a false premise, anything is possible." This

Frank: GIS Theory Draft V15 Feb.05 46

demonstrates why consistency is important: a contradiction is
always false and then anything can follow 'logically'. This is
expressed as a syllogism that a contradiction is always false: P
and not P = F.

3.3 AXIOMS AND THEOREMS
An axiom is a statement (a wff) in a theory that is assumed to be
true. Any non-trivial theory must have one or more axioms.
Sometimes the rules that explain how to prove some (non-
axiom) wff are called the logical axioms of the theory. Usually,
the axioms given above for first order predicate calculus are
assumed. The other axioms are called non-logical. The non-
logical axioms of the theory that do not contain variables are
called ground axioms, ground rules, or simply facts.

A theory serves to test, whether a proposed statement, called
a theorem, can be proven. If the proposed wff can be derived
from the facts using the logical axioms it is then and only then a
true statement (or logical model) in that theory.

3.4 CLAUSAL FORMS
Since many wff can be logically equivalent, it is desirable to have
a standard form. Every wff can be transformed to clausal form,
which are implications where a number (possibly zero) of joint
conditions implies a number (possibly zero) of alternative
conclusions: The antecedent of the implication is a disjunction
and the consequent is a conjunction:

A1 and A2 and A3 and … and An implies B1 or B2 or B3… or Bm .

Ai and Bj are predicates, and n, m ≥ 0. Since A implies B is
equivalent to B if A, we write clauses in the following alternative
clausal form:

B1 or B2 or B3 or … or Bm if A1 and A2 and A3 … and An

For example:
gfa (H, S) or gma (H, S) if pa (H, x) and pa (x, S).

Clauses are classified by the number of predicate terms in their
consequent as:

• definite (if there are zero or one term) or m <= 1

• indefinite (if there are two or more terms). m > 1

The definite clauses are called Horn clauses. In the case where m
= 1, and n = 0, we have a definite clause that represents a fact or
ground axiom.

fa (A, S) if ()

Axiom = A fundamental statement in
a theory—it needs no proof.
Logical Axiom = An association rule.
Non-logical Axiom = All other
axioms.
Ground Axiom, Fact = A non-logical
axiom that contains all constant
values.
Theorem = A statement you wish to
prove.

021 Languages 47

Since no antecedent is required for the consequent, it is always
true. Usually the empty if is discarded in this situation. Definite
clauses where m = 1 and n > 0 are called rule clauses. They
represent a logical axiom.

B1 if A1 and A2 and A3 … and An

For example:
gfa (x, z) if fa (x, y) and fa (y, z)

With a definite clause that has no consequent (i.e., m = 0, n > 0),
the antecedents are considered to be negative facts, that is, facts
that are known to be false.

if fa (A, I)
The empty clause has m, n = 0; it is always false by definition.

The next sub-section shows two mechanical (programmable)
algorithms to produce a logical proof. They expect the input as
Horn clauses. Horn clauses seem to be a nice compromise
between expressability and performance (Figure 21); more
expressive languages lead to more complex and slower
processing. Horn clauses are sufficient to express definite facts,
but it is not possible to include negative statements. Relations are
even less expressive; they allow only collections of facts, but
deductions are much faster and reduce to search in the facts (see
part 5).

3.5 PROOFS
Given a set of formulae, which are assumed as true, a proof is a
sequence of logical transformation using the deduction rules
given above (section 2.2), which show how the hypothesis can
be derived from the axioms. The given true formulae are called
axioms; the formula to derive is the hypothesis.

3.5.1 Unification
For each step in the process, unification between the variables
and constant in the formula to proof with the axiom that is used
in this step is required. Variables can be matched with variables,
and variables can take on the values of a constant expression, but
it is not possible to unify a constant with another constant or a
variable already unified (bound) to a constant with another
constant.

3.5.2 Example theory: family relations
The theory we build is representing some facts about a family
written as Horn clauses. Constants will be marked by upper case

Figure 21: Trade-off between
expressiveness and performance

Hint for interpretation:
fa = father
gfa = grandfather

Frank: GIS Theory Draft V15 Feb.05 48

symbols (A, B, C, …), variables with lower case letters (x, y,
z…).

fa (A, S)
fa (H, A)
fa (G, H).

From these facts and the rule
gfa (x, z) if fa (x, y) and fa (y, z),

we can conclude using formal symbol manipulation without
reference to any interpretation of the symbols involved that the
following statements are true:

gfa (H, S)
gfa (G, A).

The next two subsections show how to proof the first of these
formulae.

3.5.3 Forward chaining—from facts to conclusions
Forward chaining uses modus ponens:

fa (x, y) and fa (y, z) implies gfa (x, z)
(1) Select the first fact and substitute it into the logical axiom
(x=A, y=S), gives

fa (A,S) and fa (S,z) implies gfa (A,z)
(2) Find an axiom that can be unified with the next predicate in
the antecedent. There is no fact that can be unified with fa (S, z),
we have to backtrack and return to (1). Select another fact: fa (H,
A) gives substitutions (x=H, y=A):

fa (H,A) and fa (A,z) implies gfa (H,z).
Now, the fact fa (A,S) can unify with the predicate fa(A,z) and
gives substitution (z=S):

fa (H,A) and fa (A,S) implies gfa (H,S) q.e.d

Reasoning with modus ponens starts with the facts and combines
these in all possible ways till it reaches the theorem for which we
search a proof. This works in small examples, but the number of
possible combinations to explore grows exponentially in
practical applications (combinatorial explosion). The algorithm
has no guideline in which direction to go for interesting
combinations and explores mostly ‘blind allies’.

3.5.4 Backwards chaining—from conclusions to supporting facts
A more effective form of reasoning is ‘backward chaining’, that
is, starting with the question gfa (H, S)—which is only one—and
tries to find facts to prove it. In this case, we use modus tollens

((P implies Q) and not Q) implies not P
and try to proof the negation of the question. Given the question
which value of u stands in relation gfa to H

gfa (H, u).

021 Languages 49

We start with its negation (i.e. stating that nothing stands in
relation gfa to H):

not gfa (H, u)
using the (only possible) rule

gfa (x, z) if fa (x, y), fa (y, z)
and have substituted x = H, z = u:

gfa (H, u) if fa (H, y), fa (y, u).
We search now for a fact that unifies with fa (H, y), which we
find only with the substitution y = A, this leaves us with

gfa (H, u) if fa (H, A), fa (A, u).
Now we search for a fact that unifies with fa (A, u), which we
find only with the substitution u = S

gfa (H, S) if fa (H, A), fa (A,S).
not gfa (H, u) is not true, because gfa (H, S) is provable. This
leaves us with the useful result that H is in the relation gfa to S.
As you have noticed, the search for ‘useful’ facts is automatic; if
none would have been found, we had concluded that nothing
stands in the relation gfa to H. Languages like Prolog (Clocksin
and Mellish 1981) using such backward chaining.

3.5.5 Comparison
Forward chaining uses modus ponens and moves from facts to
conclusions, backward chaining uses modus tollens and moves
from conclusions to facts. Both are used in AI and are applicable
to geographic expert systems(Frank, Robinson et al. 1986;
Frank, Robinson et al. 1986; Frank, Robinson et al. 1986; Frank,
Hudson et al. 1987; Frank and Robinson 1987). Forward
chaining gives to a set of facts all possible conclusions; it works
only for small numbers of facts, because the number of possible
conclusions increases with the number of facts exponentially.
Backward chaining searches for the facts that support a given
conclusion. It is useful when a conclusion is given and we need
to test, if it is following from a collection of facts and rules;
backward chaining is selective and can be used even with large
collections of facts.

3.6 LOGIC WITH MORE THAN 2 TRUTH VALUES
Usually the range of the values is restricted to either True or
False, although multi-valued logics have frequently been
employed, e.g., with values: True, False, Maybe; or real number
values ranging between 0 and 1 representing various degrees of
probability of a statement, or certainty about classification, so-
called Fuzzy Logic(Zadeh 1974).

Frank: GIS Theory Draft V15 Feb.05 50

For example, the three valued logic of Lukasiewicz has 3
truth values: True, Neutral, and False. Neutral can be loosely
interpreted as 'it is possible that'. The truth tables are:

P not P
true false
neutral neutral
false true

P Q P and Q P or Q P implies

Q
true true true true true
true neutral neutral true neutral
true false false true false
neutral true neutral true true
neutral neutral neutral neutral true
neutral false false neutral neutral
false true false true true
false neutral false neutral true
false false false false true

3.7 TEMPORAL LOGIC
Logic described so far treats predicates that are not changing. To
reason about changes requires either a temporal logic, of which
several are known (Sernadas 1980; van Benthem 1983; Everling
1987; Galton 1987) and which are difficult to use. Temporal
logic includes four predicates (as defined by Prior [ref missing]):

P – it has at some time been the case that …
F – it will be at some time be the case that …
H – it has always been the case that …
G – it will always be the case that ..

of which P and F can be defined in terms of G and H:
P a = not H (not a)
 F a = not G (not a).

Alternatively, situation calculus separates a changing world in
‘snapshots’, called situations and then describes each of them
separately, assuming that the constant symbols stands for the
same individuals at different times(McCarthy 1996). An
improved version of situation calculus was presented by
Reiter(Reiter in preparation); however, it uses some
‘extralogical’ devices to arrive at a usable structure. Bittner has
compared situation calculus as method to describe a GIS
problem (real estate cadastre) (Bittner and Frank 1997)with an
algebraic description and found that they are different formal
expressions for essentially the same constructions.

021 Languages 51

3.8 VARIABLES AND QUANTIFICATION
Logical formulae are written using variables and it is usually
implied that the rule should be valid for all values of these
variables. This is expressed with the all quantor:

The existential quantor, states that there is at least one x such
that the formula is true:

 A variable occurring in a quantor is said to be bound. It is
customary to drop the all quantors whenever obvious and write
only the existence quantors.

4. ORDER OF A LANGUAGES
Languages can be classified by orders. We pay attention what
role variable symbols—which are bound by quantifiers—can
play:
• A zero order language has no variables, only constants.
• A first order language has variables, which stand for objects,

but not for predicates or functions.
• A second order language has variables that can stand for

objects, predicates, or functions (sometimes called higher
order).

Classical logic, as used by philosophers, is (mostly) first
order. Functional programming languages are an example of
second order languages(Backus 1978; Bird and Wadler 1988).
In principle, all formulae can be expressed in first order
languages(McCarthy 1985), but the expressions become
complicated and difficult to understand.

5. TYPED LANGUAGES
It is useful to subdivide the constants in disjoint sets. One then
says that the constant x has type t, for example, the constants
Andrew, Stella, etc. all have type Human. The predicate father
establishes a relation between two constants of type Human, and
is meaningless if connected with constants of other types.
Variables in formulae have corresponding types and formulae
can be checked if they are consistently typed.

The type information that belongs to some formulae is called
its signature; we write it after a double colon: fa :: Human ->
Boolean.

Frank: GIS Theory Draft V15 Feb.05 52

A typed language is not more expressive than an untyped
one, but typed formulae exclude many non-sense formulae from
consideration. Typing is not necessary when considering simple
examples with few formulae, but becomes useful when
describing large systems. Most modern programming languages
are typed. A compiler for a typed language can formally check
not only the syntax of the program, but also assure that the
program is consistently typed. This excludes a large class of
errors from occurring when the program is executed(Cardelli
1997).

6. CONCLUSION
Languages produce the representations which stand for the facts
of the world. Considering the size of the language produced by a
set of rules and comparing it with the variation in the
phenomenon we need to represent is often useful: we may find
that a language is too small to represent all the differences we are
interested in or it may be too large and contain multiple
representations for the same facts or many symbols which are
not representing anything.

Logic transforms expressions we consider true into other true
expressions; it mimics the human rational thinking. Logical
deduction can be automated, but the most powerful reasoning
engines are slow and the fast one are restricted – sometimes only
simple facts and no rules can be dealt with, sometimes negation
is not included in the language. For practical applications a
trade-off between speed and expressive power must be stricken.

REVIEW QUESTIONS AND EXERCISES
• What is a production rule? Give an example.
• What are the elements of BNF? What is it used for? Give

examples and explain them.
• What is the difference between formal language and formal

system?
• What is the relationship between language and representation?
• Explain the information measure of Shannon and Weaver.
• Why are the following well-formed formulae of the language

'small subset of English' not well-formed:
Simon saw Peter.
A Peter saw student.

021 Languages 53

• What is a parser? What does it produce? How does it use
production rules?

• Extend the language "Small Subset of English" to include
‘and’ in well-formed formulae like "Peter and the professor
talked to a student". Give the parse tree for the well-formed
formula.

• Express the conditions for a construction site as conditions on
size, reachability, exposition, etc. and simplify the expression
using the formulae for Boolean expressions.

• Simplify the expression for leap years:
leapYear y = ((mod y 4 == 0) && (mod y 100 ≠ 0)) ||
 (mod y 1000 == 0)

• What is modus ponens? Give an example.
• What is the difference between forward and backward

chaining? Give an example for each.
• Why is the III + I = II wrong (using the rules stated above)?
• What is meant with quantification of a logical formula? Give

an example.
• Extend the ‘family example’ with the fact fa(R,H).

Demonstrate the deduction of gfa(R,A) using backward
chaining.

• What is a Horn Clause?
• What are truth tables?
• What is the difference between a typed and non-typed

language? Is there a difference in expressiveness?
• Show that if A then B and B implies A is equivalent using the

respective truth tables.

Chapter 5 ALGEBRAS AND CATEGORIES

Logic describes properties of things; algebras focus on the notion
of transformations (mappings) from states to states. This seems
an attractive mathematical tool for geography that studies
processes in space and time(Abler, Adams et al. 1971).

Abstract algebras give a definition to the previously
introduced notion of structure, which was mentioned in chapter
3. Category theory generalizes the notion of algebra. It is well-
known, that everything can be expressed in logic(Lifschitz
1990), but also in algebra. The purpose here is not theoretical but
eminently practical: to find a mathematical tool that leads to a
description of a complex system like a GIS that is compact and
easy to understand. The following chapter 6 demonstrates its use
to describe the measurement scales of Stevens(Stevens 1946).

1. INTRODUCTION
Algebra, by which I always understand abstract or universal
algebra(Whitehead 1898), is a development of the 20th century. It
has emerged from a view that algebra deals with the properties
of numerical operations to investigations of the structure of
operations. Algebra does not deal “primarily with the
manipulation of sums and products of numbers (such as
rationals, reals, or complex), but with sums and products of
elements of any sort—under the assumption that the sum and
product for the elements considered satisfy the appropriate basic
laws or ‘axioms’” (MacLane and Birkhoff 1967, vii).

The development in mathematics in the 20th century has
stressed generality. Operations, which do not necessarily satisfy
the laws of sum and product are investigated. Increasingly,
separate parts of mathematics are dealt with in an algebraic
fashion; we will introduce Boolean Algebra, in contradistinction
to the closely related Boolean operators of propositional logic or
predicate calculus shown in the previous chapter 4. Later we use
algebraic topology (Part 8). Logic is closely related to the theory
of databases(Gallaire, Minker et al. 1984); with equal
justification one can say that algebra and category theory is the
theory of computation(Asperti and Longo 1991).

“an algebraic system … is thus a set
of elements of any sort on which
functions such as addition and
multiplication operate, provided only
those operations satisfy certain basic
rules” (Mac Lane and Birkhoff 1991,
p.1).

Observations 55

Software engineering has appropriated category theory to
construct tools to write specifications(Guttag, Horning et al.
1985). Operations are divided into constructors, which produce
all the different elements in the domain and in observers, which
report the differences between the expressions(Parnas 1972). The
meaning of the operations is defined as properties of the result,
as these are observed with other operations in the same algebra;
to define the intended behavior of operations, we give
expressions of the form

obs1 (constr1 …) = value,
where obs1 and const1 are operations of the algebra(Ehrich,
Gogolla et al. 1989; Loeckx, Ehrich et al. 1996). This allows
definitions independent of other previous definitions and
circumvents the grounding problem of logic definitions by
enumeration of properties.

Algebra discusses the structure of operation and defines
precisely what is meant by structure. Structure of operations
means properties of operations that are independent of the
objects the operations are applied to. Algebra describes the
‘structure’ of a real world system in a precise way and
independent of the representation. It is possible to describe the
structure of complex real world systems—e.g., a coke vending
machine—as an algebraic system and investigate its properties.
The descriptions of the structure are independent of the
realizations that behave the same; we say the descriptions are
determined up to an isomorphism.

2. DEFINITION OF ALGEBRA
An algebra describes a class of objects and their behavior, and is
closely related to the object-oriented discussion of software
engineering(Guttag and Horning 1978). An abstract algebra
consists of a collection of domains, and operations with axioms,
describing their properties. One could differentiate between the
theory described by an algebra, the algebra, an abstract data type
and models for the algebra; but this seems not necessary for
present purposes and following Erich et al. (Ehrich, Gogolla et
al. 1989)and (Asperti and Longo 1991) I use the term algebra
broadly.

The next subsection gives as examples the basic algebraic
structures that will be used later. We have already seen monoid
(chapter 4). Here we introduce:

Algebraic structure captures the
essence of the semantics of
operations and objects.

Algebra consist of
- a set of domains (sets of elements),
- a set of operation names and
signatures,
- a set of axioms that describe the
properties of the operations.

Frank: GIS Theory Draft V15 Feb.05 56

• Group
• Natural Numbers (integers)
• Boolean Algebra
• Sets
• Category
The next chapter will give:
• Equality, Order
• Ring and Field
Later chapters will use
• Lattice

We will always assume that an equality relation is defined
for the domains and that all variables in axioms are implicitly
all-quantified; existential quantification, if necessary, is stated.

2.1 GROUP
A group is an algebra that has an operation (written here as +),
an inverse for this operation (written as -) and a unit value
(written here as 0). The standard example is integers with plus,
minus, and zero, but group is also an important algebraic
structure in geometry. For example, translation (or rotations) in
geometry form a group; the zero element is ‘translation by the
zero vector’ (i.e., not doing anything).

Group <+,-,0>
 associative (a+b)+c = a +(b+c)
 unit 0+a = a+0 = a
 inverse (- a): a + (- a) = (- a) + a = e

Many important groups are commutative (a + b = b + a) and are
called commutative or Abelian group—honoring the
mathematician Niels Abel (1802 - 1829). Ordinary addition is
commutative and integers with plus form an Abelian group.

2.2 NATURAL NUMBERS
The natural numbers are as fundamental as points and lines in
geometry. The axioms for geometry were studied by the Greek
and formulated by Euclid around 300 BC in his Elements(Heath
1981; Adam 1982; Blumenthal 1986). In contrast, an axiomatic
definition for natural numbers was only given in the later 19th
century by Peano(Kennedy 1980).

The properties of natural numbers with basic arithmetic
operations (+, -, *, /) are described as an integral domain (see
next chapter). We can construct a model for natural numbers

Observations 57

with a representation using the simple language RN (from
chapter 4). The axioms following the original description by
Peano include a definition for equality of two numbers and for
addition of two numbers:

1. 1 elem N
2. for all m (m elem N) exist a unique m' (m' elem N), called the successor of m.
3. for each m elem N, m'≠ 1 (That is, 1 is not the successor of any natural

number).
4. If m, n elem N such that m' = n' then m=n
5. let K be a set of elements of N. Then K=N provided the following conditions:
 (i) 1 elem K
 (ii) if k elem K, then k' elem K.
Def. Addition: Let m, k be arbitrary elements of N. We define m + 1 = m'. If m +

k is defined then m + k' = (m+k)'
(McCoy and Berger 1977).

2.3 BOOLEAN ALGEBRA
A Boolean algebra with just two constants (customary notations
are “T” and “F” or True and False or 0 and 1) and a unary
operation not and binary operations and, or, implies, gives
equivalent rules to what was before described (chapter 4) as
Boolean Logic (named after George Boole 1815-1864). Laws
like de Morgans law (not (a or b) = (not a) and (not b)) and
similar can be added here as well.

Boolean Algebra <{T, F}, and, or, not>
 not :: b -> b
 and, or, implies:: b -> b –> b
 self-inverse not (not p) = p
 associative a and (b and c) = (a and b) and c = a and b and c
 a or (b or c) = (a or b) or c = a or b or c
 commutative a and b = b and a
 a or b = b or a
 units a and T = a
 a or F = a
 inverse a and (not a) = F
 a or (not a) = T
 distributive a and (b or c) = (a and b) or (a and c)
 a or (b and c) = (a or b) and (a or c)

The logical operations can be defined as numeric functions as
follows: represent False by 1 and True by 2, then

and (a,b) = min (a,b),
or (a,b) = max (a,b),
 not a = 3-a;

this approach is useful when allowing more than 2 truth values in
a logic system(Sinowjew 1968).

Frank: GIS Theory Draft V15 Feb.05 58

2.4 SET
Sets are an abstraction from the collection of elements as we
encounter them in real life everywhere—fruit in a bowl, sheets
of paper in a folder, glasses on a table, etc. (Figure 22). A
simplistic set theory would construct only sets of real world
objects, such that each object can only be in one set at a time.
Then we have
card (a) + card (b) = card (a ∪ b) if a intersectoin b = empty.
.
This is too restrictive: an element can be in more than one set at
a time, but it cannot be multiple times in the same set (a
structure that permits multiple memberships is called a bag or
multiset). Venn Diagrams are a useful tool to visualize sets and
operations with sets. For example the intersection of the sets 'left
paddock', 'right paddock', 'down', 'up' from Figure 24 is shown
Figure 23.

Sets give another example of a Boolean algebra. If the rules
for sets are restricted to just two values all-set (for True) and
null-set (for False), then union corresponds to the Boolean
operation or and intersection corresponds to Boolean and.

Set < ∪, ∩, complement, ∅, all>
 associative a ∪ (b ∪ c) = (a ∪ b) ∪ c
 a ∩ (b ∩ c) = (a ∩ b) ∩ c
 commutative a ∪ b = b ∪ a
 a ∩ b = b ∩ a
 identity a ∪ ∅ = a
 a ∩ all = a
 inverse a ∪ (comp a) = all
 a ∩ (comp a) = ∅
 distributive a ∪ (b ∩ c) = (a ∪ b) ∩ (a ∪ c)
 a ∩ (b ∪ c) = (a ∩ b) ∪ (a ∩ c)
 involution comp (comp a) = a
 idempotent a ∪ a = a
 a ∩ a = a
 ∅ a ∪ all = all
 a ∩ ∅ = ∅
 absorption a ∪ (a ∩ b) = a
 a ∩ (a ∪ b) = a

Figure 22: Examples of real world sets

Figure 23: Venn diagrams of four sets
intersecting

Figure 24: Sheep grazing on a hill

Observations 59

The operation cardinality computes the number of elements in a
set; the following rules apply:

card (a ∪ b) = card a + card b –card (a ∩ b)
0 < card (a ∩ b) < min (card a, card b)

It is possible to determine if an element a is in set A with a
membership function or element of (written as ∈) relation. The
expression 'a ∈ A' is true if a is an element of set A.

A set X is a subset of another set Y if every element of X is
also an element of set Y, written as X ⊂ Y. Venn diagrams
express subsets relations by inclusion (see Figure 23 above). The
converse relation is called superset (Y ⊃ X). Subsets form a
partial order (Figure 26).

Mathematicians have constructed sets that contain sets and
are different from sets just containing the elements in them; the
set on the left of Figure 27 contains three elements, namely the
sets E, F, and G, whereas the set on the right contains the 12
elements which were in E, F, and G. Allowing unrestricted sets
and set membership can lead to antinomies; for example, does
the set, that is defined as containing all sets that do not contain
itself, contain itself? Operating in a typed universe, these
problems cannot occur, because as set of x is a different type
than the set of (sets of x).

3. DUALITY
The axioms for Boolean algebra and for sets exposed a
regularity: every axiom formulated for the operation union had a
corresponding axiom for intersection (respective and and or). A
valid formula can be converted into another valid formula, if we
systematically exchange every operation for the dual operation
and equally exchange the units: the all-set (True) becomes the
empty set (False) and vice versa. Duality could have been used
to reduce the number of axioms stated; it will become more
useful later replacing operations difficult to compute with others
that are easy (see chapters 19 and 30).

4. FUNCTIONS ARE MAPPINGS FROM DOMAIN TO
CODOMAIN

A function from a domain A into a codomain B maps values
from A to values of B(Gill 1976). A function assigns to a single
value from A only a single value from B (unlike relations, which
can have multiple result values—see later chapter 16). Computer
science speaks of the domain and codomain as types(Cardelli

Figure 25: Union with the empty set

Figure 26: Subset relations form a partial
order

Figure 27: Set containing sets

Duality for set:
∪ <-> ∩
allset <-> null set

Frank: GIS Theory Draft V15 Feb.05 60

1997); the signature of a function f : A -> B gives the domain
and codomain. The application for single element x is written as
x |-> f (x), and f (x) is the element assigned to x.

Functions with more than one input or more than one result
can be seen as function of a single input and single result, if the
inputs or results are considered as tuples. The function a + b can
be transformed into the function plus (a,b), which has a single
input, namely the pair (a,b).

4.1 TOTAL FUNCTIONS
A function f : A -> B that has a result for any value in its domain
is called total(Figure 28). Programmers prefer total functions
because they do not require a test that a function value can be
obtained. Non-total functions produce results only for a subset of
the values in the domain (Error! Reference source not found.).

Examples: Increment is a total function that adds 1 to any
number. Division is partial, as division by 0 is not defined
(Ehrich, Gogolla et al. 1989; Mac Lane and Birkhoff 1991, 6).

4.2 INJECTIVE FUNCTIONS (INTO)
If a function has an inverse function, then it is an injection: for
each value of the domain there is a different value in the range
(Figure 29): a ≠b implies f(a) ≠ f(b). Injective functions carry
distinct elements in the domain to distinct elements in the
codomain(Gill 1976, 53). Figure 30 gives an example of a
function which is not injective. An injective function has an
inverse function from the codomain to the domain.

4.3 SURJECTIVE FUNCTIONS (ONTO)
A function f : A -> B is surjective if every element of B is the
image of some element of A (Figure 31). The image is the whole
codomain. Figure 32 gives an example of a function which is not
surjective.

4.4 BIJECTIVE FUNCTIONS (ONE-TO-ONE)
If a function is surjective and injective, it is called bijective
(Figure 33). Such functions have inverses that are total. We will
later see that this classification is useful not only for functions,
but generalizes to relations (see chapter 16).

Terminology:
A function f : A -> B
maps from domain A to codomain B.

Figure 28: Total Function with image f(A)

Functions are total if they take every
element of S to an element of T; they
are not total if there are elements of
S that are not mapped.

Figure 29: Injective Function (inverse is
partial)

Figure 30: an example of a function which
is not injective

Figure 31: Surjective Function

Figure 32: example of a function which is
not surjective

Figure 33: Bijective function (has inverse,
which is total)

Observations 61

A function f: S -> T is injective if no two inputs are
mapped to the same result.
A function is surjective if every element of its
codomain T is the result of some element in the
domain S.
A function is bijection if it is both injective and
surjective

5. ALGEBRAIC STRUCTURE
Algebras describe structure independently of an implementation
or previous understanding. The same algebra describes the
behavior of a class of different things if their behavior is
structurally equivalent. For example, the operations with counts
and operations that apply to the result of the counting, are the
same, independent of what we count: beers, sheep, matches, gold
bars, whatever.

The structure is described in form of axioms, which can
often be expressed as the observation of the result of on
operation in terms of other observations. For example all
numbers useful for counting must have the structure of a group
with the rule that adding zero to a number yields the same
number: a + 0 = a. Numbers represented as Roman numerals,
Arabic numbers, or as binary numbers in a computer work the
same. The algebra describes behavior ‘up to an isomorphism’,
meaning it describes many things that behave, under the limited
perspective of the operations defined in the algebra, the same.
Differences that can not be observed with the operations defined
in the algebra are not relevant.

5.1 EXAMPLE— COUNTING
The definition of equality or addition on natural numbers as
defined by Peano (subsection 2.2 above) is only of interest as it
is useful for solving real world problems. How many beers do I
have to pay if my count reads I11 and my friends I1? Using the
rules from RN (see chapter 4) I11 + I1 = I1111, which is 5 in
ordinary language (Figure 34). The algebraic definition of
addition corresponds to the natural adding of counts. This
correspondence was introduced before when we discussed
information systems as a morphism (see chapter 3).

Figure 34: 2 + 3

The homomorphism h : A -> B
carries also the operations f : A -> A
to operations f' : B -> B, such that h
(f (a)) = f' (h (a)).

Frank: GIS Theory Draft V15 Feb.05 62

5.2 HOMOMORPHISM BETWEEN ALGEBRAS
A morphism, is a mapping between things of two types which
preserves its algebraic structure. The addition (operation +
above) is the same if applied to Roman numerals II + III = V or
to Arabic numbers 2 + 3 = 5 (Figure 36), but it is also the same
if we take any set with cardinality 2 (e.g., a pair of sheep, Figure
34) and merge it with a set with cardinality 3 (e.g., another flock
of 3 sheep).

The algebraic structure of addition is preserved across the
mapping F from one kind of numbers to the other: We can add
the Roman numerals and transform (map) the result to Arabic
numbers or we can transform first to Arabic and then do the
addition, the result is the same (Figure 35). Category theory
studies a generalized concepts of morphism and shows
morphism succinctly as a commutative diagram (Figure 35)
(Barr and Wells 1990; Asperti and Longo 1991; Mac Lane and
Birkhoff 1991).

A homomorphism does not imply that the operation maps to
the 'same' operation. The example with different counts (Figure
34) may be misleading: the operation was two different kinds of
add, once with RN, once with N. Logarithm gives a different,
familiar example (Figure 37).

5.3 DEFINITION MORPHISM AND COMMUTATIVE DIAGRAM
Mac Lane and Birkhoff explain a morphism for a binary
operation as: “Let * be a binary operation on a set X, while ▫ is
another such operation on a set X’. A morphism f: (X,*) -> (X’,
▫) is defined to be a function on X to X’ which “carries” the
operation * on X to ▫ on X’, in the sense that

f (x * y) = (f x) ▫ (f y)
for all x, y ∈ X. On the left (Figure 38), one applies to an element
(x,y) ∈ X × X first the operation *, then the function f; on the
right one applies first f × f (i.e., apply f to both elements in the
pair) and then ▫. In other words, f is a morphism if and only if the
diagram below is commutative." (Mac Lane and Birkhoff 1991p.
37). This can be generalized to unary functions as:

"If (X,h) and (X', h') are sets with unary operations h: X ->
X, h': X' -> X', a morphism f: (X,h) -> (X', h') of unary
operations is a function f: X -> X' with f (h (x)) = h' (f (x)) for
all x ∈ X. " (Mac Lane and Birkhoff 1991 p. 38) and to functions
with more than two arguments.

Figure 35: Commutative diagram

Figure 36: Two alternative paths to
compute II + III

An algebra with axioms describes a
structure independent of the carriers
or the names of the operations

Figure 37:The law of exponents defines a
morphism

Observations 63

A categorical diagram is said to be commutative if we can
travel both paths and arrive at the same result, often from top left
to bottom right. In Figure 37 it does not matter if we take the
logarithm first and divide by two (right and down path), or if we
take the square root first and then compute the logarithm (down
and right path).

Morphisms are classified by considering the type of the
function f. A morphism f: (X, h) -> (X', h') is a

monomorphism if the function f is injective:
epimorphism if the function f is surjective;
isomorphism if the function is bijective.

Isomorphisms are very important in computer programming as
they allow a lossless transformation forwards and backwards
between two representations and the corresponding operations.
For example, computers are faster adding binary representations
of integers than integers represented as Roman numerals or
strings of digits. It is customary to represent integer numbers in
most cases as binary numbers and have all operations executed
with them. Computer representations are not isomorphic to
integers, because only numbers up to a certain magnitude can be
represented; the transformation is isomorphic only for the
restricted domain, but this is nearly always sufficient.

injection -> monomorphism
surjection -> epimorphism
bijection -> isomorphism

5.4 APPLICATION TO INFORMATION SYSTEMS
The representation relation between the things in the world and
the things in an information system introduced in chapter 3 is not
a simple static mapping, relating objects in the world to objects
in the program; in Figure 34 the two sheep map to the numeral
II. We must also map the operations in the world—merging the
two flocks of sheep—to the operations with numbers in the
computer—the addition. We need two kinds of mappings:
objects to representation and operations we can perform in the
world mapped to operations applied in the information system to
the representations. This is exactly what a morphism does. To be
useful, the outcome of an operation in the world and the
corresponding operation in a computer must correspond. I called
this—in analogy to the commutative diagrams of category
theory—closed loop semantics (Figure 39) : applying the action

Figure 38: Commutative diagrams
(after(Mac Lane and Birkhoff 1991, 37))

Frank: GIS Theory Draft V15 Feb.05 64

to the world or to the mental image obtained by observation must
result in the corresponding result(Frank 2001; Frank 2003).

5.5 MODELS
Algebras are abstract constructions. If we want to implement and
experiment with an algebra, we have to build a model with
carriers we can represent and operate on. A representation for an
algebra is a model of this algebra. Roman numerals are a model
of natural numbers. For computational models, the
representations are computer data types (see chapter 4). Models
of algebras with different representations have the same
behavior, because the behavior is the abstract property of the
algebra. Some models of algebras are special (initial algebra,
terminal algebra, Herbrand model) but this is not of importance
in this context; we will tacitly assume initial algebras as models
for our specifications(Ehrich 1981; Loeckx, Ehrich et al. 1996).

5.6 MORPHISMS AS A METHOD TO CONNECT ALGEBRAS
We have encountered two morphisms in the previous chapter,
namely the operation to determine the length of a string length
and the operation to determine the information content of a string
H. For both we have stated that they combine with string
concatenation ++:
length (a) + length (b) = length (a ++b)
H (a) + H (b) = H (a ++ b)
These are both morphisms that map strings to numbers and
concatenation to addition, such that the two diagrams commute
(Figure 40, Figure 41).

6. IMAGE AND KERNEL
The image of G in H is the set of values that are the result of
applying Ф to all values in G. The image of Ф has the same
structure as G (for example if G is a group then the image of Ф is
a subgroup of H).

If the algebraic structure has units, then we may ask, what
are all the elements of G that map to a unit of H? This set is
called the kernel or null space (i.e. the values in G which solve
the equation Ф (g) = 0). It indicates how much this morphism
"collapses" G (Mac Lane and Birkhoff 1991, 75). Null space is
increasingly used in explanation of operations for projective
geometry and image processing (Faugeras and Luong 2001;
Hartley and Zisserman 2003).

Figure 39: Closed loop semantics: the
observations are connected to actions

Morphisms connect algebras.

Figure 40: Length is a string morphism

Figure 41: Information content H is a
string morphism

Figure 42: The Image and Kernel of G
under Ф

kernels are general constructions
which measure the failure of a
homomorphism or function to be
injective.[wikipediaentry kernel]

Observations 65

Image and kernel can be used to identify different types of
morphism:

If Ф : G -> H is an

Epimorphism <-> Im (Ф) = H Ф is surjective
Monomorphism <-> Ker (Ф) = 1 Ф is injective
Isomorphism <-> Ker (Ф) = 1 and Im (Ф) = H Ф is bijective

7. CATEGORIES
Constructing computational models reduce the complexity of the
world to constants and variables, procedures and functions. The
conceptual diversity can be reduced further and procedures,
functions and constants all seen as functions with a different
number of arguments; constants are functions with no
argument(Bird 1998). This simplification allows a view of
operations that can describe the semantics of operations without
resorting to representations: we describe the semantics of the
operations by formulae without reference to the elements they
are applied to. This approach is typical for mathematical
category theory(Pitt 1985; Barr and Wells 1990; Asperti and
Longo 1991; Walters 1991). Category theory is a generalization
of (universal) algebra and shares with algebra many concepts –
often with slightly different meaning.

Category theory is an application of concepts of algebra to
algebras themselves. It is not related to the category theory of
cognitive science and ontology, where classes (categories) of
similar objects are formed(Rosch 1973; Rosch 1978).

7.1 A CATEGORY AS AN ALGEBRA OVER FUNCTIONS
Category theory deals with categories, which consist of arrows
connecting objects. An arrow f maps from the domain A to the
codomain B: f : A -> B. The most intuitive example for a
category is the category of sets, where functions are the arrows
and sets are the objects, but category theory is much more
general. Category theory is a simple, general algebra of arrows
and the operation of interest is the composition of two arrows.
For each domain there is a unit, which maps every element to
itself. For functions this is constant function identity id that does
nothing: for all x: id x = x.

The primary operation in a category is the composition of
arrows. It is written as ‘.’ and must be associative; this makes
parentheses unnecessary as (a.b).c= a.(b.c) = a.b.c. Composition

A category is "a collection of
algebraic systems and their
morphisms" (Mac Lane and Birkhoff
1991, 129)

Frank: GIS Theory Draft V15 Feb.05 66

is partial and only defined when the domains map: f: A -> B, g :
B -> C; (g.f) : A -> C. Function composition follows the rule:

for all f, all g, all x: (f.g) x = f (g (x)).
Note that function composition for the category of sets and
functions (see chapter 4) the above formula is second order,
quantifying over all functions f and g. Categories are like groups:
they have a single operation that is associative and has a unit, but
not necessarily an inverse (or like a semi-group with a unit).

Comment on notation: When taking a functional point of
view, function application is the most common operation: f is
applied to x. In analysis multiplication is the most common
operation ab means a * b and function application is written as f
(x). In a functional context, where function application is the
most common operation, we just write f x to indicate the
application of f to x—no parenthesis required (parentheses are
used for grouping as usual). This is not used consistently in this
text; when it is convenient, then the traditional f(x) notation with
parenthesis is used.

Category <·,id>
 dot, (·) :: f -> f -> f
 condition: a . b defined only for codomain b = domain a
 id ::o -> f (there is an identity for each object type o)
 domain :: f -> o
 codomain :: f -> o
 associative: (a.b).c= a.(b.c) = a.b.c.
 unit: id(codomain f) . f = f

Category theory gives us a high level, abstract viewpoint:
instead of discussing the properties of elements we directly
address the properties of the operations. This corresponds to the
interest in geography, where the discussion concentrates on
processes that occur in space, not on the collection of locations
and properties of spatial objects(Abler, Adams et al. 1971; Frank
1999).

The properties of operations are described—as far as
practical—without reference to the elements the functions are
applied to. To state that two functions op and inv are the inverse
of each other, we simply write op . inv = id. For the function
increment inc and its inverse decrement dec the composition is
the identity function: dec.inc = id. To state that a function can be
applied any number of times and producing the same result as a

Categories treat algebras the same
way than algebras deal with
entities(Frank 1999).

In the category of sets, composition
combines functions like ordinary
operations (e.g., addition) combine
numbers.

Observations 67

single application—we say the function is idempotent—one
writes op. op = op.

A categorical viewpoint demonstrates that semantics of
operations are independent of the representations they are
applied to. A ‘pointless’ definition is independent of the
representation and this is documented by the absence of the
elements (sometimes called points) the functions are applied on
in the definition.

7.2 COMMUTATIVE DIAGRAMS EXPRESS AXIOMS
The axioms for a group can be expressed as commutative
diagrams. The commutative law (a + b = b + a) is shown in
Figure 43: Commutative la, where the function twist :: A x B ->
B x A, twist (a,b) = (b,a). The associative law gives (a + (b + c))
=((a + b) + c).

To show these axioms as commutative diagrams stresses that
they are generally applicable, for many arrows and domains, not
only the category of sets with functions; the arrow f can be +, but
could be some other operation that follows these laws.

7.3 CATEGORIES CONTRIBUTE TO THE UNIFICATION
Category theory is the generalization that allows us to bring
together different parts of mathematics and identify the
commonality. Most fields in mathematics deal with a category,
as shown in the following table(based on Asperti and Longo
1991, 4); category theory establishes the connections between
them.

Figure 43: Commutative law (twist (a,b) ->
(b,a))

Figure 44: Associative law

Frank: GIS Theory Draft V15 Feb.05 68

Category objects Morphism Part in this book

Set sets functions Chapter 6
Measurements

Top topological
spaces

continuous functions Part 7

Vect vector spaces linear transformations Part 3: Space time,

Part 6: Projective Space

Grp groups group homomorphism

PO partial ordered
sets

monotone functions

Graphs edges and
nodes

graph morphism Part 8

Rel relations join Part 5: DB

8. REPRESENTATION AS MAPPINGS: PRACTICAL
PROBLEMS

Many common problems in Computer Science and GIS can be
analyzed in terms of properties of operations and mappings from
real world to computer representations. For example, that the
division is not a total function (no division by 0!) is well-known,
but even commercial programs fail because programmers forgot
to check for this case(Goldenhuber 1997). A systematic solution
for all such cases of non-total functions is the extension of the
codomain of the division with an additional value 'not a number'
(NAN in the ISO standard for numeric computation[ref]) or
similar, to which all division by 0 are mapped. The new function
is then total! We will later call such morphisms functors (see
next chapter 6).

8.1 TOO MANY REPRESENTATIONS: RATIONAL NUMBERS
Rational numbers can be represented as pairs of integers, like
(1/2, 2/4, 3/4, etc.), but many pairs, for example, the pairs 2/4
and 1/2, are the same value. Generally, all values i*n/i*d for any
i are equivalent. We select the value n/d as the representative of
the equivalence class. This defines a surjective function from
pairs P to the (reduced) rational numbers R. This function has no
inverse, given a rational number 3/4, we can not determine if this
was originally 3/4, 6/8, 9/12, etc.

Figure 46: Extension of Natural Numbers
to make division total

Figure 47: Construction of rational
numbers with a surjective function to map
to the rational numbers

Observations 69

A general solution is found through canonical factorization.
Given a function f: A -> B, the equivalence kernel of f is a
relation ρ (a, b), which is true when f(ai) = f(aj). ρ is an
equivalence relation and induces a partition A/ ρ, where each
equivalence class consists of all elements whose image is a given
element in the range of f (Gill 1976p. 57)

8.2 PARTIAL REPRESENTATION: STRAIGTH LINES
Representations that cannot represent all values of interest cause
difficulties. Here a geometric example: straight lines can be
represented as functions f (x) = y, with y=m*x+c, which suggest
a representation of a straight line as pair of values m and c. This
mapping from straight lines to pairs of reals is partial, because
lines parallel to the y-axis (vertical lines) have no representation
in this form. We will later give a different representation for
straight lines (chapter 19), which has for each straight line
multiple representations, that is, a case of 'too many
representations', but at least can represent all straight lines.

8.3 REDUNDANCY
Representations that allow many more tokens than are needed to
represent the intended values can be used to guard against errors.
A rule that defines the unused tokens as illegal allows
differentiating between intentionally produced legal tokens and
erroneous tokens (Figure 51: Redundancy allows separation
between valid and non-valid tokens). Errors in the transmission
can be detected if they result in an erroneous token. A typical
example is the introduction of a parity bit, to guard against
transmission errors.

9. CONCLUSIONS
Formal methods rely on the manipulation of symbols according
to some rules, which are written as sequence of symbols and
called programs. The logical approach shows how true
statements are transformed to other true statements; the algebraic
viewpoint stresses the general rules of such transformations.

Formal systems show how to translate one representation
into another one, preserving properties of interest. Algebras are
descriptions of the structure of formal systems and define the
concept of structure. It is possible to understand the production
rules in the language definitions as functions (morphism)(Ehrich,
Gogolla et al. 1989; Loeckx, Ehrich et al. 1996). This is useful as

Solution for too many equivalent
solutions: select a canonical value to
represent each equivalence class.

Figure 48: Canonical factorization
(after(Gill 1976p.56))

Figure 49: A straight line represented as
y=m*x+c

Figure 50: A vertical line is not
representable as a pair m and c

Figure 51: Redundancy allows separation
between valid and non-valid tokens

Algebras describe abstract structure,
which can be preserved across
transformations between different
representations.

Frank: GIS Theory Draft V15 Feb.05 70

it shifts the focus from the (often infinite) set of sentences in a
language to the finite set of production rules and leads to
conclusions about a language based on properties of the
production rules.

Morphisms are used here to "construct from simple parts
complex systems"; we have seen how length of string is a
morphism from strings to integers, which maps string
concatenation to addition. In the next chapter, we will generalize
this notion, using the concept of a functor from category theory.

Category theory is an abstract treatment, where we
concentrate on the operations, independent of the representation.
It is useful when we have to bring together in the GIS different
parts of mathematics, e.g. set theory, geometry, topology and
relations. It is increasingly used in computer science, for
example in image processing.

REVIEW QUESTIONS
• What is an algebra? What does it consist of? Give an example.
• Explain what a total function is. Give examples. Why is this

important for programming?
• What is a homomorphism? Give three examples.
• What is the connection between Boolean Algebra and

Boolean Logic?
• What is a category? Why are we interested in it?
• What is the ‘.’ (dot) operation? Explain in a formula in a style

you are familiar with.
• Why are isomorphisms practical? Why can we say that they

are 'transparent'?

Observations 71

Chapter 6 OBSERVATIONS PRODUCE MEASUREMENTS

GIS store observations of the outside reality. We will use the
notion measurement for the representation of the results of such
observations in a general sense. Measurements can be the result
of surveying operations with instruments, counts resulting from
statistics or other observations of physical properties.

We observe reality. Observations can be the color of a field,
the height of a point or the force of gravity. The result of an
observation is expressed as a value on the appropriate
measurement scale; for different observations different
measurement scales apply: color is recorded as a value like ‘red’
or an RGB triple (red, green, blue intensity), whereas the height
of a point is 324.4 m above mean sea level or the force of gravity
is 9.9413487 mgal. Typed functions then connect these values to
other values on different measurement scales; for example, the
area of a rectangle is calculated as the product of two length
values and the result is expressed as square meters.

The representation for measurements is produced by a
language (see chapter 4). The results of observations are typed
expressions on some measurement scale, which are algebras,
understood best as sets of operations that are possible with these
values such that operations with the values relate to operations in
reality. Measurement scales determine, for example, what
statistical operations are meaningfully applied to some
observations. Scales of measurements are—in the terminology of
programming languages—(abstract data) types.

In this chapter we will study functors, which map between
types. Functors transform types, preserving the intentions, the
semantics, or—technically—the algebraic structure. These three
notions are used here as synonyms. Transformation of types by
functors is different than the 'type cast' operations, which change
just the type and do not preserve the algebraic
structure(Stroustrup 1991).

1. REPRESENTATION USING A LANGUAGE
The values must be represented. A formal language, for example
the language of decimal point numbers, produces distinct values,
but the representation and the type is not the same: one kind of

Figure 52: A surveyor observes a distance
and produces a measurement

Measurement units are functors, they
map numbers to measurements, and
the operations that we want to apply
to measurements, to operations on
the numbers.

Frank: GIS Theory Draft V15 Feb.05 72

representation can be used to represent values that have different
semantics and allow different operations. In many currently used
programming languages, type and representation is incorrectly
equated.

For example, the representations of soil observations are
made on a scale of sand, gravel, podsol, etc. These nominal
values may be represented with numbers, but this does not imply
that numerical calculations make sense. It is not meaningful, to
sum such numbers, for example calculations that the average
between podsol and sand is gravel are utter nonsense! This
example shows that measurement scales are not just
representations but algebras.

2. ENTITIES AND VALUES
Observations presuppose that we observe something as distinct
from other things. We will call these things 'entities'. Anything
for which we assume a distinct existence and durability in time is
an entity. A first type of entity is a point in space and time, for
which different observations are possible.

The result of an observation is a measurement, which is a
value selected from a collection of values. For example,
observations of color are sometimes selected from the set of
values red, yellow, blue, etc. or the observation of today’s
temperature in °C (Celsius) results in the value 13, a distinct
value of type integer, that is, from the set of values 0, 1, 2… , etc.
Some people describe the temperature more precisely as 13.5 °C,
a value from floating point numbers.

3. TYPES OF MEASUREMENTS
The set of values from which an observation selects one is a
type(Cardelli 1997). Different observations of the same kind all
result in values of the same type—but distinct values. The
temperature yesterday was perhaps only 10°C, which is a
different value but of the same type as today's temperature. The
distinction of types makes it possible to guard against nonsense
operations, like the one shown in Figure 53.

Soil types:
 sand = 1,
 gravel = 2,
 podsol = 3,

An entity is anything conceptualized
as having a distinct
existence(Zehnder 1998).

An observation connects an entity
with a measurement value.

Observations 73

Measurements are not just representations, because
representations alone would not be typed. Representations alone
do not have an algebraic structure. A typed formalization allows
automatic type checking of all formulae; this increases our
confidence in the formalization—many common mistakes in
human reasoning are discovered by type checking. Type
checking in a formal language is similar to the checking of
dimensions for formulae in physics. Most students of physics
learn to control their formulae by checking that they are correct
for the dimensions.
Example:

s = v * t, where
 v velocity in m/sec
 t time in sec
 s distance in m
 [s] = [v * t] = [v] * [t] -> m = m/sec * sec

Such formulae, connecting measurements of one type with
measurements of another type are the fabric that makes an
information system! They are expressions of the semantics of the
corresponding measurement types. Conversions of measurement
units are not changes in types: the same operations apply to the
length measured in m or in feet; it is only a conversion of the
numerical values that represent the multiplicity of the unit to
achieve the desired value.

4. FUNCTORS
Measurements are expressed on scales appropriate for the
observation and preserving structures that we assume to exist in

Figure 53: The description of New Cuyama, California (Mike Goodchild
holding, picture by Helen Couclelis)

Types represent a part of the
structure of reality(Asperti and
Longo 1991).

Physical dimensions are different
types but different measurement units
are not different types.

Frank: GIS Theory Draft V15 Feb.05 74

reality. Most of the time we forget the algebraic properties of the
measurements and operate with them as if they were just
ordinary numbers without the special properties of
measurements. This custom to calculate with the numeric values
of measurements is most often justified (Figure 53 shows the
exceptions) because the algebraic structure of the measurement
scale and the numbers are the same. We can see the
measurements scales as functors that construct new algebraic
systems from the given ones.

4.1 DEFINITION OF FUNCTOR
Given two categories A and B and two objects A1 and A2 in A
then a functor F from A to B consists of functions

F :: obj A -> obj B (i.e., it maps a function in A to a function in B),
and for each pair of objects A1, A2 of A, with

g :: A1 -> A2, F (g) :: F (A1) -> F (A2),
satisfying

F (id) = id,
F (k.l) = F (k) . F (l) (when k :: A2 -> A3 and l :: A1 -> A2) (Walters 1991, 93)

4.2 FUNCTORS CONSTRUCT TYPES
Consider vectors with 3 elements as a functor F :: Real -> Vec3.
The unit 0 is mapped to <0,0,0>, addition maps to pointwise
addition of the elements: <a,b,c> + <d,e,f> =<(a+d), (b+e),
(c+f)>. You can immediately see that the group properties are
preserved; e.g. v + 0 = <a,b,c> + <0,0,0> = <a,b,c> etc.

Dimensioned measurements are types, constructed by a
functor. We will use the name of the measurement unit for these
functors (e.g., meter) meter :: R -> L. The functor meter takes a
(numeric) domain R and constructs the domain of 'length
measurements' L, e.g., real numbers -> length in real numbers
(i.e., R -> Length R); the same functor meter takes a function
add:: R x R -> R, to meter (add) :: Length R -> Length R and the
diagram in Figure 55 commutes.

5. MEASUREMENT SCALES
Different observations result in different kinds of values: the
determination whether a student passes a course is a Boolean
value (True or False), the students grade is on a scale A, B, C, D,
and F, today’s temperature is 13 °C and my height is 182 cm.
Stevens (1946) identified differences in the way measurements
must be treated; he called them measurement scales. In our
terminology, a measurement scale is an algebra, which defines

"many constructions of a new
algebraic system from a given one
also construct suitable morphism of
the new algebraic system from
morphism between the given ones.
These constructions will be called
'functors' when they preserve identity
morphism and compositive
morphism."(Mac Lane and Birkhoff
1991, p. 131).

Pointwise application of a function:
Apply the function to each element.

Figure 55: Functor meter

Categories generalize algebras;
Functors generalize morphism.

Observations 75

what operations can be applied. The operations applicable
determine then, for example, what statistical operations are
possible, because statistical operations depend on basic
arithmetic operations.

Traditionally four measurement scales are differentiated and
correspond to algebraic structures that are well-known(Stevens
1946):
• Nominal -> equality
• Ordinal -> order
• Interval -> 1D affine space
• Ratio -> field
Arguments to consider absolute, logarithmic scale, count, and
cyclic scale as measurement scales have been
published(Chrisman 1975; Frank 1994; Fonseca, Egenhofer et al.
2002), but no agreement has been reached yet.

Measurement scales are mostly discussed in cartography and
statistics. In cartography they help to select an appropriate
graphical representation for a set of observations: the graphical
properties of the representation must have the same algebraic
structure as the value to depict graphically and the
transformation from an internal representation to a graphical
representation must preserve this algebraic structure (Bertin
1977; Chrisman 1997, 13). Increasingly other applications find
the concept of measurement scales useful.

6. NOMINAL SCALE
The least structured measurement scale is a nominal scale: the
result of an observation is a value, of which we can only say if it
is the same or different from another one. Examples:

Soil types: gravel, sand, podsol, etc.
Land use classes: agricultural, residential, forest
Names of people: Peter, Fritz, John (names in general)

A special case of a nominal scale is the two truth values True
and False encountered before.

The algebraic structure is the algebra of equality. It has two
binary operations, namely a test for equality and a test for not-
equality that result in a Boolean value, and a single axiom, which
says that not equal is the same as not-equality. The equality
relation must be transitive, symmetric, and reflexive:

Equality
 inverse not (=) = ≠

Frank: GIS Theory Draft V15 Feb.05 76

 transitivity (a==b) && (b==c) => a == c
 commutative (a==b) => (b==a)
 reflexive (a==a).

7. ORDINAL SCALE
Observation can result in values that are ordered; one can tell if a
value is more or less than another value, but not how much more.
Examples: Size of T-shirts: Small, Medium, Large, XLarge.
Grades in School: A, B, C, D, and F. In each case, we know that
Large < XLarge or A > C, etc.

One can compare two values on an ordinal scale and
determine which one is bigger, but it is not possible to say
whether the difference between two values is the same than the
difference between two other values. It is true that an A is the
better grade than a B, but to state that the difference between an
A and a B grade is the same than the difference between B and C
is for most tests nonsense.

7.1 TOTAL ORDER
Values on the ordinal scale are supporting the operations of the
nominal scale, that is, we can differentiate two values. Order is
imposed on a collection of values by a relation (<=) that is
transitive, anti-symmetric, and reflexive (compare: equality is
transitive, symmetric, and reflexive). Other operations, like <,
>=, >, are derived and need not be defined individually.

Total Order
 transitive (A <= B) and (B <= C) => A <= C
 anti-symmetric (A <= B) and (B <= A) => A == B
 reflexive (A <= A)
 totality (A <= B) or (B <= A)

For ordinal scales, the maximum or the minimum value from
two arguments can be computed.

max (a,b) = if a > b then a else b
min (a,b) = if a < b then a else b

In bounded data types—and all data types representable in a
computer are bounded—the maximum value is the unit for min
and the minimum value is the unit for max:

max (minVal, a) = a
max (maxVal, a) = a.

7.2 LEXICOGRAPHIC ORDER
It is common to impose on nominal scales that are not ordinarily
ordered an arbitrary ordering, called lexicographic order.

Observations 77

Assuming that the letters of the alphabet—which by themselves
are also on a nominal, unordered scale—can be arranged in an
order, namely the order of the alphabet, one can deduce an order
relation between any two names. This is convenient and can
speed up search procedures considerably. Imagine searching for
a name in a telephone directory that was not arranged in
alphabetical order! The same principle can be applied to many
other values that do not have a ‘natural’ order. These are tricks to
improve performance and do not correspond to an order in
reality! From the fact that “Frank” is ordered before “Heinrich”
one must not conclude anything about the properties of the two
families (Figure 56).

Beware of different alphabets and orders for different
languages. Austria adds the Umlaut Ä, Ö, and Ü at the end of the
alphabet (Swiss translate them as Ae, Oe, and Ue and order them
at the corresponding place). A Spaniard uses an alphabetical
order A, B, … L, LL, M, N, Ñ, O, P, Q, R, RR … etc. Can you
imagine an "alphabetic order" for Chinese characters?

8. INTERVAL SCALE
The interval scale is the scale represented with numbers, for
which the computation of a difference is meaningful. On the
interval scale, no absolute zero is defined (Figure 57). The most
common examples are temperatures expressed on conventional
scales (Centigrade or Fahrenheit). One can calculate differences:
the difference between days with 20 and 25 °C is the same as the
difference between 10 and 15 °C. However, the difference of 5
°C is not the same as a day with 5 °C temperature. The value of a
difference is expressed on a ratio scale (next section) and the
operation difference has an inverse.

Mathematically, an interval scale is a 1-dimensional affine
space, where we have the numbers of the interval scale I and real
numbers R and the operations diff and plus that map from the
interval scale to the real numbers (Mac Lane and Birkhoff 1991,
564):

diff (a,b) = r => plus (a,r) = b
diff (a,a) = 0, plus (a, 0) = a
plus (plus (a,r), p)) = plus (a, r + p)

This is the foundation for statistical operations with interval data:
we take the difference to some arbitrary base (for example the
value zero) and then compute with these ratio values as usual.
The result of the average must then be added to the base. The

Figure 56: Two families

Figure 57: Different zero's

Frank: GIS Theory Draft V15 Feb.05 78

base may be the arbitrary zero of the scale diff and plus are then
not changing the numeric value, but just the type. They convert
the ration type in which differences are expressed back into the
interval type.

9. RATIO SCALE
If there is an absolute zero—determined by properties of the
phenomenon, not an arbitrary selected point like the freezing of
water for 0°C, then we have a ratio scale. On a ratio scale, it is
possible, to compare two values and say that $20 are twice as
much as $10, which would be nonsensical for interval scales: a
day with 15°C noon temperature is not half as warm as a day
with 30°C at noon! For the temperature scale, 0°K (Kelvin) is an
absolute zero. Length is measured on a ratio scale—the zero is
the distance from a point to itself—but measurements for the
length may differ when users use different measurement units:
the 0 is fixed on the scale, but not the 1. For example, a sheet of
A4 size is 210 mm or 8.27 inches (Figure 58).

The results of measurements expressed on the ratio scale
leads to the algebraic structure "field", with the operations + and
* ; inverses for both; and a defined zero and one as units for the
two operations. Fields are a special case of rings, which are
introduced first:

9.1 ALGEBRAIC STRUCTURE RING AND FIELD
We carry out ordinary arithmetic calculations with integers,
(approximations) to real numbers or with fractions and are
assuming more algebraic structure than just a group (see chapter
5). We use two operations (+, *) and each has a unit (zero and
one, for + and *, respectively). This structure is called a ring,
which is a an Abelian (commutative) group <R, +, 0> with an
additional operation and a unit (these two form a monoid <R, *,
1>). The two operations are connected by the distributive axiom.

Ring <R; +,*, 0> Abelian group for <R,+,0>
 associative a* (b * c) = (a * b) * c
 distributive a * (b + c) = a * b + a * c

The identity for the multiplication is usually denoted by 1:
identity 1 * a = a * 1 = a,

and it may be commutative
a * b = b * a,

but not all rings are commutative (e.g. the ring of matrices where
A B /= B A). An integral domain is a commutative ring with

Figure 58: Measuring with meter and feet

Observations 79

multiplicative identity that satisfies the cancellation law(Gill
1976, 288-289):

a * b = a * c => b = c
b * a = c * a => b = c.

A ring that satisfies the cancellation law has no divisors of zero,
that is, it has no non-zero elements a and b such that a* b = 0.

Field <F, +, -, *, -1, 0, 1> Commutative Ring
 Inverse for *: a * (a -1) = 1 for a ≠ 0

A field is a ring with an inverse for the multiplication with a
corresponding axiom.

 (a*a -1) =1 for b≠0
Rational numbers (fractions) are another example for a field. The
real numbers form a field, but we always use finite
approximations, which only approximate these axioms:

a * (a -1) ~~ 1.

10. OTHER SCALES OF MEASUREMENTS
Most observations produce values from one of the above scales,
but a few other are sometimes used: absolute scale, counts and
cyclic scale are discussed here.

10.1 ABSOLUTE SCALE
Probability is measured on a scale 0 to 1. This is more
determined than a ratio scale, because not only the 0 is fixed, but
also the 1. There are no transformations possible and necessary.

10.2 COUNT
Counting results in positive integers. There is a zero and there is
a one—which makes it an absolute scale expressed in integers,
but the ratio between two counts is expressed as a fraction
(remember: fractions are a field). The difference between two
counts is again a count—which shows a difference from interval
scales; the ratio of two counts is not a count—which shows a
difference to the ratio scale. Therefore counts are a separate
scale.

There is a conceptual difficulty with results from statistic.
We expect generally that the average is expressed on the same
measurement scale as the original observations. A transportation
authority observes the number of persons per car: The values are
expressed as positive integers, i.e. count, but the average will be
a figure like 1.3 persons/car—which is expressed as a real. This
is not a contradiction, as the value is not of type persons, but
persons per car.

Frank: GIS Theory Draft V15 Feb.05 80

10.3 CYCLIC SCALE
The results of observations of regularly repeated properties
result in yet a different measurement scale: the measure of an
angle, the time of day or the date in a year are expressed on a
cyclic scale. It is difficult to say if 9 a.m. is before or after
midnight, 9 hours after midnight comes 9 a.m., but 15 hours after
9 a.m. comes midnight again. It is before and after midnight and
order as defined for a linear scale is meaningless. It is a
convention to say that 9.a.m. is after midnight and 11 p.m. is
before midnight, because 9 a.m. is closer to the midnight before,
whereas 11 p.m. is closer to the midnight afterwards. The same
applies for angles and other cyclic measurements(Frank 1994).

This is an example where we have multiple representations
for the same value: the angle expressed as 20º, 380º, 740º, etc.
are all the same. On the regular 12 hour dial, 9 a.m. and 9 p.m.
(21 h) are the same. To make processing simpler, we select one
preferred representation for each value, among the many, and
call this ‘canonical representation’ (see before chapter 5.8xx).

The concept of Image and Kernel (see chapter 5.6xx) can be
applied here. The reduction of a large set of values H to a smaller
(canonical) one G can be seen as a morphism ρ: G -> H. In our
example of angles, G is the real number line and H is the interval
of (0..2π); the image of G is all of H (Figure 60); the values
n*2*π for all integers n is the kernel of this mapping. The
morphism δ collapses the real numbers to the interval [0..2π].

11. MEASUREMENT UNITS
Measurements describe the quantity or intensity of some
properties at a given point in comparison with a standard
quantity. The same observation process yields different values if
applied at different points in time or space. The observed
measurements are usually proportional to the intensity of the
property at that point. The results of observations become
comparable, if they are each compared with a selected standard
value. Well-known is the former meter standard, defined as the
distance between two marks on a physical object manufactured
from platinum, which was kept in Paris. It is superseded today
by a new definition using a physical process that can be
reproduced in any location. The current definition is stating that
a meter is the 1/299 792 458 part of the distance light travels in
the vacuum in a second(Kahmen 1993). The reference point for

Figure 59: Time Measurements on Cyclic
Scale

Canonical representation is the
selection of one element of an
equivalence class to represent the
class.

Measurement = unit * value

Figure 60: The canonical mapping δ of the
real numbers to angles

Observations 81

the Celsius scale of temperature is the temperature of melting ice
at 0ºC and the reference point for 100°C is the temperature of
boiling water and similar definitions exist for other standard
quantities.
The combination of a measurement unit with an observation
value is a mapping between two types, namely from numbers to
measurements. The value 3.2 is mapped to 3.2 m — 3.2 is
multiplied with the unit 1 m. The measurement unit is a functor,
which converts a number to an element of domain with a
dimension and unit (Figure 55) and ordinary algebraic operations
apply to these quantities with units:

3 * (3.2 m) = (3 * 3.2) m

11.1 CALIBRATION
Observation systems are calibrated by comparing their results
with the standard. The raw measurement results are then
converted with some formulae to yield a measurement value,
expressed as a quantity times a unit, 3 m, 517 days or 21ºC.
Different observation processes that measure the same physical
dimension (e.g., length, time) are brought to a common base.

11.2 BASE UNITS
The selection of base units is arbitrary. People use convenient
units, based on the cultural environment and such that the
numerical values for many measurements are small but sufficient
to differentiate relevant differences: we use mm for table-top
items, meters for apartments and gardens, km for geography, etc.
Conversions are necessary during input and output of values,
because a single internal computations in floating point numbers
is sufficient and only a difference in the exponent results from
different units (3.5 * 103 m = 3.5 * 106 mm).

The Système International d'Unités (SI) is founded on seven
SI base units for seven mutually independent base quantities
(Table 1). This system of units superseded the previously used
cgs-system, where the units where centimeter, kilogram, and
second. For example, the unit of gravity in the cgs-system was
Gal, named after Galileo (1 Gal = 1 cm s-2), newer books refer to
the SI unit as m s-2.

Figure 61: Figure standard rod used to
measure

Frank: GIS Theory Draft V15 Feb.05 82

USA and some other English speaking countries use
traditional units like feet and pounds. Additional confusion can
result from different definitions for different countries: imperial
(English) and U.S. definitions, sometimes with regional variants
for surveyors, abound. Units may also differ, depending what is
measured: fluid ounces and troy ounces (for gold) are different.
A rumor has it that the loss of the probe to the Mars—a costly
NASA space exploration mission—was due to passing a value
from one program to another where the one assumed SI units
(i.e., meters) and the other assumed traditional units (i.e., feet)
for the height above ground.

11.3 CONVERSION OF MEASUREMENTS
Theoretically the conversion of one measurement unit to another
is usually a linear formula, like the conversion of inch to mm
(multiply by 25.4) or ºC to ºR. The general case is the conversion
between two measurement scales on interval scales, where the
units and the zero point are different (Figure 62). This is, as we
will see later (see chapter 10), an affine transformation in 1-
dimensional space.
Example: The conversion between Centigrade and Fahrenheit,
which is used in the USA and Jamaica. The definition of the
Fahrenheit scale is set today to 0°F = 32 °C and 212º F is 100º
C, which results in convenient conversion formulae. The original
concept was to fix 0º to the freezing point of alcohol (17.8º C)
and 100°F to the temperature of the human body (37 °C). For
conversion use:

[°F] = [°C] · 9/5 + 32
[°C] = ([°F] − 32) · 5/9

In general, a 1-dimensional affine transformation is determined
by two parameters (Figure 63) (Mac Lane and Birkhoff 1991,
561):

12. OPERATIONS ON MEASUREMENTS
The operations applicable to the numerical values representing
measurements on the ratio scale are those of a field, which are
the ordinary arithmetic operation. Not all of these operations are
meaningful. Because measurements types are functors,
measurements can be added and subtracted and multiplied or
divided by a scalar value (i.e., a real number with no
measurement type). Other combinations, e.g., the multiplication
of two measurements give as a result another measurement type

Table 1 : SI units

The mutually independent SI base
quantities:
meter (length) m
kilogram (mass) kg
second (time) s
ampere (electric current) A
Kelvin (thermodynamic temperature)
K
mole (amount of substance) mol
candela (luminous intensity) cd

Figure 62: Three scales for temperature

Conversion is not a change of type

Figure 63: 1-dimensional affine
transformation

Observations 83

(see next section): the multiplication of two length values
resulting in an area value, not a length. Measurements form an
algebraic structure, which is called a module (see later 9.5xx)

Measurements <M, S, +, -, 0, 1, *, 0m, 1m, />
Addition, Subtraction
Scalar Multiplication s1 * m + s2 * m = (s1 + s2) * m
 m / s = 1/s * s

13. COMBINATIONS OF MEASUREMENTS
Measurement instruments observe some easy to detect
quantity—for example, an electric current—which is in some
direct relationship with the quantity of interest—e.g., the amount
of light. The instrument then includes an analog or discrete
computation to compute the value of interest. For example a
balance measures the elongation of a string under, which is
proportional to the weight attached to the hook (Figure 64). The
computation of an area results from observation of two length
measurements. The area value is the product of the two lengths
values, but its type is a different one:

area :: Length -> Length -> Area

This approach requires the definition of suitable types and
coding of the standard formulae and will guard against confusion
between units and dimensions.

14. OBSERVATION ERROR
All observations are imperfect realizations and have some error.
This is in the limit a consequence of Heisenberg's uncertainty
principle, but most practical observations are far less precise than
the uncertainty principle would permit. Measurements more
accurate than 1 part per million (ppm) are generally difficult.
Distance measurements with an error of less than 1 millimeter
per kilometer are demanding, but few centimeters per kilometer
are standard performance of surveyors today. The best
observations are for time intervals, where 10-15 is achieved, but
the theoretical limit would be 10-23, still 100 million times less!

Parts of the error of real observations are the result of
random effects and can be modeled statistically. Surveyors
report measured coordinates often with the associated standard
deviation, which represents—with some reasonable
assumption—an interval with 68% chance to contain the true
value. Errors propagate through the computation. The Gaussian
law of error propagation approximates the propagation of

Figure 64: The spring based scale used on
markets all over the world

Frank: GIS Theory Draft V15 Feb.05 84

random error; it says that the error propagates with the first
derivation of the function of interest. Given a value a = f (b,c)
and random errors for b and c estimated as eb and ec (standard
deviations), then the error on a is following Gauss:

ea = sqrt(df/db*eb
2 + df/dc * ec

2).
In this book, errors are not in the focus and all quantities are
assumed to be 'perfect' knowledge.

15. ABUSE OF NUMERIC SCALES
Measurement scales determine what operations are possible with
the values; they determine, among other things, what statistical
operations are appropriate. Unfortunately, it is customary to
express values on a nominal or ordinal scale with integers or
reals—and it is then technically feasible to calculate with values
that do not have the required properties for these calculations.

There are numerous examples for abuse of ordered scales,
representing them with numerical values and then compute
averages. Common is the computation of average grades in
school. Grades are expressed on an ordinal scale; a difference
between two grades is not a defined quantity. I do not believe
that the difference in knowledge of a student between a grade of
A and B and the difference between grade B and C is the same—
but this is assumed to calculate the average. This method is used
because we do not have a better solution to arrive at a fair and
equitable determination of final grades in a class where multiple
exams where taken, but we should be aware of the limitation.

16. CONCLUSION
Measurements describe observation of a physical dimension;
different physical dimensions are different types and cannot be
mixed, the logic of a typed language helps to avoid nonsensical
operations as adding a date and a length (Figure 53). Internally
all measurements of one physical dimension can be expressed
with the same units, conversions are necessary for input and
output.

Measurements are expressed on scales of measurements,
which each represent an algebra that determines what operations
are possible with measurements of this kind.

Observations 85

REVIEW QUESTIONS
• What is wrong with the panel in Figure 53? Would a type

language discover the problem (e.g., Pascal)?
• What is a canonical representation? Why is it useful? Give a

practical example from real life.
• Define Group, Ring, and Field. Give axioms.
• What are scales of measurements? What are the classical

measurement scales?
• Explain the concept of functor? How is it applied to

measurements?
• What is a partial order? Give an example.

PART THREE SPACE AND TIME

Position in space and time are fundamental for a GIS. They
allow connecting other observations to locations in space and
time. Measurements of length and duration determine relations
between points in space and time. But not for all applications of
GIS the metric properties of space are crucial and other aspects
are more. For example, to determine a path in a network,
connections between the nodes are crucial and more important
than the distances. A GIS must connect different
conceptualizations of space and allow an integrated analysis of
facts related to them(Couclelis and Gale 1986; Frank and Mark
1991; Mark and Frank 1991).

In this part we start the discussion of geometry following the
approach by Felix Klein(Klein 1872). We will not follow the
customary route of separating geometry by dimension,
discussing 1-, 2-, and 3-dimensions in turn, but differentiate
types of geometries independent of dimension, which have
different approaches to discretization and abstraction of
continuous space and show the transformations and invariants in
each. Different aspects of space lead to different
conceptualizations of geometry and geometric properties.
Quantitative approaches in geography are often based on
transformations of space, such that certain relations are
expressed more directly(Tobler 1961). For example, the map of a
city is transformed such that distance on the map directly
represents travel time to the center (fig. xx).

Geometry in gymnasium deals with geometric constructions:
geometric elements situated in space gives structure to space and
allow operations, which result in other geometric
elements(Klein, Hedrick et al. 2004). This is one of two classical
viewpoints of space: space consists of spatial elements and the
properties of space are the result of the properties of the spatial
elements. Most of the properties of spatial elements depend on
the metric defined for the space, they are metric properties. From
the position of points in space most metric properties of a

Geometry: properties which remain
invariant under a group of
transformations.

 87

geometric figure can be deduced; positions in space are
expressed in computers with approximations.

The first chapter in this part separates different types of

geometries; it concentrates on what remains invariant under
transformation. Each 'geometry' defined by properties invariant
under a transformation, defines one of the different ways we
conceive space and time. The second chapter concentrates on
observation of duration and time points. The third chapter then
introduces coordinates to represent points in space in a
computerized information system. The last chapter of the part
covers transformations of coordinate space. The part reaches
some unification of different aspects of transformations of space
and time into a single formalism.

Produce values to describe points in

Chapter 7 CONTINUITY: THE MODEL OF GEOGRAPHIC
SPACE AND TIME

Applications of GIS use different models of geographic space
and time. Consider how a tax assessor appraises a property: he
considers the area and the frontage of the parcel and weights the
value by the distance to the city center (Figure 65). This uses
three different 'spaces': an areal and a linear space in which the
property is evaluated and a gravity model of space with a decay
from a center for valuation(Abler, Adams et al. 1971).

A GIS must be capable of integrating these different
conceptual models in a single formal system. The chapter gives a
partial answer to one of the fundamental question of GIScience,
namely “What is special about space?” (Egenhofer 1993)and
justify what a theory of GIS must achieve: integration of
different aspects of space and a uniform treatment of different
representations of space. Considering the connection between
transformations and properties which remain invariant
(unchanged) by them gives us a handle to classify different parts
of geometry: e.g., affine, projective geometry, or topology.

The chapter differentiates types of geometry by groups of
transformations and what properties they leave invariant. The
questions, which should be answered here for each different
concept of space, are:
• Why are there multiple representations?
• What are the transformations?
• What are the invariants?
• What are the operations necessary?
A discussion of time follows in the next chapter.

1. DIFFERENT GEOMETRIES
The discovery of other than the "ordinary" geometry described
by Euclid was an "intellectual revolution" that changed the way
the world was seen(Blumenthal 1986). Kant had postulated that
Euclidean geometry was inherent in nature ("god given") and his
opinion weighted so much, that the eminent mathematician C.F.
Gauss was not willing to publish his discovery of other than
Euclidean geometries, about which he wrote in a letter 1824. The

Figure 65: Geometric elements used to
assess value of a property

Time 89

original publications are by Nikolai Lobachewsky in 1829 and
Johann Boylyai 1832 a few years later.

 Non-Euclidean geometries were discovered in an effort to
proof the independence of Euclid’s axiom about parallel lines.
Euclid stated five axioms for classical geometry constructed with
ruler and compass: all observed properties of geometric figures
follow from these axioms(Heath 1981). The properties of space
and geometry seem to be captured in these axioms and not
limited to measurements and numbers! It may be useful to
reproduce them here:

"Let the following be postulated:
I. To draw a straight line from any point to any point.
II. To produce a finite straight line continuously in a straight

line.
III. To describe a circle with any center and distance.
IV. That all right angles are equal to one another
V. That, if a straight line falling on two straight lines makes

the interior angles on the same side less than two right angles,
the two straight lines, if produced indefinitely, meet on that side
on which the angles are less than two right angles." (Figure 66)
(Blumenthal 1986, 2)

Lobachevsky demonstrated that a logical system with a
negation of the fifth axiom is consistent. He expected a
contradiction which would have shown the dependence of the
fifth axioms from the other four axioms. The new consistent
system of axioms produced a new logical system for geometry, a
geometry with axioms different from the ones given by Euclid.
One of these non-Euclidean geometries, namely projective
geometry, in which all lines intersect, will be used in chapter 19
to find a closed formula to compute line intersections and avoid
the ordinary Euclidean computations that require special
treatment for parallel lines.

The discovery of non-Euclidean geometries led later Einstein
to the formulation of relativity theory. Geography deals with
objects and spaces that are limited to the earth and we are not
concerned with large distances and, correspondingly, very high
velocities. For the purposes of geography, not however for
geodesy, Euclidean geometry is sufficient and relativistic effects
are not relevant. We can ignore the Lorentz-transformations

Figure 66: Euclid's fifth axiom: P is on the
side where the angles are less then two
right angles

Frank: GIS Theory Draft V15 Feb.05 90

(Figure 67), which reduce for all movements that are slow in
comparison with the speed of light to the ordinary Galilean-
Transformations. However, they are a prominent example for a
special concept of geometry, which includes relative movement;
the Lorentz-transformations also demonstrate how a general
theory reduces to a simpler theory in ordinary cases.

The power of abstract geometry, allows many kinds of
geometric objects that cannot exist in reality (Blumenthal and
Menger 1970; Galton 2000, 502)(Figure 68). The art of
modeling geometry in GIS is to find subsets of geometries that
cover the cases that are possible with physical objects and
correspond to our experiential abilities limited by our senses.
Different special cases were studied individually but a GIS
requires a combination of them.

2. DIFFERENT MODELS FOR DIFFERENT APPLICATIONS
Space and time is fundamental for biological life—all people and
animals are physical bodies that occupy space and move around
in space(Couclelis and Gale 1986). Space is also fundamental for
human cognition. Our daily experience with space and in space
shapes our theoretical understanding of space and time(Lakoff
and Johnson 1999). This understanding is formalized as
geometry (Lakoff and Núnez 2000) and needs implementation in
a computer system that deals with spatial information.

Figure 67: Transformations of space

Figure 68: An example of a volume not
physically realizable: a Menger sponge
(from Wikipedia: Fractals)

Time 91

Experience with space varies depending on the goals we
pursue: we may walk in space moving from one point to another,
we may till the land for agriculture, and we may construct
dwellings. But space is also involved when we draw a picture on
paper, when we arrange the tools on our workbench,
etc.(Couclelis 1992). Couclelis and Gale have discussed the
different aspects of space and time: the concept of space used in
mechanics, where motion can be reversed, is different from the
one used in biology, where heat is dissipated and change cannot
be reversed(Couclelis and Gale 1986). In human cognition, space
is differentiated by the size of the space and how it is
apprehended. Space with 2-or 3-dimension and time can be
merged in a 3- or 4-dimensional physical or continuum, but
human experience with these dimensions is different: time
cannot replace space and even in space align, the vertical
direction is more salient than front-back or left-right. This
motivates different conceptualizations, which are each optimized
for some applications.
• "Figurative space is … smaller than the body, its properties

may be … perceived from one place without … locomotion".
• "Vista space is larger than the body and … can be visually

apprehended from a single place without … locomotion".
• "Environmental space is larger then the body and surrounds

it." It cannot be apprehended directly without considerable
locomotion and requires "the integration of information over
… time".

• "Geographical space is much larger than the body and cannot
be apprehended directly through locomotion; ..., it must be
learned via symbolic representations."(Montello 1993, 315).

For physical analysis, motion in space assumes continuous
time and continuous space and the motion itself is continuous.
Human conscious thinking about motion and change reduces
these continua to discrete entities, which are represented in the
cognitive system (Figure 69),(Kuipers 1994; Galton 2000, 321).

Differentiate 4 kinds of space:
- figurative,
- vista,
- environment, and
- geographic.

Frank: GIS Theory Draft V15 Feb.05 92

The representation of continuous time and space in a discrete
form is fundamental to human reasoning with space—and it
seems that each approach captures some features for one class of
activities leaving out others that are less for this application. The
ways people treat different spatial experiences motivate the
different discretizations used for continuous space and time.
Different discretizations are essentially different theories of
space, different geometries so to speak: the geometry of graphs
is motivated by the network of streets (Figure 69), ordinary
Euclidean geometry by the movement of rigid objects in space
(Figure 70).

3. SPACE ALLOWS AN UNLIMITED AMOUNT OF DETAIL
Space, like time, can be observed at different levels of detail. We
select the appropriate level for the task at hand and observe more
precisely, when more detail is necessary(Timpf, Volta et al.
1992; Timpf and Frank 1997; Timpf 1998). There is always
more detail possible: from a map 1:1 Mio, we can go to a map
1:200,000 and then to 1:50,000, etc. But this does not end with
maps 1:50; maps of 1:1 are possible (Caroll 1893; Borges 1997)
and even a map 10:1 can be drawn—there is detail in space to be
shown, even if we cannot see it with our eyes directly.

The same applies to time: finer resolution is always possible.
Actions are composed of smaller and smaller acts; often we are
not aware of the finer level of temporal resolution because the
activities at this level of detail are not visible to us and are of no
interest in normal circumstances. Molecules move in an arbitrary
movement, the speed of which is proportional to the temperature
of a substance—we are satisfied with the temperature reading
and are not interested in this Brownian motion.

3.1 MAP SCALE AND LEVEL OF DETAIL
Map scale is defined as a numerical factor, obtained from
dividing the distance in a map by the corresponding distance in
reality. This concept of scale is of little use in computer
representations, where points are represented by their (real
world) coordinates; scale is necessary when existing maps are
digitized or data is visualized as maps.

The map scale implies also how much detail from reality is
selected and represented on the map. The concept Level of Detail
describes this better. The physical world in space and time can

Figure 69: Graph representing the Street
Network around TU Wien

Figure 70: Euclidean geometry of solid
objects

Scale: ratio between distance on map
and distance in reality.

Time 93

be observed at (practically) unlimited level of detail. There are
atomistic limits, but these are not relevant for a discussion of
geography—geographic objects are many orders of magnitude
larger than the smallest particle that we consider as undividable
(atomic). For each representation a level of detail must be
selected. Tobler has pointed out that we can detect objects which
are n meters large, if the scale of the map is 1/n*1000; for
example, in a map 1:100,000, objects of 100 m size can be
detected(Tobler 198?).

3.2 SELF-SIMILARITY AND FRACTAL DIMENSION
Continuity avails more detail as we increase the resolution. This
leads to a question for measurement: at what level of detail is
the correct observation? Richardson (quoted by Mandelbrot
1977) has observed that measuring the length of a coastline
depends on the level of detail with which one measures. If we
measure the length of a line with a compass set to a fixed length
and count how often this unit is in the line (Figure 70) the result

varies with the size of the unit distance. If you repeat the
experiment with a smaller unit distance, the total length of the
line becomes longer (Figure 71). The length of the line depends
on the level of detail of the representation
considered(Buttenfield 1984; Buttenfield 1989).

The increase in length is a function of the reduction of the
unit with which one measures. Following Mandelbrot, the ratio

log length / log unit is called the fractal dimension of a line; a
straight line has dimension 1; its length does not increase if we
use a smaller yardstick!

A line with fractal dimension 2 fills all of 2-dimensional
space. Ordinary curved lines have a fractal dimension between 1
and 2. Figure 73 shows a construction of a fractal line with

Figure 71: A coastline measured with
yardstick of 2 units

Figure 72: Coastline measured with
yardstick of 1 unit

Figure 73: Fractal dimension (from
http://www.vanderbilt.edu/AnS/psychology/
cogsci/chaos/workshop/Fractals.html)

Frank: GIS Theory Draft V15 Feb.05 94

fractal dimension 4/3. Mandelbrot has pointed out that fractal
lines are self similar, each part has the same form as the
whole(Mandelbrot 1977), which, to a certain degree, is true also
for geographic phenomena, e.g. coast lines. This relation
between length of a line and resolution with which one measures
applies not only to the length, but to other observations as
well(Batty and Longley 1994; Quattrochi and Goodchild 1997).
Openshaw has studied extensively the 'movable areal unit
problem' (MAUP): what is the correct resolution to study for
example unemployment rates: the block, the town, the county, or
a whole state? Different results obtain! (Openshaw and
Alvanides 2001)

4. MULTIPLE REPRESENTATION
The infinite amount of detail potentially available requires
multiple representations of the same reality, at different scales
and with different intentions(Buttenfield and Delotto 1989;
Günther 1989; Frank and Timpf 1994; Timpf and Devogele
1997). A town can be shown as a point, an area, a grid of major
roads, a collection of buildings, etc. (Figure 75). Some of these
representations use different types of geometries: for example a
road can be seen as a volume of building materials, an area (as a
street parcel), or as a street line connecting two intersections.

The description of the methods to treat aspects of geometry
is only the conceptual foundation(Timpf 1998). For real systems,
we must be able to link different representations together and use
reasoning across representations(Timpf, Volta et al. 1992).

5. SPACE AND TIME ALLOWS MANY RELATIONS
Between objects in space and time many different relations can
exist. We can consider topological relations, like "Jamaica is an
island in the Caribbean" or the distance between Vienna and
Salzburg and compare it with other distances between cities.
There are nearly infinite many relations between objects in space
and it is impossible to represent them all explicitly. A GIS with
10000 named places could have 50 million distance relations
between them. The often seen tables for distances between
villages work only for a small island like Elba.

It is to identify those properties from which other properties
can be derived. Only the first need be explicitly stored, the others

Figure 74: Koch's snowflake. A line with
fractal dimension 4/3

Figure 75: A town at different levels of
detail

Time 95

are computed. For example, a GIS stores the location of places
as coordinate pairs and computes the distances.

Relations that are not changing are most useful to remember.
We call such relations invariant. For example, the length and
width of a taxi cab remains the same, while the location of the
taxi is changing. Concentrating on properties that remain valid
despite other changes reduces the need for constant updating of
the relation or property. It is economical to identify the key
properties from which others can be deduced.

6. DIFFERENTIATION OF GEOMETRIES BY WHAT THEY
LEAVE INVARIANT

‘Invariance under a group of transformation’ can be used to
divide geometry in logically connected subfields as suggested by
Felix Klein in the "Erlanger program" (Klein 1872) and links
directly with our experience: The use of objects is determined by
what we can do with them—for example move them in space—
and what properties they maintain. These are the properties that

Frank: GIS Theory Draft V15 Feb.05 96

determine the preferred spatial concept for this application; we
may say, they determine the "geometry of this application".

The prototypical geometric objects are small, movable, rigid
bodies (Figure 76), which preserve their geometry even when
moved in figurative space. Continuity of space is preserved even
in objects that are not rigid: continuity is preserved in garments,
which do not have a definite form, but can be folded to be put in
the wardrobe and then put on, hung an a hook, etc.(Figure 77).
Continuity is preserved in objects that are even more flexible,
e.g., rubber sheets and balloons, which can be deformed in many
ways, but always preserve continuity (Figure 78).

Klein has proposed (1872) to study as geometry properties
that remain invariant under a group of transformation. This
abstract viewpoint captures practical aspects of objects. Rigid
objects like a sword, a cup, or the triangles and rulers used for
geometric constructions (Figure 76) ‘work’ only because they
preserve a set of properties—a sword made from rubber does not
work in the intended way, nor does a ruler. Garments made from
rigid materials like tin foil were an interesting idea by Paco
Rabanne for Haute Couture, but definitely not what we want to
use everyday! It is essential for garments to be flexible, but
preserve continuity (Figure 77). The same for a balloon—if it is
punctured and bursts, it is not a balloon anymore.

Klein required that the transformations considered form a
group (see chapter 5), meaning that there must be a unit
transformation, an inverse to each transformation and
transformations can be composed. These group properties are
essential for the concept of a spatial transformation—if a
transformation cannot be undone by its inverse or if there is no
option of doing nothing, then it seems not to be a geometry.
These requirements capture the properties of abstract physical
space, not the living space of animals and plants, where
movements cannot be completely undone as energy is
dissipated(Couclelis and Gale 1986).

7. DIFFERENT TYPES OF GEOMETRY DEFINED BY
GROUP OF TRANSFORMATIONS

Modern mathematics works towards unification: different
theories should be brought into a single context, connected to
work together and to be constructed on a common foundation.
This requires that common concepts are ‘factored out’. For

Differentiating geometric properties
as invariant under transformations

Figure 76: Different solid objects

Figure 77: Different forms, but the same
topology

Figure 78: A balloon changes its form

Time 97

example, what are the common properties of different
geometries, what is the essence of geometry(Blumenthal and
Menger 1970). This is the same question as Egenhofer posed in
“what is special about spatial?” (Egenhofer). A more geographic
but similar viewpoint is found in Abler, Adam and Gould's work
"Spatial Organization" (Abler, Adams et al.).

A geometry is a group of mappings M of a space S onto
itself, where the geometry studies properties of a figure (a subset
of S) that are invariant under each transformation of the Group
M(Blumenthal and Menger 1970, 25-26). This definition is
general and includes not only all what is usually studied under
the notion geometry, but also, for example, relativity theory,
which is the theory of the invariants of a 4-dimensional
continuum (Minkowski’s world) with respect to a given group of
collineations (the Lorentz group).

The geometrical essence of the definition of Klein is the
equivalence of transformed figures and the properties of these
equivalent figures. For example the three shapes in Figure 79 are
equivalent under topological transformations—topology deals
with the properties that they have in common and which are
invariant under these transformations.

Blumenthal (Blumenthal and Menger 1970, 27) defines a
geometry as

A geometry G over a set Σ is a system {Σ, E}, where E denotes
an equivalence relation defined in the set of all subsets (figures)
of Σ. The geometry {Σ, E} studies those properties of a figure F
that the figure has in common with all figures equivalent to F;
these are the invariant properties.

8. TRANSFORMATIONS USEFUL FOR DIFFERENTIATION
OF GEOMETRIES

8.1 RIGID BODY MOTION
These transformations describe the movement of rigid objects.
They have various names: they are sometimes called Euclidean
(Hartley and Zisserman 2000) or congruence transformations,
because figures remain congruent. They are transformations of
space, which preserve distances between the parts of the
objects—this is the essence of rigidity. Rigid body motions can
be separated in translations and rotations.

Factorization and its use in ordinary
arithmetic:
35 + 25 + 15 = 5 * 7 + 5 * 5 + 5 * 3
= 5 * (7 + 5 + 3) = 5 * 15 = 75

Figure 79: Object deformed

Geometry is the study of
automorphism groups.

Figure 80: Translation

Frank: GIS Theory Draft V15 Feb.05 98

8.1.1 Translation
Translations form a group of transformations (Figure 80): every
translation has an inverse and doing nothing is a zero translation.
Translation leaves distances invariant.

8.1.2 Rotation
Rotation (Figure 81) forms a group, with the rotation with angle
0 as zero and the inverse rotation is the rotation with the reversed
angle. Rotation leave distances invariant.

8.1.3 Congruence relations preserve angles
Translations and rotations leave distances unchanged and
necessarily also angles. We speak of metric properties when
discussing the preservation of distances and angles. Translation
leaves invariant azimuth, which is the angle between a line
connecting two points and one of the base vectors of the space.
Rotation does not preserve azimuth (Figure 83: Azimuth
(positive turning)).

8.2 ISOMETRY
Isometries are all transformations which leave distances and
angles invariant. They are the rigid body motions and the
reflections. Reflections leave distances invariant, but reverse the
direction of angles.

8.3 SCALING
Scaling forms a group of transformations, with the unit
transformation is scaling with the value 1 and the inverse scaling
is scaling with the (multiplicative) inverse scale. This leaves
invariant azimuths and angles, but not distances. Areas are
multiplied with the square of the scale factor.

8.4 SIMILARITY TRANSFORMATIONS
Similarity transformations leave the proportions of metric
properties the same ; they consist of translations, rotations, and
scale changes. This is ordinary Euclidean geometry, where
circles remain circles.

Figure 81: Rotation

Figure 82: Congruence Transformation

Figure 83: Azimuth (positive turning)

Figure 84: Scaling

Figure 85: Affine Transformation

Time 99

8.5 AFFINE TRANSFORMATIONS
A generalization of linear transformations leads to affine
transformations (Figure 85), which include translation, rotation,
and scale as special cases. They can result from parallel
projection and transform parallel lines into parallel lines. They
preserve the ratio of length of parallel line segments. Affine
transformations can be seen as a composition of two different
scales on orthogonal axis. The areas are multiplied by the
product of the scale factors.

8.6 PROJECTIVE TRANSFORMATIONS
Projective transformations preserves collinearity (Figure 88)
and the cross ratio (Figure 87)(Stolfi 1991, 123). They are a
generalization of affine transformations.

8.7 TOPOLOGICAL TRANSFORMATIONS
Continuous transformations are transformations that preserve
neighborhoods. They do not allow puncturing, cutting, and

gluing parts of objects together (Figure 89). Closing the legs of a
pair of pants by sewing them shut is a practical joke and make
the pants non-functional. Puncturing a hole in a cup renders it
useless. Topological or homoemorphic transformations preserve
these properties of objects, which are crucial for the function of
an object.

9. MAP PROJECTIONS
Map projections are a special case of transformations, namely
from the surface of a 3-dimensional sphere to a 2-dimensional
plane. They leave incidences—points lying on a line remain on
the line—but do not preserve angles, distances, and azimuths all
at once. Geodesic lines are not always mapped to geodesic lines.
Map projections do not form a group of transformations and do
not define geometries in the sense of Klein's Erlanger Program.
There are various optimizations to preserve gestalt, a concept
that has not been expressed in mathematical terms. Many
different map projections exist and they optimize different
properties. The transformations are in general not linear. A
systematic treatment of cartographic projections is not intended
here(for more detail see Bugayevskiy and Snyder 1995).

 Figure 86: Perspective transformation

Figure 87: Cross ratio

Figure 88: Preservation of collinearity

Figure 89: Puncture a balloon, glue an
envelope shut and cut off a coupon

Note: homomorphism and
homeomorphism are two distinct
concepts!

Figure 90: Neighborhood

Topological transformations preserve
neighborhoods.

Frank: GIS Theory Draft V15 Feb.05 100

10. SUMMARY
Many of the geometric constructions—especially the classical
constructions of Euclidean geometry carried out through motions
of rigid bodies (compass, ruler)—can be seen as translations,
rotations, etc. and the problems of classical geometry formulated
as transformations. These transformations have the properties of
a group (0, inverse). Transformations can be composed. This
makes a transformation based approach attractive, because
composition of ordinary geometric constructions with compass
and ruler are difficult to describe.

Geometry as transformation relates directly to the treatment
of geometry in computers when point positions are represented
with coordinates, and where transformations are expressed as
linear transformations, that is, matrices with the ordinary
operations of linear algebra (this is the topic of chapter 9 and
10). The relation between transformation and the properties they
leave invariant is shown in Figure 91.

Space is continuous and contains infinite amount of detail;
our conceptualization and representation picks out aspects that
are relevant for some application; different applications pick
different aspects. It is not possible to construct a single
representation that suits all application areas, but we demand that
data and operations from different application areas can be
integrated. The question is to find a most general set of

Figure 91: Different transformations and what they leave invariant

Time 101

operations that is applicable to many representations. In this
chapter we have shown a classification; in the following chapters
the differentiated parts of geometry are discussed individually,
following this classification.

REVIEW QUESTIONS
• Where does the impossibility to represent continuous space

practically show? Give example form real life and from
information system.

• Explain the difference between physical and biological time.
• How was non-Euclidean geometry discovered?
• List three geometries and describe what transformations are

permitted and what properties remain invariant.
• Why is it important that geometric transformations form a

group?
• How many degrees of freedom has a projective

transformation? How many a congruence transformation?
• Demonstrate that affine transformations form a group.

Frank: GIS Theory Draft V15 Feb.05 102

Chapter 8 TIME: DURATION AND TIME POINTS

Time is a fundamental dimension of reality: people and all other
things exist and evolve in time. Support to manage temporal
aspects is usually not included in GIS software but often
demanded. For managing weather data, natural resources but
also the cadastre and land registration, time is important(Al-Taha
1992).

A GIS that includes time needs a reference system to
describe points in time, not only measured duration (chapter 6).
This chapter deals with the conventional method of describing
time points, for which we will also use the term 'instant' and how
we convert time as duration (intervals) which we can measure, to
time points, which we cannot measure. Converting and
integrating time points observed in different reference frames
pose a difficult problem.

Time observations and time points are covered before we
discuss observations and points in space. The 1-dimensionality
of time makes it easier to discuss time and shows the issues more
clearly than when discussing space. There are more differences
between time and space than just the difference between 1- and
3- dimensions. Time is fundamentally different from space: we
can move freely in space, but not in time; time is ordered and
there is a special point 'now', which is constantly changing.
Position in space is observed to be able to return to this point –
time points are observed only for synchronization, because we
cannot return to a previous time ever. Day and night imposes on
conventional time a regular ‘natural’ structure; space has—at
best—an irregular structure, which we call geography.

1. INTRODUCTION
Time and space are the fundamental dimensions of the reality in
which people live. Without time no change, but ‘life is change’,
without time no life! Most GIS software today concentrates on
the management of spatial snapshots and ignore time {Frank,
1998 #8250}. They show the geographic reality as an
immutable, unchanging collection of facts. This may be a carry
over from printed maps, which focus on objects, which remain
unchanged for long periods of time. Cartography has only

Time 103

limited methods to represent change (Tufte 1997)[PhD. diss with
monmonier; possibly something by ncgia – babs?]; but with
electronic media, there is no need to concentrate on the
immutable part of reality. GIS could provide support for time
and changing situations and many web services provide
constantly changing maps of, e.g., the traffic situation in a
region. Change, not a static situation, attracts attention; it is
difficult not to watch something moving within one’s visual
field. Change in the socio-economic or the natural environment
attracts the politician’s attention and we should make any effort
possible, to build GIS that can inform about change(Frank 1998).

Efforts to introduce time into computing, in particular into
geographic data processing came only around 1988 with a thesis
by Langran (Langran and Chrisman 1988; Langran 1989). The
original NCGIA research plan (NCGIA 1989) included ‘Time’
as a special research focus and organized an initial meeting
(Barrera, Frank et al. 1991) and later a specialist
meeting(Egenhofer and Golledge 1994). In Europe a meeting
was organized in the GISDATA series(Frank 1996). The
Chorochronos project studied spatio-temporal databases(Frank
2003; Sellis and Koubarakis 2003). The book by Galton gives an
AI perspective on time (Galton 2000) and Güting and Schneider
give a database perspective restricted to moving objects [Güting
and Schneider].

2. EXPERIENCED TIME
Time is experienced by humans in subjective, non-uniform
ways: sometimes time flies like an arrow, sometimes waiting
becomes unbearable and time progresses slowly. Do you
remember how you were waiting for Christmas when you were a
child? We will concentrate here on the objective view of time
and assume an absolute time, which marches continuously and
uniformly from the past through the now to the future (Figure
92).

We customarily use two metaphors to conceptualize time:
we (the now) is moving in time (Figure 93), or the time is
rushing past us and we are fixed looking towards the future
(Figure 94)—there is no difference between the two for the
formal treatment. The third option: where the observer looks
towards the past and the future is approaching unseen from the
back (Figure 95) is customary for some American Indians; it

Figure 92: Time from Past to Future

Figure 93: March towards the future

Joke: Times flies like an arrow,
 Fruit flies like bananas.

Frank: GIS Theory Draft V15 Feb.05 104

seems more fitting with the facts: we know the past and do not
know the future.

We all are at the same point in time—the now, and can
observe the world state at only this time. The now is the same for
all of us and we can never return to it. This is different from
space, where we can move freely and observe at arbitrary points,
where different people have different perspectives.

Time is a fundamental resource. Georg Franck has pointed
out that a person’s time is the only resource that is fundamentally
scarce: every person has a lifetime—just one. An economic
assessment of the resource ‘personal time’ leads to deep insights
in how we manage attention and explains high payments to
celebrities and the economy of the media in general(Franck
1998).

3. TOTALLY ORDERED MODEL OF TIME

Points in time are similar to points in space—they are
dimensionless points, imbedded in the 1-dimensional time line.
The time line is a single line, dense and continuous. (This model
of time does not include the concept of a now). It is customary to
represent time by real numbers and approximate them with
floating point numbers in a computer. Using a dense and
continuous time line allows to apply the apparatus of calculus to
time, and later to space-time, which has demonstrated great
merits in physics and engineering.

Galton's model of time is totally ordered by a primitive
relation before (<). Galton adds unboundedness to the axioms,
stating that there is no first and last time point. Time can be
either dense, meaning that between any two points is another
point; or, alternatively, discrete, where there are immediately
preceding and following time points, such that no other time
points are in between. Either the dense or the discrete axiom
gives together with the other axioms a consistent and
syntactically complete set(Galton 2000).

Totally Ordered Time <
 irreflexivity not (t < t)
 transitivity t < u and u < v => t < v
 linearity if t ≠ u then either t < u or u < t
 unboundedness For every t, exist u and v, such that u < t and t < v.

Figure 94: Time rushes past us

Figure 95: An Indian metaphor for time: it
approaches us from behind

Dense—between any two instants
there is another instant
Continuous—no gaps

Figure 96: Axiom for discrete time

Time 105

 dense For every t and u, t < u exist v such that t < v and v < u
or
 discrete For every t and u, t < u, there are instants t’ and u’ such that t < t’

and u’ < u, and for no instant v is it the case that either t < v and v <
t’ or u’ < v and v < u.

4. BRANCHING TIME (TIME WITH PARTIAL ORDER)
The ordinary ontological commitment is assuming only one
single world, which marches through time {Frank, 2001 #9957;
Frank, 1999 #182; Frank, 2003 #9920}. Science Fiction is using
other models of time, where parallel universes exist in their
separate times(Asimov 1957; Adams 1979). These branching
times are not only interesting to construct science fiction novels,
but necessary to deal with plans for the future and to represent
uncertainty about the past. Branching models of time are
necessary for Game Theory (Neumann von and Morgenstern
1944) and can represent the uncertainty of events in the
future(Galton 1987).

Planning describes future states of the world. We make
decisions between different courses of actions and reach then
different states of the world. Alternatively, considering the
current state of the world, we may hypothesize about different
sequences of actions that have produced this state; this may be in
a criminal story or describing geological processes that have
produced the current shape of the world(Flewelling, Egenhofer
et al. 1992).

4.1 UNCOORDINATED REPORTS OF EVENTS
Unrelated reports may give sequences of events, but not describe
their relations precisely. The sequence of actions necessary to get
to the office in the morning is the same for most of us: an alarm
goes off, we get up, dress, have breakfast and then go to the
office. If a day starts with both Dr. Navratil and me sleeping at 5
o'clock in the morning and later we meet at the office at 9
o'clock, then the events for each of us are totally ordered, but
there is no order between events not in the same sequence; in
chapter 16 we will introduce the notion of partial order to
formalize this. We can not determine if I had breakfast before
him or not (Figure 99).

Figure 97: Different planned futures

.
Figure 98: Hypothetical different pasts

Frank: GIS Theory Draft V15 Feb.05 106

4.2 CRITICAL PATH
Practically, models of branching time are for the determination
of the critical path—that is the path that determines the minimum
time necessary to achieve some future state. In a Critical Path (or
Program Evaluation and Review Technique PERT) diagram, the
arrows represent activities that have a minimal and maximal
duration and the nodes are milestones when a defined state is
reached (e.g. the excavation for a building is completed). It is
then possible to calculate the earliest and the latest time possible
a state is achieved. The path with the longest minimal time
determines when a state can be achieved the earliest and is called
the critical path to this event; only speeding up actions on the
critical path leads to an earlier achievement.

4.3 GAME THEORY
Game theory considers in its simplest case a special case of
branching time: in a two person game, the two adversaries have
each one decision to make and the outcome of the game (i.e., the
future state of the world) depends on the two decisions.

Game theory evaluates the future state from the perspective
of each player and gives rules, what action a rational player will
select, and thus what you have to expect from a rational
opponent(Neumann von and Morgenstern 1944). Game theory
has found many applications in economy (Davis 1983) and even
law (Baird, Gertner et al. 1994)

4.4 PROBABILITY OF FUTURE STATES
Sometimes the transition from a current state to a future state are
taken with a known probability, diagrams show the combined
probability to reach different future state. They are useful to
assess the likelihood of serious accidents that result from the
unlikely combination of small errors—for example in the
management of nuclear plants.

5. DURATION (TIME LENGTH)
Time is measured as duration—even if it appears that we
determine duration as the difference between two time points.
Duration is a measurement, expressed in seconds or multiple of
seconds. It is a ratio type (see chapter 6.9xx). For duration the
same operations than to other measurements apply: addition,
subtraction, multiplication and division with a scalar and ratio,

Figure 99: Two totally ordered sequences
give a partially ordered sequence

Branching time is partially ordered

Figure 100: Critical Path Diagram

Time 107

comparing two durations (see algebra for measurements in
chapter 6xx).

The SI unit is the second—which is defined today as a
number of oscillations of a well defined atomic state and
multiples of seconds: minutes, hours and days, based on
traditional Babylonian divisions in 60 and 12. Week is the
longest commonly used time unit, which has a fixed length.
Neither month nor year have always the same length, but are
commonly used as if they were of fixed length!

For scientific purposes, especially astronomy, other
definitions of day and year are used, based on the rotation of the
earth and the movement of the earth around the sun (Figure 101).
These exact definitions of the length of day and year seem not to
be used in GIS.

6. INSTANTS AND INTERVALS
One can take instants as primitives and construct intervals from
them (Galton 1987) or to take intervals as primitives and
construct instants from them(Allen and Hayes 1985); we follow
here Galton’s approach, which translates later more directly to an
implementation.

The technology for measuring time is measuring time
intervals, but synchronization between clocks is so advanced that
the illusion of measuring time points directly is achieved.
Accurate radio signals giving time in the absolute frame of UTC
(Coordinated Universal Time), which is the mean time of the
Greenwich Astronomical Observatory (in London, UK) and used
for all civilian applications.

7. GRANULARITY OF TIME MEASUREMENTS
Time, like space, can be investigated at different levels of
resolution. Depending on the task we are interested in, time is
measured in years, days, seconds, milliseconds, etc. The
precision with which we measure time varies and is often fixed
for application areas: in commercial banking, duration is
measured in days and all time points within a day are considered
as happening at the same time; banking is a cyclic operation,
with a cycle per day(Frank 1998). In a traditional world, where
nights of silence and rest separate days of activity, this makes
perfect sense—but in today’s global economy, where stock is

Figure 101: Tropical and sidereal day

A mean tropical year has
365.2422 SI days

A sidereal day has 23 hours 56 m and
4 seconds

Instants have no duration, they are
points in time.

Figure 102: Measurement of duration gives
absolute time

Frank: GIS Theory Draft V15 Feb.05 108

traded around the clock in one or the other stock exchange
around the globe, such conventions lose their force.

For administration, all events during a day or a year are
considered concurrent, whereas events, only seconds apart but in
different years, are treated differently. Usually days go from
midnight 00:00 to 23:59:59, and similarly for month, year etc.
All the customary intervals—seen as container—do include the 0
moment, but not the ending moment.

This is different from measurements of limited precision in
space, where there is no dominant subdivision against which
measurements are taken. The subdivision of space is irregular—
e.g., the political subdivision (Figure 104)—and provides a
frame for imprecise indication of location(Bittner 1999; Bittner
and Smith 2003; Bittner and Smith 2003; Bittner and Smith 2003
(draft)); but this is not treated as measurement. Rome is in Italy
is an indication of location comparable to x was born Feb 10,
1982.

8. ORIGIN OF THE TIME LINE
To determine time points an origin must be selected and time
points are determined by measuring the duration of the interval
from the origin to the desired point. Astronomical observations
are used to establish new, derived points of fixed and known
distance from the selected origin.

The origin of time systems for our western calendar, the
supposed year of the birth of Christ is used and years are
measured from AD 1 following. The conventional system
assumes a year 1 BC, immediately followed by a year AD 1
(there is no year 0). The creation of the earth is the origin for the
civil Hebrew calendar, conventionally at 3 760 BC, and the
escape from Mecca of the Prophet Muhammad, 622 AC is used
as the year 1 in the Arabic and the Persian calendar. The Hebrew
calendar is lunisolar, the Arabic is lunar and the Persian is solar
and in consequence the number to subtract from a western year
varies over time.

 The length of the year is not an even number of days but
365.2422 days and the difference is absorbed in a leap day in
February every 4th year, but not when the century is dividable in
4. This current calendar is the result of the reform by Pope
Gregory XIII in 1582; this reform was not accepted by the

Customary Time Intervals are
defined as half-open; they include the
start point, but not the ending point.

Figure 103: Granularity of Time

Figure 104: Irregular granularity of space

Figure 106: No year 0

Around 2006 the difference between
western and
- Islamic year is 579
- Hebrew year is 3760
- Persian year is 721

Time 109

Orthodox Church and became effective in Russia only with the
Revolution.

leapYear y = ((mod y 4 == 0) && (mod y 100 ≠ 0)) ||
 (mod y 1000 == 0)

Conversion of historic dates and time is surprisingly
complicated! The year in medieval time started with Easter,
whereas the year today starts January first. Time within a day is
now measured from midnight, but a few centuries ago, each
town had its own convention. For example, Venetian time in the
18th century counted local hours from sunset onwards, which
varies during the year.

Fast and regular transportation with railroads made it
necessary to abolish a different local time for each town and to
establish time zones. Within a time zone the local time of the
central meridian is the uniform time for the whole zone; the
zones are extended to what would be geometrically necessary to
keep areas of intense commercial connections in the same time
zone. A time point measured must be marked with the time zone
in which it was made to allow comparison with other time
observations in other zones.

Daytimes are influenced by the so-called Daylight Saving
Time (in Europe called ‘summer time’), which is a change in the
time of a zone to 1 hour earlier than the normal time. It is
believed to reduce the energy consumption by shifting human
activities further to the morning. The switch between normal
zone time ("standard" time) and Daylight Saving Time is not
everywhere at the same date; adding complexity to the
conventional time measuring system.

8.1 INTEGRATION OF TIMED MEASUREMENTS FROM DIFFERENT
TIME ZONES
GIS integrate data collected at different locations and with
respect to different time systems; modern data collection in
geodesy is using UTC routinely, but other data collection efforts
may use local time. For example, the collection of benchmark
data for water levels at the Danube River uses 2 time zones and
different Daylight Saving Time schemes may apply.

Difficult is to test if two events can coincide or not, if they
happen in different time zones and the descriptions are not
precise. For example, can an event that happened during May 25
in Orono, ME and an event happened during May 24 in Vienna,

The time indicated by a sun dial
differs up to a 15 minutes from a
uniform, mean local time!

Frank: GIS Theory Draft V15 Feb.05 110

Austria, coincide. Convert both days in intervals in GMT and
then identify the common interval (Figure 107).

Figure 107: Time points expressed in different time zones

9. CONVERSION OF DATES AND ARITHMETIC
OPERATIONS WITH DATES

The conversion of dates must consider what the origins are and
that the numbering of days starts with 1, not with 0 as in other
measurement lines (Figure 108). The most general way to
compute with dates is to count them from a fixed origin.
Convenient are dates like Jan 1, 1900, but any other date would
be as good. It is desirable that no dates before this origin are ever
used.

Once conversion from the customary date descriptions to a
number of days since an origin has been accomplished, the
computation with dates becomes simple additions or
subtractions. How to add 17 days to Feb 24th? The result depends
on the year—in leap years the result is March 12 and in other
years it is March 13.

toDays (24 Feb, nonLeapYear) = 55
fromDays (55 + 17, nonLeapYear) = March 13
using formDays (toDays(x, nonLeapYear), nonLeapYear) = x
 or fromDaysNL . toDaysNL = id

Time points expressed as days or hours have granularity.
They are converted to intervals for computation. The length of
the interval between two dates d1 and d2 expressed in days is not
d2 – d1 but the granularity g (=1 day) must be added: d2 – d1 +
g(Tansel, Clifford et al. 1993), or subtracted - depending if we
want to obtain the longest or the shortest duration between the
two dates (Figure 109). For banking, if you pay interest, the
longest interval is used, if you receive interest, the shortest is
used!

Figure 108: Counting of days is different
from length

Figure 109: Duration between two dates

Time 111

10. SUMMARY
To define the operations on time we need:
• A value of type time, which represents measurement of time

intervals with the regular arithmetic operations for
measurements.

• A type to represent time points, measured from a conventional
origin with operations to convert conventional days into this
type and from this type. This time with fixed origin converts
time points in duration from the origin and makes the
arithmetic operations for measurements applicable.

The UTC time would fulfill these requirements and makes –
theoretically – calculation with time and dates simple. Various
conventions on origin of a time scale and its subdivision in years
and month, the granularity which applies to certain types of
events etc. make integration of times on a global scale difficult
and the problems become even larger if somebody constructs a
GIS for historic times!

REVIEW QUESTIONS
• Why are time intervals defined as half-open?
• What is the meaning of a negative data (minus July 7)?
• How many years between 10 BC and 10 AD?
• What are intervals, what time points?
• What is the difference between point 3:15 and duration (3h

15m)?
• Determine the date 45 days after Jan 15th?
• How long lasted an event, starting Aug 1 and ending Aug 12?

What is the maximal and what the minimal duration?

Chapter 9 SPACE: METRIC OPERATIONS FOR POINTS AND
VECTOR ALGEBRA

Geographic Reality:
properties are observable for each point in 3d space and time:
F (x, y, z, t) = a

In this chapter the familiar concept of coordinates that describe
points is introduced. A coordinate space is an intuitive model for
space. Goodchild used it as a foundation for his definition of
"geographic reality"(Frank 1990; Goodchild 1990). It is an
example of the application of a functor. Scalars, e.g. real
numbers, are sufficient to describe points on a line – for
example time points—but are not sufficient for points in 2d
space. Points and operations with points form an algebra that
captures essential properties of our concepts of space, namely
transformations that form group and leave distance
invariant(Klein 1872; Blumenthal and Menger 1970). This gives
a treatment that is independent of the dimension, but the
discussion and the examples here are for didactic reasons in
terms of 2-dimensional space.

The introduction of vectors here follows the construction of
a module from a group and a ring as described in any algebra
text book (Gill 1976; Mac Lane and Birkhoff 1991; Reinhardt
and Soeder 1991). Vector algebra and vector space are abstract
concepts that are not dependent on a coordinate frame, only their
analytic treatment is. The algebra of vectors as it represents our
manipulation of the geometry of rigid objects is mapped to
computational operations on coordinates; the geometric
properties, for example distance, are preserved across this
transformation.

Vector algebra is used in a GIS in many ways, most of them
not directly visible to the user. It is used when constructing a
parcel from bearings and distances measured between the corner
points (Figure 110); land surveyors have used such operations in
computer programs called COGO (Coordinate Geometry) even
before GIS(Miller 1963; DEC 1974).

Figure 110: Example of a construction of a
new parcel using COGO

Reminder:
only distances and angles can be
measured, not coordinates (not even
with GPS)!

Linear Transformations 113

1. GEOMETRY ON A COMPUTER?
The Greeks did geometry with ruler (straight edge) and compass.
Lines and circles—or rather approximations for these ideal
figures—were drawn in sand. The reasoning however was not
about the approximate figures, but the pure concepts of point and
line, the so called Platonic ideals.

Descartes described in the 17th century a mapping from
geometric construction to computations: analytical geometry was
invented! Mapping real space to the coordinate space—the
domain of pairs of real values—allows computational operations
with real numbers that correspond to the geometric operations
with ruler and compass in the plane. For example: given two
points, the point in the middle can be computed (Figure 111).

All the basic geometric constructions with ruler and compass
have corresponding analytical operations. Therefore, all classical
geometry can be redone with numbers, such that a
homomorphism exists between the geometric construction and
the analytical computation (Figure 111). The mapping is not an
isomorphism, because the operations are not total: for some
configuration, the computation fails because division by zero is
not possible. To overcome this limitation is one of the goals of
the following chapter 10xx.

2. DISTANCE
Analytical geometry is based on coordinates, which describe
points. Coordinates are distances for which a definition will be
given here., Distance is the length of the shortest line between
two points, it is finding the minimum. Distance is a function
from two points to a positive real number, with three axioms
(Figure 112):
(1) zero if the point is the same,
(2) symmetric: the distance is independent of order of the two
points, and
(3) the triangular inequality.

Figure 111: Homomorphism between
construction and calculation

Figure 112: Distance relation

Frank: GIS Theory Draft V15 Feb.05 114

These axioms do not uniquely define distance; many
different formulae are possible; some examples are given, in the
left column for the 2d case and to the right, generalized for a
space with n-dimensions. A circle is the geometric locus of all
points with the same distance from a given point, different
definitions of distance gives different "circles" (Figure 114).

The Minkowski-Norm with n=1 gives d (dx, dy) = dx + dy

and is called Manhattan or taxi-cab metric (Figure 113). It gives
the distance between any two points on a grid and is independent
of the path:

Distance
 dist (A, A) =0
 symmetry dist (A, B) = dist (B, A)
 triangular inequality dist (A, C) <= dist (A, B) + dist (B, C)

3. THE ALGEBRA OF VECTORS
Our experience with the manipulation of rigid bodies gives us
some insight in the rules regulating operations with them:
distance between points must be preserved; translations can be
added, etc. From the formulation of such rules follow axioms for
the operations with vectors. Vectors form an algebraic structure,
called a vector space. We first give the algebraic structure in this
section and then show in the following sections, how the axioms
are justified by the geometric experience we have with rigid
bodies.

3.1 THE ALGEBRAIC STRUCTURE MODULE
A vector space is a module over a field which consists of two
kinds of things: vectors, which are a commutative group (M; +,
0) and scalars, which form a ring with unit (Q; +; *, 0, 1). These

Figure 113: Manhattan or taxi-cab metric

Figure 114: Circles for different distance
definitions(Minkowski Norm n)

Group (M, +, 0)
Operation: +, -
Rules: associative
(a+b)+c = a +(b+c)
Existence of identity
a+ 0 = 0 + a = a
Existence of inverse
(-x) + x = 0

Ring (Q, +, *, 0)
A ring is a group with an additional
operation, usually described as *
which is distributive
 a * (b + c) = a * b + a * c
(a + b) * c = a *c + b * c

Linear Transformations 115

vectors and scalars are combined with an external operator scalar
multiplication “·”.

Note: The term "module" describes an algebraic structure
and has no connection to the use of the same term in software
engineering.

Module <.> with group <M, +, >) and Ring with unit <Q, +, *, 0, 1>
for all q, p,.. from Q and all a,b,… from M
 q . (a + b) = q . a + q . b
 (q + p) . a = q . a + p . a
 (q*p) · a = q · (p · a)
 1 · a = a

3.2 LEFT AND RIGHT MODULES
The scalar multiplication above was q · v, which is a left
module, because the multiplication with the scalar is from the
left. A right module has the similar rules, but the scalar
multiplication is v · q. The right and left module are dual to each
other; if the multiplication of scalars is commutative (which is
the case for real numbers!) then v.k = k.v.

4. GEOMETRIC INTERPRETATION OF VECTOR
OPERATIONS IN 2 DIMENSIONS

Vectors are imagined as translation arrows in n-space. All
vectors of the same length and direction result in the same
translation, they are in one equivalence class. The zero vector
has length 0. Vectors are added by joining them geometrically
(Figure 115); this construction is commutative (a+b=b+a) and
the zero is a unit, that is, they form a group.

Multiplication of a vector with a scalar s extends the vector s
times, keeping the direction (Figure 116). This multiplication is
distributive over addition, etc. (Figure 117, Error! Reference
source not found., Figure 118).

5. GENERALIZATION: THE MODULE OF N-TUPLES
OVER R

The figures above were all for 2-dimensional space, but the
arguments are independent of dimension and valid for n-
dimensional space. For n-tuples of scalars, we define a pointwise
addition and a pointwise multiplication with a scalar:

Figure 115: Addition of vectors

A vector space is a module where the
scalars from a field (in practice: the
real numbers)

.= q.a + p.a

Figure 116: Geometric idea of vmult

Figure 117: Multiplication is distributive
over addition

Geometric vectors form a vector space, i.e.
a module over a field (usually the real
numbers).

Frank: GIS Theory Draft V15 Feb.05 116

(s + t)i = (si + ti)
(s * k)i = (si * k).

Pointwise addition is commutative and has as a unit the n-
tuple (0,0,…0). Scalar multiplication is distributive over sum.
The next section shows that these pointwise operations
correspond to the geometric interpretation.

Note that this pointwise addition and multiplication with
scalar for n-tuples is the same as the corresponding operations
for polynomials. Polynomials form a module as well!

p = p1 * x1 + p2 * x2 … pi * xi = Σ pi * xi
p+q = Σ (pi + qi) * xi
p * k = Σ (pi * k) * xi.

6. SUBSPACES
Vector spaces show an important experience we have with
space: they have subspaces and these are orderd by dimension.
Two dimensional space is a subspace of 3 dimensional space.
Subspaces are closed under the operations, a 2 dimensional
translation remains always in the same 2 dimensional subspace
(e.g. the surface of the table).

The dimension of a subspace is the minimal number of
vectors which are necessary to span the space. The minimal set
of vectors that span a subspace are linearly independent (as
defined in the next subsection). Vector spaces with the same
dimension are isomorphic, if we study one, we know them all!

7. POINTS IN SPACE: POSITION EXPRESSED AS
COORDINATES

Coordinates are a mapping of points in n-dimensional space to n-
tuples of scalars. The space is spanned by n base vectors (e1,
e2,… en) and each n-tuple of coordinate values (This is often
done in text books). from the field of reals corresponds to the
point when multiplying the base vectors pointwise with the
scalars in the n-tuple and adding them:

v = (vi) . (bi) where v = (v1, v2, … vn) - the coordinate values

Figure 118: q . (p.a) = (q*p) . a

Figure 119: 2d base vectors

Figure 120: 3d base vectors

Linear Transformations 117

ei = (n1, n2 .. nm) = (0, … , 1, … 0) with ni = 1 and all others 0.
 – the base vectors
p = Σ vi * ei - the vector with coordinates v

 The base vectors must be linearly independent. Linear
independence means, there is no n-tuple of scalars si not all 0,
such that sum si * ei = 0; this is equivalent to say that the
mapping from scalars si to vectors v have kernel 0. The n-tuples
will be called coordinates of a vector; the mapping is
isomorphic, and we identify an n-vector with the corresponding
n-tuple (for a given basis) (Mac Lane and Birkhoff 1991, 195).

In general, the base vectors (unit vectors) need not be
orthogonal and their length need not be the same. The
orthogonal base for a vector space are the unit vectors (1,0),
(0,1) or (1,0,0), (0,1,0), (0,0,1) in 2 respective 3-dimensions.

The vector operations defined geometrically map to the
corresponding operations on coordinates. Figure 123 shows how
addition is done component-wise. Figure 124 shows that
multiplication is equally component-wise.

8. RIGHT HANDED SYSTEM OF VECTORS
A vector space is called right handed, if the vectors x, y, z in the
order given are in a configuration like the first three fingers of
the right hand. Mathematically, locking down the positive z-
axis, turning the first coordinate axis towards the second axis in

a positive direction, gives a right handed system.
Surveyors often use a left handed system, with north axis

and east axis (north and easting as coordinates) and z (height)
upwards. They measure the angles clockwise from North axis to
east axis as positive:

9. VECTOR IS A FUNCTOR FROM SCALARS TO POINTS
The construction of vectors as tuples of scalars, typically real
numbers, is a functor. It maps the scalars to vectors (tuples) for
which the new operations obey the same axioms as for the
scalars. This mapping is a (group) morphism, because it
preserves the axioms. The unit of scalars maps to the unit of
vectors and composition is the composition of the mapped
values. Consider the special mapping, which maps every real x
to the pair (x,0). It is seen that this is a group isomorphism for
plus and multiplication with a real maps to scalar multiplication.

Figure 121: The mapping from (λ, μ) to a
2d point

Figure 122: The mapping from (λ, μ, ν) to a
3d point

Figure 123: Addition is component-wise

Figure 124: Multiplication is component-
wise

Figure 125: Right handed coordinate
system

Figure 126: Positive turning

Positive turning direction:
Mathematically defined
(conventionally) as counterclockwise.

Frank: GIS Theory Draft V15 Feb.05 118

Unitary operations, e.g., +x, are mapped to +(x,0). The
composition of an operation +y with another operation +z maps
also and the identity operation is the mapping of +0:

10. VECTOR OPERATIONS
Our interpretation of vectors in space allows the expression of a
number of geometric properties as operations on vectors. Three
additional operations for vectors that have strong geometric
properties are customary. They are useful to test for geometric
properties and to give computational equivalent expression for
geometric constructions(McCoy and Berger 1977, 433):
• inner (dot) product,
• cross product, and
• triple product.

This completes the program of analytical geometry:
geometric properties are translated in algebraic properties and
geometric operations are translated in algebraic operations. The
defining axioms represent the geometric intuition and
coordinates are not used for the definitions, but we show how the
operations are translated to basic operations with coordinate
values.

10.1 THE INNER (DOT, SCALAR) PRODUCT OF TWO VECTORS
The inner product of two vectors gives a scalar. Its definition is
valid for all dimensions. For 2- and 3- dimensional space, it has
interesting geometric properties. In geometry texts, the scalar
product is written with a dot (but not the same dot as for
composition of functions!), but sometimes it is written with
brackets (<,>).

Inner (dot) product . :: vector -> vector -> scalar
 commutative a· b = b· a
 distributive a· (b+c) = a · b + a · c
 a sort of associative law s (a · b) = (s * a · b)
 a · 0 = 0 = b· 0

Figure 127: Geodesist use often left handed
coordinate systems

Figure 128: Orthogonal vectors

Linear Transformations 119

For tuples (a1,.. an) the inner product is defined as pointwise
multiplication

(a1, a2, … an) dot (b1, b2, … bn) = (a1*b1, a2*b2, … an*bn).
This gives for example for the 2-dimensional vectors previously
introduced

(x1 y1) · (x2 y2) = (x1*x2, y1*y2).

Pointwise multiplication gives immediately the commutative and
the distributive property from the corresponding properties of the
multiplication in the ring of which the elements are formed from;
associativity is also achieved.

10.1.1 Norm: the length of a vector
The inner product of a vector with itself is the square of its
length and called norm |a|, which gives the ordinary Euclidean
distance (Figure 129). It is easy to show that the norm satisfies
the axioms for distances (a = 0, |a| = 0, |-a| = |a|, etc.)).

norm a = sqrt (a · a)

10.1.2 Angels between vectors
The inner product leads to the definition of angles between to
vectors, which follows from the expression:

a · b = |a| *|b| * cos (a,b)
 where (a,b) denotes the angle between the two vectors
cos (a,b) = (a · b) / | a | * | b |

One can interpret a cos (a,b) as the projection of the vector a
onto the vector b (Figure 130), which links directly to the proof
of the Cauchy-Schwarz-inequality (further reading on this
important linkage between geometry and linear algebra see
http://en.wikipedia.org/wiki/Inner_product_space).

10.1.3 Test for orthogonality
For two non-zero vectors, the inner product is zero if the two
vectors are orthogonal (i.e., the angle between them is π/2),
because then v1 = (x1, y1) and v2= (x2, y2) where x2= -y1 and
y2=x1. Orthogonality depends on the orthogonality of the base
vectors.

Figure 129

Figure 130: ab = |a| * cos (a,b)

Frank: GIS Theory Draft V15 Feb.05 120

Figure 131

By definition, the 0 vector is orthogonal to every vector.

10.1.4 Unit vector in the direction of a given vector
It is convenient to compute a vector in the direction of a given
vector but of known length (for example to compare the
direction of two vectors).

 unitVec :: m -> m -- a vector of unit length in direction of v
unitVec v = vmult (1/norm v) . v

10.1.5 Test for Parallel and antiparallel vectors
The dot product can be used to derive a condition for parallel and
antiparallel (parallel but in opposite directions): the inner product
divided by the product of the norms is for parallel vectors 1, for
antiparallel it is -1 (Figure 133).

10.2 VECTOR (CROSS, OUTER) PRODUCT FOR 3D SPACE
The operation cross product is defined only for spaces with 3-
dimensions. It takes two vectors and produces a vector. The
vector product is a vector orthogonal on the two vectors and its
length is the area of the parallelogram of the two vectors. The
three vectors form — in a right handed vector space —a right-
handed system.

A generalization for this operation available only in 3d space
follows later to achieve dimension independent operations
(chapter 20); the special case is useful for understanding the

Figure 132

Figure 133: Parallel and anti-parallel
vectors

Linear Transformations 121

construction in chapter 19 and connects with high-school
mathematics.

Definition of Cross Product × :: vector -> vector -> vector
 a× a = 0
 anticommutative a × b = - b × a
 Distributive: a× (b + c) = a × b + a × c, (a+b) × c= (a × c) + (b × c)
 Sort of associative: s (a × b) = (s a) × b

10.2.1 Definition 3d vectors
For coordinates, the computation is

 (×) :: vec -> vec -> vec
(x1 y1 z1) × (x2 y2 z2) =
 (y1*z2 - z1*y2) (z1*x2 - x1*z2) (x1*y2 -
y1*x2).

This product derives from the regular multiplication of
polynomials, if we assume the following equalities for products
of base vectors:

e1 × e2 = e3, e2 × e3 = e1, e3 × e1 = e2 and ei × ei = 0 for i= 1, 2 …

10.2.2 Test for collinearity
a × b is zero, when a and b are collinear, in particular is a × a =
0.

10.2.3 Area between two vectors
The area between two vectors in 3d space is computed as (Figure
135)

area a b = norm (a × b) /2.

10.2.4 Collinear
Two vectors are collinear if the vecProd is 0; this does not
depend on the orthogonality of the base vectors.

Collinear a b = varea a b == 0 -- or a× b == 0
 Because sin α = 0

The 0 vector is collinear with every vector.

10.3 SCALAR TRIPLE PRODUCT (GERMAN: SPATPRODUKT)
This operation combines three vectors yielding a scalar. It is a
combination of a cross product and an inner product. It is only

Figure 134

Figure 135: Area between two vectors

Frank: GIS Theory Draft V15 Feb.05 122

defined for vectors in 3d space, but can be generalized for n-
dimensional vectors (see chapter 20).

Triple Product Triple :: vec -> vec -> vec -> scalar.
 Cyclic permutations Triple a b c = triple c a b = triple b c a

The scalar triple product is the same as the determinant of a 3 by
3 matrix (see chapter 10). It is signed. The triple product gives
six times the volume of the parallelepiped of three vectors a b c.
It is defined as:

<a, b, c> = a · (b × c) = (a × b) · c
The triple product is zero if the three vectors are coplanar.

Coplanar a b c = triple a b c == 0

11. COORDINATE SYSTEMS
To establish a conventional (orthogonal) coordinate system
requires an origin, a direction for the axis and a unit length for
each dimension. the second axis is then orthogonal to the first
and the unit vector has the same length (Figure 137). The values
are of type length (meter in the SI system).

The conventional geodetic system—WGS 84—takes the
center of gravity of the earth as the origin, the direction of the
rotational axis and the two orthogonal vectors are fixed such that
one crosses the meridian of the old observatory in Greenwich
(near London, UK). Most countries use local coordinate systems
that are defined as projections from the earth surface to some
convenient surface (cylinder or cones).

12. SUMMARY
The algebra for vectors is closed. The result of the operations is
of the types other operations expect as inputs, which permits
combinations of them in formulae of arbitrary complexity. This
vector algebra for 2 and 3 dimensions generally used is the
specialization of a vector a 2 or 3 dimensional subspace of a
vector space. It is the result of constructing pairs or 3-tuples of
real numbers with a functor.

The operations added to the standard operations of a vector
space have useful geometric interpretation:

• Length of a vector is the norm (sqrt (a · a)),
• Area of between two vectors (1/2 norm (a × b))
• Construction of a vector orthogonal to two given ones (a × b)
• Volume spanned by three vectors (1/6 triple (a,b,c))

Figure 136: The volume of a pyramid

Figure 137: Definition of a coordinate
system with origin, direction of axis and
unit length.

Linear Transformations 123

• Collinearity and coplanarity (a x b = 0, triple (a,b,c) =0)
The operations are total (with the exception of computing the

angle between two vectors).
Vectors form a vector space, which has a set of useful

properties; geometric vectors provide a instructive example for a
vector space, but the generalization is very fruitful and
applicable in many situations which are not directly geometric.
We will later use a vector space with functions (chapter 31) to
describe movement of objects in time.

REVIEW QUESTIONS
• Demonstrate that pointwise multiplication of an n-tuple with a

scalar s is distributive over addition.
• What is the difference between a right handed and a left

handed system?
• Give definition of azimuth in geodesy?
• Explain dot and cross product. What are geometric

interpretations, how is it computed?
• How do you determine if two vectors in a plane are

orthogonal?
• How to compute the area of a triangle with vector operations?
• Why is the construction of vectors a functor? What needs to

be demonstrated?
• What is meant by stating that surveyors use a left-handed

coordinate system?
• What are the axioms for distance? Is the cost of a taxi ride a

distance function? When is it? When not?
• Show that the cross product has the desired properties.
• Derive a formula for the computation of the area of a 2d

triangle given by the two vectors AB and AC.

Frank: GIS Theory Draft V15 Feb.05 124

Chapter 10 LINEAR TRANSFORMATIONS OF COORDINATE
SPACE

Geometric transformation capture geometric
properties(Blumenthal and Menger 1970); this chapter
concentrates on linear transformations that transform straight
lines into straight lines and preserve collinearity and incidence,
that is, the intersection of two lines map to the intersection of the
mapped lines. This is the geometry of projections. Linear
transformations are part of linear algebra.

These transformations are expressed as vector operations,
and do not access the coordinates directly, which demonstrate
that the operations are independent of the details of the
underlying coordinate systems. The discussion here is using
examples from 2d and 3d space, but the result is independent of
the dimension of the space; it applies to situations in a space-
time continuum of 4 dimension or even higher dimensional
spaces.

Matrices describe transformations

Matrices represent transformations of coordinate systems
and a number of geometric problems can be expressed as
transformations between different coordinate systems, including
perspective projections. These are automorphism, they are
morphism (mappings) from space to space. The introduction of
matrix operations is motivated by spatial transformations
(rotations). The purpose of the chapter is to describe the general
linear transformation, such that transformation can be combined
by multiplication.

Focus of chapter:
Automorphism of space.

The theory described here is applied when transforming or
producing images in a GIS; for example the construction of the
view of a landscape is using the projective transformation
described at the end of the chapter. The inverse problem to
construct a map given photographs is the domain of
photogrammetry (Förstner and Wrobel Draft) and image
processing; the material in this chapter is very similar to the
foundations used today in modern treatment(Faugeras 1993;
Hartley and Zisserman 2000).

Linear transformations preserve
collinearity and incidence.

Figure 138: Incidence relations are
preserved by linear transformations

Linear Transformations 125

1. LINEAR ALGEBRA—THE ALGEBRA OF LINEAR
TRANSFORMATIONS

Linear algebra is among the best explored algebraic structures.
Transformations that preserve collinearity between different
coordinate systems are represented as linear transformation and
can be represented as matrices.

Many geometric transformations are linear transformations.
For example, stretching figures in one direction by a constant
factor, reflection on a line through the origin, etc. are all linear
transformations. They carry straight lines into straight lines,
planes to planes, etc. or more generally, geodesics transform to
geodesic, such that incidence is preserved: the transformed
intersection point is the intersection point of the transformed
lines.

The composition of two linear transformations is again a
linear transformation. This chapter shows, how composition of
linear transformations can be computed as multiplication of the
single transformations (Figure 140). This chapter shows the
different transformation matrices that correspond to the typical
linear transformations like translation, rotation, perspective
projection, etc..

Multiplicative transformations must leave invariant the
origin of the coordinate system; it is not possible to combine
translations—which move the origin of the coordinate system—
with rotations and other transformations directly. We extend the
representation and go from n-dimension to n+1-dimensions.
This chapter will introduce these so-called homogenous
coordinates and we will see that the transformation from
ordinary to homogenous coordinates is a functor.

2. LINEAR TRANSFORMATIONS
A linear transformation is any transformation t: R -> R’ which is
an automorphism between R and R’, is additive and homogenous
(k is a scalar, t is a linear transformation)

t (a + b) = t (a) + t (b) additive
t (k * a) = k * (t (a)) homogenous

The treatment here uses the right multiplication for the scalar
(see chapter 9) alternatively a left multiplication with the same
rules is possible and defines the dual algebra, which will be used
later in chapter 19. For vector spaces over commutative rings,
and the real numbers form a commutative ring, the left and the

Figure 139: General linear
transformations preserve collinearity

Figure 140: Composition of Linear
Transformation maps to multiplication of
matrices

Linear independence means that
there are no scalars a,b,c not equal
zero for which
 a . u + b . v + c . w = 0

Frank: GIS Theory Draft V15 Feb.05 126

right module is isomorphic. We nevertheless stress this duality
which maps directly to the duality between points and lines used
in the next chapter.

3. TRANSFORMATIONS OF VECTOR SPACES
Linear transformations are usually seen as a transformation of a
figure (Figure 141) but an alternative view of the transformation
as a transformation of space is possible: A vector describes a
point as a list of scalars to multiply a list of base vectors with;
selecting different base vectors a different vector results for the
same point. This is a transformation of space to itself: to every
point belongs a set of coordinates with respect to the first and to
the second set of base vectors. This is difficult to visualize,
because the point remains the same (Figure 142), but we can
imagine that the base vectors remain fixed and then see where
points are mapped (Figure 141).

4. DEFINITION OF MATRIX
Linear transformations are important enough to warrant an
algebra, the algebra of matrices. A matrix represents a
transformation between two vector spaces, each with a base. The
columns of the matrix of a transformation are the transforms of
the unit vector from the base (see Figure 151).

A matrix can be seen as a function from indices to a scalar
value (Figure 143):

m :: Int -> Int -> Scalar.
It is written as A = [aij].
Matrices form a vector space, i.e. a special module (see chapter
9xx).

4.1 DIMENSION
The dimension of a matrix is the number of rows and columns.
Mind, that a matrix with dimension 1 by 1 is not the same as a
scalar value. One is a matrix with one element, the other is a
scalar!.

4.2 POINTWISE DEFINITION OF ADDITION AND SCALAR
MULTIPLICATION
Addition of two matrices of same dimension is pointwise sum
(like for vectors) and the multiplication with a scalar is the
multiplication of each element by the scalar.

Figure 141: The image of the same figure
before and after transformation

Figure 142: The same figure in two
coordinate systems

Think of a matrix as a
transformation!

Figure 143: A matrix

[3.2] ≠ 3.2

Linear Transformations 127

Figure 144: Σ aij + bij

Figure 145: Multiplication of matrix with scala: (s * a)ij = s * a ij

4.3 UNIT MATRICES FOR ADDITION
The zero matrices (the units for addition) are the matrices with
all elements equal zero; they are written as 0 but there exist a
different zero matrix for every dimension.

4.4 MATRIX MULTIPLICATION
The multiplication of two matrices producing a matrix is a new
operation; written as "*", but often without a symbol, AB
meaning the multiplication of A with B.

matMult :: mat -> mat -> mat

The multiplication of two matrices is defined as the inner
product of the column and row vectors in all combinations; it is
only defined if the number of rows of the first matrix is the same
as the number of columns of the second one. This definition
assures that the composition of linear transformation is
multiplication of the corresponding matrices (Mac Lane and
Birkhoff 1991, p. 225).

Figure 147: Multiplication of two matrices
This multiplication is associative, but not commutative A B ≠ B
A.

Figure 146: The zero matrix

Frank: GIS Theory Draft V15 Feb.05 128

4.5 UNIT FOR MULTIPLICATION
The unit matrices for the multiplication are the a square matrices
I with all ones in the diagonal and the non-diagonal elements
equal to zero. Then A * I = A for any A (with the right dimension
for I). Unit matrices can be constructed for any dimension. One
can think of the I matrix as a collection of the base vectors for
this dimension. The unit matrix I can be defined with the
Kronecker δ:

iij = δij
 where δik = 1 for i=k and 0 for i≠k.

4.6 TRANSPOSE
The transpose of a matrix is the matrix with rows and columns
exchanged. The transposed matrix is the mirror image around the
diagonal.

AT
 ij = A ji

For transposed matrices AB = BT AT applies
A * v = t vT * AT = tT.

From these definition follows, that we can use a given a matrix
multiplication to multiply vectors: If we think of vectors as a
matrix of a single column, then we have to transpose the first
matrix before the multiplication: a · b = AT B.

4.7 RANK
The rank of the matrix corresponds to the dimension of the
vector space that is spanned by the matrix, taken the columns as

Figure 148: One matrix

Linear Transformations 129

base vectors. It counts how many linearly independent vectors it
consists of. The rank of a matrix and the rank of its transposed is
the same; the rows can be considered to check rank as easily as
the columns. The rank of a matrix is the same as the dimension
of the vector space it spans.

rank (A) = rank (AT)

4.8 DETERMINANT
The determinant is a multilinear, alternating form. It is zero if
any two rows or columns are linearly dependent on each other.
The determinant of a 2 by 2 or 3 by 3 matrix is computed as the
sum of the products along the main diagonals minus the sum of
the product along the minor diagonal.

The determinant of larger matrices is by recursively
expanding it to a column (row) to the alternating sum of the
elements of this column times the smaller determinant of the
matrix with this column and row crossed out (Figure 150).

Figure 150: Determinant of 3 by 3 matrix

The scalar triple product is the determinant of a 3 by 3
matrix constructed from the joining of the three vectors.

tripleProd a b c = (a . (b x c)) = det [a,b,c]

Square matrices
 det A = det (transp A)
 det (A * B) = det A * det B
 det k * A = kn * det A (where n is the dimension of A)

4.9 COFACTOR AND ADJOINT MATRIX
In general, a matrix such that each entry is the value of the
determinant of the original matrix with the row and column of
the element crossed out, is called the cofactor matrix.

Figure 149Determinant as sum of products
of main diagonal minus product of minor
diagonal

Frank: GIS Theory Draft V15 Feb.05 130

Cof :: matrix -> matrix.

The transposed of the cofactor matrix is called the adjoint.

a · cof (A)T = det A ·I
adj A = transp (cof A)T.

4.10 INVERSES MATRIX
Square, non-singular, matrices have inverses, such that:

A A –1 = I.
A square matrix is singular if its rank is less than its dimension.
The determinant of a singular matrix is zero. The inverse can be
computed as the adjoint matrix multiplied with the inverse of the
determinant of the matrix, which is a scalar (never 0 for a non-
singular matrix!)

a-1 = (cof a)T * (1/det a)

4.11 ORTHOGONAL AND ORTHNORMAL MATRICES
Matrices where all the row vectors are orthogonal (i.e., the
pairwise inner product equal zero) are called orthogonal. If all
the vectors have length 1, then the matrix is normal. For
orthonormal matrices, matrices with orthogonal and normal
vectors, the determinant is either 1 or –1. The inverse of an
orthonormal matrix is the transposed. The product of orthogonal
matrices is again orthogonal.

4.12 ELEMENTARY OPERATIONS AND EQUIVALENCE OF
MATRICES
Two m x n matrices A and B are equivalent if there is a sequence
of elementary operations on rows and columns carrying A to B
(Mac Lane and Birkhoff 1991, 225-229). Elementary operations
are:
• Exchanging two rows (or column)
• Multiplying a row (or column) by a scalar
• Adding a multiple of one column (or row) to another column

(or row)
Matrix
 Not commutative A * B ≠ B * A

Linear Transformations 131

 (A * B) T = BT * AT

The effects of elementary operations on the determinant are:
• Exchanging two rows (or columns) multiplies the determinant

by –1 (alternating form)
• Multiplying a row (or column) by a scalar multiplies the

determinant by the same scalar (multilinearity)
• Adding a multiple of one column to another column (or row)

leaves the determinant unchanged.

5. TRANSFORMATIONS BETWEEN VECTOR BASES
The problem of transforming coordinates (pu, pv) expressed as
factors to a list of base vectors u, v… into the coordinates (px, py)
as factors to a list of base vectors x, y .. , requires that we have
the coordinates for the vectors u, v in the system given by x, y.
These are u = (xu, yu) and v = (xv, yv). The transformation
between coordinates expressed in different base vectors, but with
the same origin, is for the 2d case:

Given p in system uv
Find p’ in system xy
 1. find u', v' in system xy: (xu, yu), (xv, yv)
 2. write them as columns T= [u’, v’] gives p = T
* p'
 3. invert matrix; this is the transformation
matrix: p’ = T-1 p
Proof: T [u,v] = [u’, v’]-1 [u,v] = I

This is a linear transformation where the base vectors expressed
as coordinates of the new base give the inverse transformation
matrix. The multiplication of the matrix was defined as the
multiplication of a sequence of vectors with the point vector to
be transformed (dot product). The vectors in the matrix are the
coordinates of the old base vectors in the new base. This justifies
the definition for matrix multiplication introduced before.

Figure 151: Transformation of a vector
from x-y to u-v coordinate system

Frank: GIS Theory Draft V15 Feb.05 132

Note:
The transformation of a vector v by a matrix M is
written as M v, similar to the transformation of a value
by a function (f x). The vector v is a column vector.
Some texts use the alternative notation of vT MT,
multiplying the row vector by a matrix from the right.
In this case, the matrix is the transposed matrix to our
notation.

6. LINEAR TRANSFORMATIONS FORM A VECTOR SPACE
Translations, rotation, perspective projections, etc. are linear
transformations. We have seen before that these transformations
form groups, but they also form a vector space!

6.1 TRANSLATIONS
Translation of a vector by a translation vector is vector addition
(pointwise addition). The operations for translations are the same
operations than for vectors and we can identify the translations
and the corresponding translation vectors. Translations form a
vector space. This can be ‘unified’ to an understanding of ‘Each
vector represents the point, to which the origin is translated with
this vector”. The operations are the same for both interpretations.

A translation cannot be expressed as a matrix multiplication,
because a matrix multiplication is a group isomorphism. The
translation is a bijective mapping (see chapter 5) but not an
isomorphism of vector space. Observe that the 0 vector is
mapped by a translation F (t) to the vector t. This violates the
condition for an isomorphism, where the 0 must be mapped to
the 0 (the kernel of F (t)) must be the unit.

f (a + 0) = f (a) = a + t
f a + f 0 = a + t + t

6.2 ROTATIONS
Rotations are a group and they form, a vector space. The rotation
of a vector by an angle alpha results in a vector:

The composition of rotations is just matrix multiplication: R1
(R2 v) = (R1 * R2) v. Rotation is a bijection, which is an
isomorphism; it maps the 0 to the 0. We see here that in a vector
space, the origin (the unit) plays a special role (Mac Lane and
Birkhoff 1991).

Figure 152: Addition of translation

two different interpretations for a
vector:
as a point
as a transformation (translation).

Universal mapping property for an
isomorphism:
Kernel f = {units}

Figure 153: Rotation

Kernel R = {0}

Linear Transformations 133

6.3 SIMILARITY AND AFFINE TRANSFORMATIONS
The general similarity transformation has 4 degrees of freedom,
scale, rotation angle and two translation values. It can be written
as a matrix followed by a translation with a vector t= (tx, ty).

The affine transformation is composed of a non-uniform scaling
by a non-singular 2 by 2 matrix followed by a translation and
rotation. It cannot be expressed as a single 2 by 2 matrix. The
similarity transformation has 6 degrees of freedom:

7. GENERAL LINEAR TRANSFORMATIONS
Can we unify all the transformations in a single framework? All
transformations preserving collinearity should compose to form
other transformations which again preserve collinearity. The
general linear transformations form the ‘General Linear Group’
GL(n,F), where n is the rank and F the field over which the
transformations are constructed; the field is in this case usually
the field of real numbers. They are the invertible, non-singular
matrices of size n × n. It is isomorphic to the group of
automorphism of any n-dimensional vector space V over F (Mac
Lane and Birkhoff 1991, 247).

The general linear group for n does not include all the
transformations in n-dimensional space preserving incidence we
are interested in. A similarity transformation preserving
incidence for a space of dimension v could be written as a
rotation and a translation: x’ = A · x + b, where A is a matrix of
dimension v * v, b a vector of dimension v. This transformation,
expressed in the form of translation and rotation, cannot be
composed through matrix multiplication, because they do not
leave the origin at the same place. Composition of
transformation by matrix multiplication means that a
transformation composed of first t1 and then t2 is the single
transformation t12= t1 t2, which can be applied to all points p.
This is only possible, if t (0) = 0.

In order to bring translations and rotations—and some other
transformations—in a single system, we have to add a dimension
(from 2d to 3d, from 3d to 4d) . We keep the origin of this higher

Frank: GIS Theory Draft V15 Feb.05 134

dimensional space fixed, but move the point to which the origin
of the space of interest maps to. For these homogenous vectors,
the transformations map the origin to the origin; this means
going to the projective space. We map n vectors to the
corresponding homogenous n+1 vectors with a functor.

The 2d plane of interest is embedded into a 3d space as
shown in Figure 155. A line through the origin and all its points
are the equivalent representations of a point in the 2d plane (so
called homogeneity). This is a interpretation of the projective
plane, which we will introduce later (chapter 19). Adding one
dimension w is sufficient to achieve the purpose of composition
of linear transformations by matrix multiplication:

N (M a) = (N matmult M) a.

Consider the plane of the w axis and point p (Figure 156).
The translation of p by t becomes a rotation followed by a
change of scale—and scale transformation can be ignored,
because p1 is (homogenous) equivalent to p'.

7.1 HOMOGENOUS COORDINATE SYSTEM
Homogenous coordinates were invented by Maxwell (1831-
1879) to have a well-behaved algebra for geometric objects,
points, lines, areas, and transformations. Note, that 2d vectors do
not behave nicely—remember that cross product is not defined,
but 3d, 4d (so-called quaternions, often used in geodesy for 3d
space and time) and 8d vectors allow definitions for a
multiplication with (some of) the regular properties, in 3d space
this is the cross product.

Homogenous coordinates were used in computer graphics
(Newman and Sproull 1981; Foyley and van Dam 1982) because
they avoid divisions, which were with the hardware of the 1970s
and 1980s much more time consuming than additions and
multiplications. All divisions in a computation are collected in
the scale factor that is applied only at the very end. This
performance consideration is not important today, but the same
property makes homogenous coordinates helpful to construct
total functions: they avoid divisions, and divisions are an
important place where functions become non-total! The purpose
is to write equations for total functions in homogenous
coordinates—that is, using the projective plane—where ordinary
formulae would yield non-total functions.

Figure 155: The point p and all points
equivalent in homogenous space

Figure 156: Translation becomes a
rotation and a scale change

Homogeneity:
The algebraic entity a is called
homogenous if a and λa, with λ≠0
represent the same geometric entity
(Förstner and Wrobel Draft)

Linear Transformations 135

7.2 MAPPING FROM REGULAR 2D TO HOMOGENOUS 3D
COORDINATES
The transformation of regular 2d coordinates to homogenous
coordinates is by adding the homogenous coordinate with w = 1.
The transformation from homogenous to Euclidean 2d is by
dividing the x and y values by the (scale factor) w.

Many texts add the 'homogenous coordinate' (the 1) at the
end of the vector. To prepare for a dimension independent
formalization, we have the first element in the vector represent
the homogenous value. This mapping is a functor.

7.3 TRANSFORMATIONS
The transformations we have seen before can all be expressed as
matrices in homogenous coordinates. Complex transformations,
like similarity and affine are composed by multiplication. But
now we can also include scale changes and translations and even
perspective projection can be expressed (as a mapping from 3-
dimensional space to a plane in 3-dimensional space): Assume
that the optical plane of the lens is in the x1, x2 plane(Stolfi
1991p. 74; Förstner and Wrobel Draft):

Figure 159:Transformation of points in 2d

8. SPECIAL CASE: SIMILARITY TRANSFORMATIONS IN
2D

The determination of a transformation of three points given in
two coordinate systems (a,b,c and a', b', c') is

Figure 157: Transformation from 2d to
homogenous and homogenous back to 2d
coordinates.

Translation

Rotation

Scaling

Figure 158: Affine transformation

Figure 160: Perspective Transformation

Frank: GIS Theory Draft V15 Feb.05 136

A similarity transformation preserving angles is determined by
only 2 points. The transformation matrix has the form:

With a parameter for rotation, two for translation, and one for
scale. The general approach in section 5xx does not work,
because we have only 2 points. We can either add constraints to
the system of equations or construct a third point C such that C –
A – B is a right angle (Figure 159) and compute the coordinates
of C in both systems. Then we have 3 points and can use the
general formula.

9. SUMMARY
In this chapter the unification of different transformations were
achieved using homogenous coordinates that are a representation
of projective space. Adding one dimension to the vector space it
was possible to achieve a simple, unified framework.
Transformations form a category, where composition is defined.
This is again the construction of a functor to expand a
representation when it is insufficient to represent all cases.

The chapter also showed how to overcome the limitations
that some operations of vector algebra are restricted to 3-
dimensional spaces. The transformation formulae are using only
matrix operations, which are valid for square matrices of any
dimension.

REVIEW QUESTIONS
• Why are homogenous coordinates necessary? Give

transformations between homogenous and orthogonal
coordinates in both directions.

• Explain the formulae for transformations (translations,
rotation, perspective transformation) using homogenous
coordinates.

Figure 161: A lens with focal length f and a
point with its image

Linear Transformations 137

• Why are homogenous coordinates allowing us to combine all
different transformations into a single general linear
transformation?

• What is a general linear transformation?
• Demonstrate that translation and rotation leave distances

invariant.
• Show that the transformation from ordinary 2 vectors to

homogenous 3 vectors is a functor.

PART FOUR FUNCTORS TRANSFORM
LOCAL OPERATION TO
SPATIAL AND TEMPORAL
DATA

Observations produce measurement of different types which
are combined in functions to produce values of interest (see
chapter 6). Soil type, exposure, annual rainfall and similar
locally observed values are combined, for example, in a formula
to compute the agricultural value of land or the potential for soil
erosion. These formulae express relationships between values
valid at a single point in space and time.

In this part in chapter 11 and 12, we show first how such
formulae can be applied in a principled way to time series
(Figure 162) and to spatial layers (Figure 163) of point data
values. We use here the methods to represent points in space and
time given in the previous part and treat the observed values at
these points, which we call "point data". Time series of observed
values can be combined to show how a computed value changes
with time. A formula to compute the values for a point can be
applied to a layer of similar measurements and produce a map
showing how the value changes in space.

Functors are the mechanism to expand local functions to
apply to layers of spatial data and time series (chapter 6.4xx). A
functor is a morphism, which preserves composition and
identity. It is an often used method to construct new algebraic
systems from given ones. The functors introduced here expand
the domain of application of functions from local application to
values observed in space or time, or even space-time.

Map Algebra is a part of GIS theory that has survived for
more than 20 years without much change(Tomlin 1983); it will
be formalized and generalized in this part, but not altered in a
substantial way. At the core of map algebra is a functor layer,
but Map Algebra includes more operations than just the local
operations produced by this functor. Tomlin identified

Figure 162: Temperature in function of
time

Figure 163: The surface of the earth as a
function of position

Fluents 139

• local operations (chapter 12) characterize a location,
• focal operations characterize a location within its

neighborhood (chapter 13).
• zonal operations characterize a location within the area of

similar properties, its zone; they have a different structure and
link towards the identification of objects in space or events in
time (chapter 14).

Focal operations are an example of convolution.
Convolutions are mathematically well defined and extensively
used in image processing(Horn 1986). They are not just useful
for image processing of remote sensing data, but are a method to
analyze geographical situations stressing the concept of
"neighborhood": the properties of the areas immediately around
a location influence this location. For example, a lake influences
the land in its vicinity—and this influence is important enough
that we have a special word for it, namely "beach" (Figure 164.
A local operation is not sufficient to find beach areas, it is
necessary to have an operation that considers the neighborhood:
a beach is where water and land meet. Tomlin called this Focal
Operations and included in this class all operations which are
considering values in the immediate neighborhood.

In this part, the application of operations to time series and to
spatial map layers is unified in the same conceptual framework.
The treatment of time series is presented first (chapter 11),
because the graphical presentation is simpler and the following
generalization to 2- and 3-dimensional space and the
combination to spatio-temporal data are straightforward.

Figure 164: Beach is the zone where the
lake influences the land

Frank: GIS Theory Draft V15 Feb.05 140

Chapter 11 FLUENTS: VALUES CHANGING IN TIME

Values that change in time, for example the outside temperature,
are common examples to demonstrate the treatment of data that
represents observations varying with time. If we observe inside
and outside temperatures, we can compute for any point in time
the difference between them. The values changing in time can be
seen as functions from time to a value, in this special case a
function from time to a temperature value. Operations, e.g.,
difference, can be applied to such functions and return a function
'difference between inside and outside temperature'.

Functors apply to operations with values and produce
functions which take time series of values as inputs and produce
time series. With functors simple operations on values become
polymorphic and apply equally to time series and map layers
(see next chapter).

1. CHANGING VALUES IN TIME
Life is change; everything in the world is in flux. In this chapter
we concentrate on point observations at the same location
repeated in time, but change is also affecting the properties of
objects, which will be discussed later. Observations that return
different values varying with time are common and can be
contrasted with values assumed to be constant. McCarthy and
Hayes called properties that change fluent(McCarthy and Hayes
1969).

The values shown in Table 2 give the observed temperature
at a fixed location inside and outside of a building during a day.
Time Inside temperature

° C
Outside temperature
° C

7:00 18 5
8:00 21 7
9:00 21 8
10:00 20 10
… … …

Table 2: Temperature readings inside and outside of a building
Values describing properties of objects change in time, some
rapidly, some very slowly. Only very few natural constants, e.g.,
the Boltzman constant, do not change. Some changes are so slow
compared to the focus that they are not relevant (Figure 165) and

All is flow
Heraclites

Fluent = value that changes with
time

Fluents 141

others are changing so rapidly that they appear as noise
compared to the signal of interest.

The treatment of values that change is difficult in first order
languages: values in a formula are constants and the result of a
computation is a (constant) value. To gain a handle on temporal
data, we must use a second order language (see chapter 4.5),
where variables can be functions. This approach is powerful and
leads to a formalized treatment. The alternative is situation
calculus(Lifschitz 1990), which is based on first order logic but
still requires second order, extra-logical operations(Reiter in
preparation).

2. SYNCHRONOUS OPERATIONS ON FLUENTS
Assume we measure the temperature inside and outside, then we
may also compute the difference between inside and outside for
any point in time (Figure 167). This difference exists for any
point in time: d(t) = i(t) – o(t).

We call such computation ‘synchronous’ because the values
corresponding to the same time instant are combined in a
computation. The computation d = i –o is inside a snapshot; the
computation is not dependent on the time. Every operation inside
a single snapshots can be extended to a calculation on the
corresponding number of changing values. The functor fluent is a
mapping from values of type Float to functions resulting in a
value of type Float with the signature t -> Float.

3. FLUENTS ARE FUNCTIONS
A fluent is a function from time to a value. Operations for fluents
are defined as the synchronous application of the operation for
each time point. For example, the difference between the two
functions inside and outside temperature is a function:

it :: time -> temp -- inside temperature
ot :: time -> temp -- outside temperature
dt :: time -> temp -- difference inside – outside

dt (t) = it (t) – ot (t)

The table above (Table 2) can be seen as a function, for each
time point we measured a value on the temperature scale. Given
that we have only discrete observations, the temperature between
observation times must be interpolated(Vckovski 1998).
Interpolation is meaningful here, as we know from physics that
temperature is a continuous function!

Figure 165: Slow changing, quasi constant
phenomenon

First Law of Time:
Everything changes, but some things
change slower (and are constant
relative to the faster changing ones).

Figure 166: Signal and noise

Second Law of Time:
Some changes are so fast that they
appear as noise compared to slower
changing things.

Figure 167: a) Outside and inside
temperature, b) difference

Frank: GIS Theory Draft V15 Feb.05 142

4. INTENSIONAL AND EXTENSIONAL DEFINITION OF
FUNCTIONS

Functions are defined as formulae, which permit to compute for
any value x a corresponding function value f(x). This is an
intensional definition (it is not 'intentional', but one can think that
the formula gives the intention of the function). The alternative
is an extensional definition: the function is given by a set of
values, between which we may interpolate (Figure 169).
Interpolation methods must be selected appropriate to the type of
process that changes the value(Vckovski 1998; Vckovski and
Bucher 1998). The table above (Table 2) gives an extensional
definition for inside and outside temperature at a specific
location and day.

5. THE FUNCTOR FLUENT
Fluent is a functor, a mapping from an ordinary value to a
function from time to a value such that that categorical diagram
commutes (Figure 168). The functor fluent maps a constant
value to a constant function, which returns the same value. A
function, like +, is mapped to a synchronous operation on the
functions

(a +' b) t = a (t) + b (t).
This mapping preserves identity (0 for the operation +) and
composition

Composition of functions:

The transformation of an operation applicable to a single value to
produce a function to work on a fluent is a second order
function, which we will call lift. Different second order functions
are necessary to lift a constant function, a function with one
argument, a function with two arguments etc. These will be
called lift0, lift1, lift2 respectively if it is necessary to
differentiate them (note that lift1 is often called map(Bird 1998).
A functor must preserve function composition and identity
function, i.e.,

lift (a . b) = lift a . lift b,

Figure 168: Commutative diagram for
fluent

Fluents 143

lift 0 = 0.
Composed functions given by formulae can be lifted by lifting
each component of the function. For example the calculation of
the percent difference between inside and outside temperature is
obtained mechanically by first converting the infix notation in
the formula in prefix functions with arguments. For example a –
b becomes plus (a, neg (b)). Then these functions are lifted:

This lifting of functions with a functor is so mechanical that it
can be automated; for example the language Haskell (Peterson,
Hammond et al. 1997) includes a mechanism that automatically
lift functions from working on a single value to a series of
values.

Fluents can be constructed from any data type. Güting has
proposed a second order operator τ with the same
intention(Martin Breunig, Can Türker et al. 2003), but not
considered it in the context of category theory as a functor.

type Fluent v = Time -> v

6. DISCRETIZATION OF OBSERVATIONS TO OBTAIN A
FINITE NUMBER OF MEASUREMENTS

Discretization is a form of approximation, namely sampling a
continuous signal by a finite number of measurements.
Observations must necessarily be for points in time, they sample
the continuous value, which is called the signal. To replace a
continuous function with a discrete approximation reduces the
information content—something is lost in the discretization.
Unfortunately, sampling can also make appear signals that were
originally not there (called aliasing) (Figure 171).

The sampling (or Nyquist) theorem says: If a signal is
sampled with a frequency f then the signal must first be filtered
to exclude all frequencies higher than f/2. If the signal is not
limited and high frequencies not excluded, aliasing can occur.
Aliasing is the effect that a signal of a low frequency appears in
the sampled data where only higher frequencies where present

Figure 169: Functions with different
interpolation schemes

Figure 170: Discretization of signal

Frank: GIS Theory Draft V15 Feb.05 144

(Figure 171). Methods to filter are discussed later in this part
(see chapter 13).

The converse is that if we sample a function that is
sufficiently smooth no information is lost. If no frequency higher
than f in the signal occurs, which means no detail smaller than
d=π/f , then sampling with an interval of d/2 is faithful. Real
sensors are not point sensors but have physical extension and
integrate over a time interval; this has the same effect than a
filter that reduces higher frequencies(Horn 1986 p. 149).

7. TRANSFORMATIONS OF FLUENTS
Imagine that a time series has been observed, for example the
temperature in Table 2: Temperature readings inside and outside
of a building, and later we determine that the clock used was not
set correctly, but was 10 minutes late or was correct at 7:00 but
then was running fast, such that it showed 8:00 when it was only
7:55, etc. (Figure 172). Similar transformations may be
necessary to change the temperature values if the 0 point and the
scale of the thermometer were not correct. These are 1-
dimensional linear transformations.

o = f (t) -- the original observations
k (t) = c + l * t -- the correction
t' (t) = t + k (t)
o' = f (t' (t) -- o' = o . t'

8. SUMMARY
This chapter has shown how observations of changing values, for
example the outdoor temperature during a day, can be seen as
functions, in this case a function from day time to temperature.
Values changing in time are called fluents.

Functions and operations with functions are well-understood
in mathematics. Operations defined for a single point in time can
be lifted to work on time series, combining values
synchronously. This systematic lifting is part of the functor,
which maps from measurement values to observations in time,
which are functions from time to measurement values. The next
chapter uses the exact same approach for spatial data.

REVIEW QUESTIONS
• What is a fluent?
• Why is fluent a functor?
• Give an example how to use a synchronous operation.

Figure 171: A low frequency signal results
from improper sampling of a high
frequency signal

Figure 172: Time correction as a shift and
a scale

Fluents 145

• What is the sampling theorem? What does it say?
• What is meant by aliasing?

Chapter 12 MAP LAYERS

In this chapter we focus on space and observations of properties
in space, which result in measurement values related to locations
in space. Sensors, for example areal photographs and remote
sensing data captured from satellites produce such
measurements. This chapter focuses on the processing of
representations of properties of locations in images.

Space is continuous and we can observe properties at any
location at any time. In this chapter, we focus on snapshots with
time fixed. This is sometimes called the field view. It answers
questions like "what is here?"; the alternative object view
answers to the question "where is this object" (Couclelis 1992)
and will be treated in the next part.

Map layers are used, for example, to find an area that is
suitable for building a new home, given data sets describing
exposition, zoning and current land prices (Figure 174). The
focus is on homological operations that are the most often used
operations from Dana Tomlin’s map algebra(Tomlin 1991;
Tomlin 1994); other operations are discussed in the next 2
chapters.

Figure 173: A remote sensing image

A (x, t) = f (x,y,z, t)
Goodchild’s geographic reality
(Goodchild 1990; Goodchild 1992)

S (x) = f’ (x,y,z)
a snapshot of space, time fixed

Map Layers 147

1. INTRODUCTION
Space is continuous and varies continuously. Our observations of
properties at points are related to points in 2 or 3 spatial
dimensions and in 1 temporal dimension. The discussion in this
chapter is restricted to snapshots with time fixed and 2d space,
which means a projection from the real 3 dimensional world to
the projection plane. The remote sensing images from space are
good examples. They are raster images, where values are
recorded for a regular grid dividing space in equal cells, but the
principles discussed here apply equally to irregular subdivision
of space (Tomlin 1991; Eastman 1993) but applies as well to
other representations (see later chapter 30).

The extension from 2 to 3 dimensions and the combination
with the time varying values discussed in the previous chapter
are trivial. The limitation to 2 dimensions in this chapter is
didactic and does not limit the generality of the results.

2. TOMLIN’S MAP ALGEBRA
One of the original ideas that lead to the development of GIS
was the manual map overlay procedures used by planners and
geographers for a long time(McHarg 1969; McHarg 1992). Maps
are drawn on translucent paper and overlaid on a light table.
Visual interpretation allows then to find solution of questions
like "where is a south-exposed area zoned residential and
reasonably priced" or “find the area where logging of pine trees
is permitted, avoiding areas closer than 100 m to a water body”.
Dana Tomlin, then a student of Joseph K. Berry at Yale
University, saw in the late 1970s that such questions can be
computerized. It is possible to express them as an algebra of
operations on raster. This algebra is closed: the result of one
operation is again a map layer and can be used as an input in the
next one(Tomlin 1983). He defined Cartographic Model and
Map Layer as follows:

2.1 CARTOGRAPHIC MODEL
A cartographic model is a ‘collection of maps that are organized
such that each of these layers of information pertains to a
common site’(Tomlin 1983, 4). The elements of the cartographic
model are the layers and these are already ‘registered’, which
means that they cover the same area, have the same orientation

Figure 174: Three data sets to help identify
an area where I want to build my new
home

Frank: GIS Theory Draft V15 Feb.05 148

etc. (Figure 175). Linear transformations and map
transformations may be used to achieve this registration.

2.2 MAP LAYER
The notion map or thematic layer is used to describe a
description of one property with respect to its spatial distribution.
A map layer is one theme from a cartographic model, it is ‘more
like a map of just one of an area’s characteristics’(Tomlin 1983,
6).

The metaphor layer is used because a GIS is sometimes seen
as a ‘layered cake’ of thematic layers, which are stacked one
above the other (for a discussion of effects of this metaphor
see(Frank and Campari 1993). Molenaar has used the term
'single value map' to differentiate it from maps that contain more
than one variable(Molenaar 1995; Molenaar 1998). This is an
unnecessary differentiation; technically they are single values,
namely tuples consisting of several values.

We will use the word field for the concept of continuous
space and raster for the square grid discretization of it. This use
of ‘field’ should not be confused with the algebraic structure
field, encountered in chapter 5.

2.3 OPERATIONS ON MAP LAYERS
Map layers can be ‘overlaid’ and areas where some combination
of values from one and the other layer occur identified. Planners
and cartographers used to trace such areas on a new sheet laid on
top of the pile (Figure 176). The overlay shows where the three
properties apply and this can be traced on a new sheet(McHarg
1969; McHarg 1992). This new sheet can then be used in another
overlay operation, meaning that these operations form a closed
algebra.

The manual operations on a light table limit the number of
layers that can be combined and the tracing of new layers is a
time consuming operation. Photographic processes were
occasionally used, but give little additional flexibility. Only the
computerization opened the door for a flexible combination with
more operations than the manual overlay.

2.4 CLASSIFICATION OF OPERATIONS
Tomlin differentiated operations in map algebra into three
groups:

Figure 175: Coordinated layers are
combined homologically

Field = continuous space
Raster= a regular (square)
discretization of a field

Figure 176: Overlay of the three layers of
Figure 174: Three data sets to help identify
an area where I want to build my new
home

Map Layers 149

• Local operations, which combine the value from the same
location

• Focal operations, which combine values around a focal point
to a single value

• Zonal operations, which combine values from a single zone.
A local operation is looking at a single point and the resulting
value is the combination of values from this point; focal
operations consider the area around the point of interest; and
zonal operations consider values from an area within an
irregularly formed zone (Figure 177). Tomlin's definition of a
zone is an area where the same value obtains, but not necessarily
connected. The three layers in Figure 174 are showing each a
zone before a background of null values.

Tomlin’s book gives a wonderful collection of functions that
can be used to transform and combine layers that are meaningful
in a planning application(Tomlin 1990). In this part, his ideas are
reviewed from a mathematical (categorical) point of view.

3. LOCAL OPERATIONS ARE HOMOLOGICALLY
APPLIED OPERATIONS

Homological operations combine values from one or several
layers for one location at a time. They cut the values from each
input layer at the same location and produce from this set of
values a single result, which is the value in the result layer. The
vertical "pin" in Figure 175 indicates this connection between
homologous values.

Local operations are given as functions that take one or
several values as inputs and compute a single value as a result.
For example, given the function g to compute a new value from
values a, b, and c from Layers A, B, and C is c(x,y) = g (a(x,y),
b(x,y)). We combine the values for corresponding
(homological—same location) points with the given function.

The number of values that are combined is arbitrary;
functions that take one layer and transform it into another layer
are called classifier or reclassifier. These and functions that take
two values and combine in a single new value are the most used
ones; functions with more values occur occasionally. A simple
example: given the two layers of male and female average
population per areal unit, we need to compute the average
population per areal unit. This is simple addition of the value for
each location. The result can then be classified for areas with an

Figure 177 Local, focal, and zonal
operations: area of support to compute a
single new value

A zone can be defined as a
geographic area exhibiting some
particular quality that distinguishes it
from other geographic areas.(Tomlin
1983 p.10).

Homological means at the same
location.

Frank: GIS Theory Draft V15 Feb.05 150

average population higher than 5 (Figure 178). This is similar to
adding two time series (previous chapter).

4. MAP LAYERS ARE FUNCTIONS
Map layers can be seen as functions from a location to a value.
Observations will be available only for specific points and other
locations must be interpolated(Vckovski 1998).

layer: location -> value
Operations on layers are defined as homological application of
the function to each location in the layer. If the values a and b
are available for each point in space, i.e., if they are functions a
(x,y) and b(x,y) and we are interested in the values v = g (a,b),
then we can construct a function v (x,y) = g (a(x,y), b(x,y)).
Tomlin's description of Map Algebra is not typed and most
implementations today do not apply a type concept to the map
overlay operations. The combination of layers can be checked
for correct types: the operation must apply to a layer or layers
that produce the correct types for the operation; then the
resulting layer is a function from location to the result type of the
operation. The types for the above operation g combining two
layers must be:

g :: type1 -> type2 -> resultType
a:: location -> type1
b::: location -> type2
v :: location -> resultType.

5. THE FUNCTORS LAYER
The map layer is a functor; it converts operations on single
values to operations on a function from a location to a value. It is
similar to the construction of fluent, which is also a functor (see
previous chapter).

Understanding that layers are functors gives us access to the
same second order function lift used to combine time series
(chapter 11). Lift takes a function on values and produces
functions on layers of values. Any operation with the right type
can be used to transform a layer or to combine layers. Often used
operations are:
• Classification: the values in a layer are classified according to

some criteria; such operations transform a layer with floating
point values to a layer with ordinal or nominal values.

• Boolean operations used to combine layers and find areas
where two attributes apply (AND) (Figure 179) or where
either of two attributes applies (OR).

Figure 178: Adding to layers and then
reclassify the result

Combine layers m and n to give layer
l with formula l = f (m, n)
l(x) = f (m(x), n(x))

Figure 179: Boolean AND gives
intersection

Map Layers 151

• Arithmetic operations on values: +, -, *, /.
• Operations using order: min, max.
• Statistical operations: sum, average, median, most frequent

value.
• Other functions: square root, sine, cosine, tangent, arc sine,

arc cosine, arc tangent(Tomlin 1990, 65).
Homological operations are used in combinations: firstly, values
are changed through some formula and then a classification is
applied and last, the result then combined with some other layer.
Because layer is a functor, composition of functions is mapped
correctly and it is possible to simplify such operations using the
formulae about distribution of lift1:

(lift1 f . lift1 g) l = lift1 (f.g) l
If the functor layer is defined, then all operations on single
values can be lifted and used to combine layers as they would
combine single values. This can be used to construct new
formulae or new rating methods and lift them to apply to layers.

For some operations, specially constructed layers are useful.
For example, a layer that contains the coordinates of the points
(or its discrete equivalent), is a function id (f (x,y) = (x,y)). With
such layers, it is, for example, possible to calculate the distance
from a given point p, lifting the function dist (p,_).

6. MAP LAYERS ARE EXTENSIONALLY DEFINED
FUNCTIONS

Layers that are defined intensionally as functions and given as a
formula are seldom in geography. Most often, values are
recorded for points and interpolated between them or regions
where the same value obtained are identified. Other
representations are possible for continuous functions. For
example, Waldo Tobler has computed the coefficients for an
approximation of the population density of the world using a
series of spherical harmonics(Tobler 1992). This gives for world
population an intensionally defined function.

The restrictions on discretization discussed in the chapter on
fluents (chapter 11), applies in 2 or 3 dimensions as well. It may
be surprising to think of frequencies in space, but it opens the
conceptual framework of signal processing (Horn 1986) for
application to geography, which will be explored extensively
when discussing approximations.

Frank: GIS Theory Draft V15 Feb.05 152

REVIEW QUESTIONS
• What is meant by the expression ‘homological operations’?

Give an example.
• Define layer.
• What is the notion ‘field’ meaning here? What other meanings

do you know?
• What are local, focal, and zonal operations? How are they

differentiated?
• In what sense is map algebra closed?
• How would you calculate in a discrete raster representation a

layer that contains the distance to a given point p?
• Give a local function that classifies a layer with the height in

meters, such that areas below zero, between zero and 500, 500
and 1000, etc. are separated.

• Give a small part of a layer as an extensional definition.
• How does the sampling theorem apply to space?

Chapter 13 CONVOLUTION: FOCAL OPERATIONS FOR
FLUENTS AND LAYERS

Map algebra does not only contain operations that work on a
single location using data from one or more layers, but includes a
number of methods to work on neighborhoods around a location.
Focal operations apply to a point and the immediate neighbors
around it. Similar operations are known in image processing for
smoothing time series and images. They are called convolutions
(German term: Faltung).

In this chapter the concept of focal operations is first
explained for time series (fluents) because the explanations are
simpler and then applied to layers. The chapter first concentrates
on the convolution operation that is defined for continuous
functions and generalized this concept in the last part of the
chapter to other focal operations that are not immediately
expressed as convolutions. Convolution operations have a fixed
size of the kernel and introduce a scale dependency in their
result; an extensive discussion will later relate them to error
treatment.

1. INTRODUCTION
A large class of interesting operations on layers computes a new
value using all the values in the field but using a weighting
function to give more influence to the neighbors than to locations
further away. According to Waldo Tobler’s first law of
geography, in most cases influences of far away things are
negligible and we can restrict the area of influence to a small
neighborhood around the point of interest, the focal point (Figure
180). This general principle is powerful and has wide
applicability; it is used in signal processing and remote sensing
to smooth or enhance images, and it can also be used in GIS.

Figure 180: Rate of influence decreases
with distance from focal point

First law of geography:
All things influence all other things;
nearby things influence more.
Waldo Tobler

Frank: GIS Theory Draft V15 Feb.05 154

2. CONVOLUTION FOR FLUENTS

2.1 EXAMPLE: SLIDING AVERAGE
Consider the practical problem of measurements in a time series;
for example the water height at a water gauge station in a lake.
Waves, random errors and noise may produce rapidly varying
readings when we know that the water level varies only slowly.
A sliding average to smooth the time series is routinely used;
this is computed with a formula that takes 1/4 of the value
before, 1/4 of the value after and 1/2 of the current value—and
this formula is applied to every value in the series (Figure 182).
The smoothing effect of the sliding average is visible (Figure
181)!

2.2 CONVOLUTION FOR CONTINUOUS FUNCTIONS
Convolution is defined as the integral of the product of two
functions; one is the signal f(t), the measured value, the other the
weighting function h(ξ), which determines how much influence
the values have. The result at the point t is the integral of the
product of these two functions:

Convolution is commutative and associative. The sliding average
worked with discrete values and used a weighting function that is
0 everywhere except 1/4 for -1 and 1 and 1/2 for 0. The
following computation shows how convolution works as a
multiplication of two functions given as polynomials (Figure
183):

Figure 183: Convolution of functions given as polynoms

Figure 181: Original and smoothed values

Figure 182: Sliding average

all v15a.doc 155

2.3 CONVOLUTION IS LINEAR AND SHIFT INVARIANT
The convolution operation has two properties that are important
for temporal and spatial problems: it is linear, which means that
twice the input gives twice the output:

It is shift-invariant, which means that it is invariant under
shifting of the coordinate system:

It can be shown that all linear and shift-invariant transformations
can be described as convolution with some function h(Horn
1986, 109).

2.4 CONVOLUTION FOR SERIES WITH DISCRETE VALUES
Convolutions can be discretized. The fluent is given by a
sequence of equidistant values v1, v2, … vn and the weighting
function is given by a stencil (sometimes called the convolution
kernel) w1, w2, .. wm. The stencil to compute the sliding average
before was (1/4, 1/2, 1/4). The length of the stencil indicates the
size of the neighborhood that influences the result; usually the
stencils are small, three or five values are usually sufficient. The
computation consists of sliding the stencil along the time series
and multiplying the values with the corresponding weight in the
stencil and to sum these products (Figure 182).

The discrete form of convolution appeals to intuition and is
easy to compute and visualize. It contrasts in this respect sharply
with the abstract definition of convolution as an integral of the
multiplication of two functions.

2.5 CONVOLUTION FOR SMOOTHING A FLUENT
The best weighting function to smooth a fluent is a Gaussian
function (Figure 184):

The stencil in Figure 182 is a length three discrete form of a
Gaussian: 1/4, 1/2, 1/4 or 1/4 (1, 2, 1).

2.6 CONVOLUTION TO DETECT EDGES
The derivation of a signal function accentuates the edges. The
derivation of a signal can be computed as a convolution, because
derivation of a function is linear and shift-invariant. To identify

Functions which are linear are
independent of the units used for
measurements.

Figure 184: A Gaussian function

Frank: GIS Theory Draft V15 Feb.05 156

the function that is the equivalent convolution to the derivation is
not simple, given that derivation is not an ordinary function f(x).
Intuitively, the values for the weighting functions must give a
high value to the center and negative values to the neighbors
(Figure 185). For discrete values, the stencil is for example: (1/2,
-1, 1/2).

2.7 TREATMENT OF TIME SERIES WITH NOT EQUIDISTANT
VALUES
Understanding convolution as the multiplication of two functions
permits the generalization of the operation to time series where
the values are not equidistant. The weighting function h is a
function of the distance to the focal point x as was shown in
Figure 183.

3. PROBLEM WITH EDGES
The values at the points along the edge of the area treated are
computed from values around this point—but part of this
neighborhood is not available (Figure 186). This is a practical
problem for computation. Several solutions are possible:
• The area of interest is inserted in an infinite area with value 0.

This allows computation up to the edge, but values near the
edges are not correct.

• For the area around the edge where not enough data is
available, no values are computed. This produces correct
values, but the area covered becomes smaller with each
convolution.

• The image is mirrored at the borders (Figure 187); this gives
not correct values for the cells along the edge, but the values
are at close.

4. CONVOLUTION IN 2D FOR LAYERS: FOCAL
OPERATIONS WITHIN NEIGHBORHOODS

Convolution can be extended from one dimension to multiple
dimensions. It is used to process images, including remote
sensing images, and geographic data processing. Convolution in
2-dimensions is generally useful for spatial analysis, to smooth a
surface or to detect edges, etc.

Convolution for layers in 2-dimensions is defined like
convolutions in 1-dimension, except that both the signal and the
weighting function are in 2-dimensions.

Figure 185: Laplace operator used as an
edge detecting convolution (Mexican hat)

Figure 186: Values missing to compute
convolution along an edge

Figure 187: A layer with additional values
around its boundary to permit convolution
with a 3 by 3 stencil

all v15a.doc 157

Convolution for layers is linear and shift-invariant. Shift-
invariance for images has intuitive meaning: an image of an
object taken from a position and the image taken from a slightly
shifted position should be very similar (Figure 188)!

A transformation in 2 variables is bi-linear, if a linear
transformation of any or both of the inputs produces a linear
transformation of the result. A transformation is shift-invariant if
it produces the shifted output g (x-a, y-b) when given the shifted
input f (x-a, y-b)(Horn 1986 p. 105); this is verified by inserting
in the formula above.

4.1 SMOOTHING OF A LAYER
Convolutions can be used to filter an image to exclude high
frequencies (detail); a Gaussian filter that attenuates higher
frequencies is often preferred over a sharp low pass filter, that
cuts frequencies at a precisely defined limit(Horn 1986, 127).

A convolution to smooth a layer uses a Gaussian function in
2-dimensions (Figure 189). The effect is the same as we found
for smoothing time series (Figure 182), applied to 2 dimensions.
The Gaussian function is rotationally symmetric and its effect in
the convolution is also rotation invariant. This means that the
convolution of an image is the rotated convolution of a rotated
image: R (conv a b) = conv (R a) b. A stencil with discrete
values for this function is given in Figure 190.

4.2 EDGE DETECTION IN LAYERS
For the detection of edges, another rotational symmetric
function, namely the Laplacian operator can be used:

Given that any shift-invariant and linear system is a convolution,
such a function must exist. Horn gives a function that is the limit
of a sequence of functions(Horn 1986, 122):

From this we can deduce a piece-wise constant function, which
then leads to a stencil (Figure 191):

Figure 188: A picture and a second one
from a shifted position

Figure 189: An example for H (Gaussian)

Figure 190: Convolution Stencil for a
Gaussian

Frank: GIS Theory Draft V15 Feb.05 158

4.3 ISOTROPIC AND NON-ISOTROPIC CONVOLUTIONS
Convolution of multi-dimensional fields is isotropic, treating
space in all directions the same, if the functions used for the
convolution is rotationally symmetric, i.e., invariant under
rotation: R (f a) = f (R a) where R is a rotation matrix. The
Gaussian and Laplacian convolutions are examples for
rotationally symmetric convolutions. Convolutions applied to
raster require symmetry only for the directions where the raster
itself has symmetry; for square rasters, these are quarter turns.

Convolutions can be anisotropic. Most are detection of edges
in a specific direction (Figure 192). For this a function is used
that is not rotationally symmetric nor are the stencils.

5. OTHER FOCAL OPERATIONS
Many of the focal functions described by Tomlin (Tomlin 1990)
can be constructed as convolutions. For example, the local sum
operator is a convolution with a function that is constant for
some distance (Figure 193). The focal average is the result of
local sum divided by the area in the convolution function, which
is π * c2. The corresponding stencils are easy to derive.

Functions useful for applications are composed from a focal
operation and other, local operations. Any combination of values
in the stencil can be computed in 2 steps: first apply stencils,
which have only a single 1 in one of the cells: this is a shift
operation for the layer (Figure 194). Then these shifted layers are
combined with local operations.

Some focal operations provided in GIS include the central
value (v22 in Figure 195), some do not (and sometimes it is
unclear, if it is included or not). Many useful functions are
essentially statistics of the 9 (or 8) values cut out by the stencil.
This includes focal maximum and focal minimum, which apply a
max or min function to the values returned, focal sum and focal
average, but also focal variety, focal majority, focal minority,
focal median.

Figure 191: A stencil to detect edges
(Laplacian)

Figure 192: An anisotropic stencil to detect
edges in north-south direction

Figure 193: Function constant in an
interval

Figure 194: Convolution that is a shift
right and down by one cell

all v15a.doc 159

Other focal functions compare the environment with the
central value (v22). For example, local percentile gives the
percentage in the environment (v11… v33, but not v22) that is less
than v22. Tomlin shows how this function can be used to compute
how prominent a place is from the height data, depending how
much of its environment is at a lower altitude.

With focal operations it is possible to compute the gradient
(terrain inclination, angle of the terrain with the horizontal
direction) and the aspect (direction of the maximum gradient). It
is also possible to determine the direction of water-flow over the
area, which may lead to a determination of streamlines(Frank,
Palmer et al. 1986).

The cost of traveling from a given point over an anisotropic
surface, i.e., a surface where travel cost are different for each
point, given as a layer travelCost:: x -> c, is computed as a fixed
point of a convolution. Regular convolution operations calculate
a new layer from a given one in a single sweep; the new values
derive from the given ones only. To compute the traveling cost
requires spreading the cost of reaching a location from the
starting point over the surface; it is a repeated application of a
convolution till a fixed point f (xi+1) = f (xi) is reached.

There is a tradeoff between offering a large number of
specialized operations and providing only a small set of building
blocks from which others can be constructed. I prefer the
building blocks because the effort to understand what the given
prefabricated operations do requires often more effort than
constructing new ones; and one finds at the end, that the given
function is not what is required to solve a problem.

6. CONCLUSIONS
The focal operations are defined without reference to a
representation. Convolution is explained in terms of continuous
functions and applies to any form in which a function f: (x,y) ->
v can be represented. The implementation as operations on arrays
for the discrete case – regular raster (Figure 197) – is offering
itself, but it is just a convenient implementation (some of the
specialized focal operations suggested by Tomlin seem to
assume a raster representation).

Continuous functions avoid the problems of discretization
and guarantee that the results are not dependent on the resolution
selected (but still depend on the size diameter of the kernel

Figure 195: The values cut out by the
stencil

Figure 196: An example layer and the
computation of a new value

Frank: GIS Theory Draft V15 Feb.05 160

function). Understanding focal operations as convolution leads
towards the generalization of focal operations from raster to
other irregular tessellations (Figure 198).

A method to compute convolutions for subdivisions
represented as irregular tessellations is to convert the integral
into a finite sum and to sample the layer at the appropriate
points; this is essentially a conversion of the subdivision in a
raster representation of a suitable resolution, which can be
achieved without storing the raster.

In signal processing a different approach is often selected:
transform the signal from the temporal (or spatial) dimension
into the frequency domain by a Fourier transformation. A
convolution in the time domain is a multiplication of functions in
the frequency domain. This can take advantage of the Fast
Fourier Transformation algorithm. It would be useful to explore
its usefulness for geographic data processing.

I feel that a careful analysis of the functions required to solve
practical problems is warranted and expect that some generality
is found. Tomlin also includes visibility based on line of sight
from a given point as a focal operation and an operation to
identify connected areas with the same values. These two
functions seem not to fit within the framework of convolution
and need further study.

REVIEW QUESTIONS
• Demonstrate by computing the linearity and shift-invariance

for (1-dimensional) convolution.
• Detect the time when temperature dropped or increase most in

the time series: 10, 11, 12, 15, 16, 16, 17, 12, 10. What
operation are you using? What is the stencil?

• Give a stencil for a 2d local average.
• Why is it that convolution (and other functions in GIS) are

linear?

Figure 197: A regular subdivision

Figure 198: Irregular subdivision

A convolution is a multiplication in
the frequency domain.

Chapter 14 ZONAL OPERATIONS USING A LOCATION
FUNCTION

We can focus our attention in a layer on all areas that have the
same value: we can look at all the wooded or all the urbanized
area in a map, we can look at lakes, etc. (Figure 201). Tomlin
calls such a selection of areas with the same value a zone and
Map Algebra contains a number of functions operating on zones.
Zonal operations compute a new value for a location based on all
areas that has the same value as this one; zonal operations
combine in a geometrically varying way a location with other
similar locations.

Zonal operations are used to compute the area of zones, for
example, how much area is forest in Figure 199? They can be
used to determine the center of gravity of a zone, the average
distance of the zone from a given point, the average height above
sea level of a zone, etc.

Zones are an intermediate step towards the focus on objects,
which is the second half of this book. It is to differentiate zones
from objects—zones are all areas with a value, they are a layer;
the zone wooded area is different from the two objects "wood" in
Figure 201.

1. DEFINITION OF ZONES
Zones are defined as all areas that have the same value. This is
immediately meaningful for layers that are functions from space
to discrete values (e.g., integer, nominal). For layers that map to
continuous values (e.g., real numbers), it is usually necessary to
classify the layer first into a small number of classes.

Image processing thresholds images obtains images with
Boolean values that are called binary images; these are similar to
zones. The image as a function is then called a 'characteristic
function'(Horn 1986, 47).

2. CLOSEDNESS OF ZONAL OPERATIONS
Tomlin assigns to each location a value from the zonal operation.
This is different from operations in image processing, where
functions applied to a zone (a characteristic function) produce a
single value. The result of a zonal operation is the same for all

Figure 199: A land use map with wood,
water and street use

Definition:
Zone = Area with the same value.

Figure 200: The zone 'wood'

Figure 201d: The water zone

Frank: GIS Theory Draft V15 Feb.05 162

locations in the zone and is filled in all cells of the zone. For
example at the end of a zonal operation "area of zone" all cells
of a zone contain the value for the total area of the zone.

This duplication of values is necessary to make zonal
operations produce a layer and assures that map algebra is
closed.

3. COMPUTATIONAL SCHEMA OF ZONAL OPERATIONS
Zonal operations are combinations of local operations and a new
'integrate over layer' operation. Take a simple example, namely
the computation of the area of the 2 zones forest and water of
Figure 201:

Assume a classified layer M :: x -> {f, w}.
1. Create two Boolean functions lf, lw :: x -> Bool, where

true means that the location is in the zone and false outside.
2. Classify the layer M with these two functions lf, lw; this

gives two layers :: x -> {0, 1} (characteristic functions).
3. Integrate over layer: aggregate all values in each layer to

compute a value v for the zones vf and vw.

4. classify the zones in the layer M with a map f -> vf, w ->

vw, s -> vs, l -> vl; this fills back the computed values in all cells
of the zone.

This is not a description of an implementation but it
describes the logic of zonal operations. Special operations differ
in the function f which is used and the function to aggregate the
values across the area.

Note that the operation 'integrate over layer' is independent
of the representation. For a raster representation, the integral
becomes a sum (Figure 202), in the simplest case just a count.
For other representations, a method to sum a function over a
layer must be given.

4. NUMBER OF ZONES IN A LAYER
The number of zones in a layer is less than or equal to the
cardinality of the set of values of the layer. In the limiting case,
each location is a zone by itself, but then zonal operations are the
same as local operations.

Figure 202: Aggregate the values in the
zone

Figure 203: The result of the zonal area
operation

Values in a set are always different!

Zonal Operations 163

5. ZONAL OPERATIONS WITH MEANINGFUL SECOND
LAYER

Some of the operations on a zone use a second layer, a layer
different than the layer used to form the zone. The zonal
operation then obtains values from this layer that are combined
to give the value for the zone. For example, one may ask "what
is the average height of the forested land". Forest land means a
zone, formed on land use, but the average is then for the height,
which comes from a second layer.

Operations using a second layer can compute arbitrary
functions that combine the values of this second layer in the zone
in a single value. It is not necessarily the function 'integrate over
layer' with addition, but the + operation in the aggregation can be
replace by other operations. Functions that are used are sum,
max, min, mean, product, variety, majority, etc.

Tomlin introduces Partial zonal operations: The values in a
zone can be compared with the value at the given location. For
example one asks for a point in a zone, how much area of the
zone is higher than the given point. Such operations can be
composed from the basic operations and I doubt, that it is
worthwhile to include such special operations into a GIS for the
few cases they are used.

Figure 204: Mean Center of population of
USA (source:
http://upload.wikimedia.org/wikipedia/en/2
/27/Mean_ctr_pop_US_1790-2000.png

Frank: GIS Theory Draft V15 Feb.05 164

6. CENTROID AND OTHER MOMENTS
The center of gravity is a geographically meaningful concept. It
is instructive to draw, for example, the movement of the center
of gravity for the population of the USA over the past 200 years.
The movement of the center of gravity for the population shows
in a nutshell the movement first towards the west and later in the
20th century to the south (Florida, Arizona).

In statistics, the centroid is just a moment, it is the first
moment divided by the area (which can be seen as the zeroth
moment), and the second moment is the standard deviation. The
second moment has a physical interpretation as the inertia
against rotation around an axis. This can be used to determine
the orientation of the object as the axis which has least (or
maximum) inertia(Horn 1986). Higher moments can be
constructed but are seldom meaningful.

Moments are characteristics of a zone that are additive. If
two disjoint zones are combined to form a single one, the
moments add: M a + M b = M (a + b). This means, that the
moment of a collection of objects and the moment of the
composed object is the same. For computation it means, that
moments can be computed for parts and the results for the parts
combined. The center of gravity of a figure is the center of
gravity of the parts, each part represented by its center of gravity
multiplied with its mass.

Disjoint = no common part

6.1 CENTROID
The centroid is the center of mass of an object. It is computed as
the first moment of the object divided by the area, because the
moment—physically the force to turn the object around this
point—must be zero for the centroid. The same computation
applies to zones.
We sum the contribution of each part of the object to turn around
the origin in direction of negative y (respective negative x)
(Figure 205). This must be equal to the total area (mass) of the
object times the distance of the centroid from the origin

X * m0 = m1x.
 The coordinates of the center of gravity is the first moments
divided by the zeroth moment (Figure 206).

X = (m1x / m0, m1y/m0)

Moments are additive

Figure 205: Sum the contribution of each
element in the object

Zonal Operations 165

To calculate the center of gravity a second layer which gives the
first or second coordinate is necessary. The formulae for these
layers, which are used for all calculation of moments, are

f (x,y) = x
f (x,y) = y.

6.2 HIGHER MOMENTS

6.3 ORIENTATION OF THE AXIS
The axis of an object can be found as the direction for which the
second moments are minimal, i.e., the axis around which the
object is easiest to turn. To find the axis, the integral

∫ r2 f(xy) dx dy
 must be found, where r is the distance of any point to the axis.
Expressing r as a function of the axis as Normal Form

x sin α – y cos α + c = 0
and integration leads to the solution of a quadratic equation in
sin 2 α.

The usual solution formula for quadratic equations gives the

minimum for the solution with the + and the maximum for the
solution with the -. The same result is obtained when computing
the eigenvectors and the eigenvalues for the matrix. What we are
looking for is a rotation α that makes the 2 by 2 matrix of second
moments diagonal. This leads to an eigenvalue problem.

Figure 206: Object in equilibrium

Figure 207: Axis of an object

Figure 208: Contribution of a mass
element

Frank: GIS Theory Draft V15 Feb.05 166

If m2b ≈ 0 or m2a ≈ m2c then the zone is too round to

determine an orientation. The roundedness of the zone can be
evaluated as(Horn 1986, 53):

Note that these values are derived for zones but also apply to
simply connected regions.

7. SET OPERATIONS ON ZONES
Local operations can determine whether two zones intersect or
not (Figure 209). A zonal operation determines the intersection
area, computing the area in the zone "intersection zone". The
intersection of two zones is the logical and of the values which
qualify for membership in the zone:

The use of set operations to determine topological relations

is restricted to complement, union, intersection (which are lifted
not, or, and and) (Figure 210). The inclusion of A inside B is
computed as A ∩ B = A, if A is disjoint from B then A ∩ B = 0
(Figure 211). It is not possible to determine touching directly
with set operations, but one can determine inclusion and
disjointness (a more detailed treatment of topological relations
follows in chapter 22xx).

8. SUMMARY FOR ZONAL OPERATIONS
Zonal operations are selecting areas based on similar values and
then compute a value for the whole zone using a second layer.
This computed value is then the value for all location of the
zone. The operations used for combining the values in the zone
are operations that can be used to combine a set of values to a
single characteristic value: sum, average, etc.

Zonal operations are defined independent of the
representation and apply equally to raster representation or to

Figure 209: Two zones and their
intersection (as Boolean raster)

Figure 210: Two figures and their
intersection, union and complement of one

Zones are equivalence classes!

Zonal Operations 167

irregular subdivisions. For continuous representation the sum of
discrete values becomes the integral, respectively the appropriate
finite aggregation operation for this representation(Bird and de
Moor 1997).

Many practically useful functions are listed by Tomlin.
These functions are only shortcuts for a combination of other
functions—and one might argue how the additional cost of
learning these functions compares to a building the same
functions from few generally useful building blocks. Tomlin
gives an example on how several simple and easily understood
operations are combined(Tomlin 1990, 163).

We may retain that zonal operations derive a single
characteristics of a zone; in the continuous case, this is an
integral over the zone (Figure 212), for the discrete case it is the
sum over the zone. Zones can be seen as objects and zonal
operations as a method to obtain summary properties of an
object: area, centroid, axis, etc. The operations given here for a
2d case can be extended directly to 3d volumes. They can also
apply to 1d (temporal) data or to the combination of spatial and
temporal data.

REVIEW QUESTIONS
• Review: when is each location a zone by itself? Draw a

simple example!
• Proof that the center of gravity of a set of objects is the center

of gravity of the parts, each represented as a point mass at its
center of gravity.

• Thesis topic: reformulate map algebra with strict mathematics
and show what the minimum number of functions is to
construct a useful and computationally complete system.

Figure 211: Two figures disjoint and one
inside the other

Figure 212: Integral is the sum for an area

PART FIVE OBJECT DESCRIPTIONS
STORED IN A DATABASE

A GIS consists of observations of the properties of objects in the
world. People identify objects and observe properties that
characterize them and that remain invariant under occurring
transformations. A GIS is used to store descriptions of such
objects. The first part of this book has concentrated on
observations of properties of points in space and time. The
second part of the book has a focus on objects, their position in
space and time and other properties. New in this part is that
objects are not isolated, but related to other objects.

The GIS stores facts describing objects. Facts can be the
measurements from a surveying operation, where distances and
angles between points are observed, it can be the recording of
temperature at a location, but it can be the results of derivation
from primary facts, like the number of people living in a town, a
social index describing the population, or the cadastre, recording
ownership relations between people and land.

This part five starts with the database concept: methods to
represent measurements and relations between objects and
permanently store them. In this part, four issues are considered:
• Generalizing and centralizing storage: the data in a GIS are

stored only once and are available to many different
applications (database concept).

• Representation of objects and the relation between them and
the quantities describing them, together with functions to
access the data (data model).

• Permanence of storage: the data is stored such that it is
preserved after the close of a program and is available to be
processed by the same or other programs concurrently or later
(transaction concept).

• Logical consistency of the facts stored in the database.

Objects are related to other objects.

First half of book:
a continuous world:
measurements and derived quantities
describing points in space-time.
Second half of book:
a world of objects:
Representation, manipulation and
storage of objects, their properties
and the relations between them.

Chapter 15 CENTRALIZING STORAGE: THE DATABASE
CONCEPT

Information systems are computational models of the world (see
chapter 3). They consist of data and rules connecting the data
(Figure 213). Databases serve as central repository of data,
which controls the resource data (Figure 214). The development
of databases was initiated by commercial applications and the
terminology is influenced by administrative data processing.
Administration stores ‘records’ of relevant administrative
decisions and facts; the records in a GIS are descriptions of
observations of the real world and I prefer the notion fact.

1. INPUT-PROCESSING-OUTPUT IN THE EARLY YEARS
OF ELECTRONIC DATA PROCESSING

Databases were invented in the 1960s(ANSI X3/SPARC 1975).
Data processing then was following an Input-Processing-Output
paradigm (IPO) in which programs depend on each other (Figure
215). Computations required so many steps and connections
between the steps where so numerous that any change in one
dataset propagated through all the others. The flow graphs for
the data processing in a Swiss Bank in 1968 covered a wall!
Changes were costly and eventually impossible. The bank
initiated a project to build a communication network and a
central repository, but this was too ambitious a project for the
1970s and failed. The principles they followed were valid and
are the concepts of today’s data processing: central repository for
data and networked access; unfortunately, the effort was
premature and the technology not ready!

2. DATABASE CONCEPT
Organizations, like government agencies, corporations and
companies, but also towns rely on large collections of data for
their operations. The database centralizes storage and controls
access to all the data in an organization (Figure 216). The
database concept assures that all data is potentially available to
all parts of the organization and that all programs used the same
routines for access and writing to the data. This makes the

Figure 213: Computational models are
data and rules

Figure 214: Data storage and programs
managing the data serve many users and
are a valuable resource

Figure 215: The Input-Processing-Output
paradigm for file based data processing in
the 1960s.

A large number of interdependencies
make programming difficult and will
eventually bring maintenance to a
standstill generalizes:
Complexity is the enemy!

Frank: GIS Theory Draft V15 Feb.05 170

valuable resource that the data are available for the whole
organization!

To use a database for programming a large, complex data
processing system is a substantial conceptual change from the
previous Input-Processing-Output model(Bachman 1973; Codd
1982). The linear flow of data through processing units, where
data was transformed a record at a time (Figure 215), is replace
with a central repository for all data and all programs access the
data from this central repository (Figure 216). This has
consequences for the structure of data processing in an
organization. It changes the way application programs are
written.

2.1 CENTRALIZATION
The centralization of data in a single unit makes programs
independent from each other and only dependent on the database
(Figure 216). A database is a single logical unit. The data stored
is available to all programs through the same interface. It is not
necessarily stored in a single unit—storage can be decentralized
and even duplicated, but for the programmer this distribution is
transparent and managed automatically by the database (Figure
216).

2.2 UNIFORM MANAGEMENT OF DATA
A database is not just a collection of records! Compare with a
bank or a library: these are not just collections of money or
books, like the money jar in the kitchen or the book shelf in the
living room (Figure 217). Banks and libraries have guards that
follow rules that control the flow of money or flow of books in
and out of the bank or library (Figure 218). Without control of
the flow, a bank or library would deteriorate and could not fulfill
its function. Similarly for databases: substantive efforts are
necessary to guarantee that the data will be always available. The
database management system controls the central repository of
data.

2.3 REDUCTION OF DUPLICATE STORAGE
It was observed in the early days of GIS, that the same date
elements were stored multiple times in different files and wasted
storage space, which was, at that time, expensive. Today, saving
in storage is not the primary justification for the organization of
a database. Databases are necessary to achieve sharing of data. It

Figure 216: Centralized data as a resource

Data that are centralized and
independent from the programs are a
resource for an organization.

Figure 217: Money box

Figure 218: Bank

Centralizing Data 171

was also found that much of what on first sight looks like
duplicate storage are just data collections that use very similar
definitions, but slightly different definition and have therefore
slightly different contents. Subtle differences in definitions in
laws and regulations are usually the cause.

2.4 DATA SHARING AS MAJOR REASON FOR CENTRALIZED
DATABASE
When multiple users need the same data, why do we not simply
provide everyone with a copy of the data? This works well if the
data are not changed or changes slowly: a digital terrain model,
for example, can be distributed as a copy. If data changes, copies
do not automatically reflect the changed situation and lead to
errors, if the users depend in their decision on the current state.
For example, only one copy of cadastral records should exist and
all changes inserted there. If multiple copies are updated
independently, a fraudulent owner can sell his property twice,
once by recording the sale in one registry, and a second time,
recording it in another registry! Sharing of data gives instant
access to the changes somebody else has applied(Bachman
1973).

Having the data stored once and accessible for all potential
users (Figure 216) assures that the data used is up to date: there
is only a single copy and anybody using or updating this data
must access the same copy. Confusion in the organization
resulting from copies representing the same facts in different
ways is impossible.

2.5 ISOLATION
The database management system isolates the management of
the data from the processing of data in the programs (Figure
219). The database concept integrates the management of the
data in a single unit and separates it from application programs.
These programs access data through a standardized interface—
no program can directly change the physical storage, but all must
pass through the database manager (Figure 216). All
programmers see the same logical view independent of the
organization of the storage and their view remains the same even
when physical storage changes.

The sharing of updated, “life”, data
is the major reason for logical
integration of data in a database
management system.

Frank: GIS Theory Draft V15 Feb.05 172

2.6 A GENERAL DATABASE MANAGEMENT SYSTEM (DBMS)
To construct integrated and consolidated repositories for data of
an enterprise is a complex task. It is encountered in similar form
and it is effective to produce a generalized program. The
database management system (DBMS) is a commercially
available software that is adapted (Figure 219) to the task of
managing the data collection of an enterprise. The development
of generalized DBMS has led to a systematic accumulation of
knowledge and solutions are documented in an extensive
literature in Journals, like ACM Transaction on Data Systems
(TODS), and Conferences like the Very Large Database
Conference (VLDB) or the Principles of Data Symposium
(PODS). Specialized for GIS is the SSD and now SSTD
conference [ref missing xx].

2.7 DATA DESCRIPTION LANGUAGE AND DATA MANIPULATION
LANGUAGE
The database is constructed from a general set of routines that
are specialized in a compilation like process to work with the
data of an organization (Figure 220). A description of the data—
the logical and physical schemata— are written in the Data
Description Language (DDL) using a data model (see next
chapter). These descriptions list the object types and the
properties the database should store. The compiler translates
these descriptions in programs that are then used to store and
retrieve the data.

The application programmer accesses the data in his
program text with statements of the Data Manipulation
Language (DML) based on the same data model as the one used
for the data description. An augmented compiler for the
programming language then compiles the program text with
these statements and generates the code that accesses or changes
the stored data.

2.8 THREE SCHEMAS (VIEWS)
The data descriptions are separated in three schemas, each
describing different aspects of a data collection. These views
were standardized early (ANSI X3/SPARC 1975) :

Figure 219: Database consists of Database
Management (DBMS) and Data

DBMS = Database Management
System

DDL = Data Description Language

Figure 220: Data Description Language
and Data Manipulation Language

DML = Data Manipulation
Language

Centralizing Data 173

• Logical schema: A comprehensive, but abstract description of
all data in the database. It lists all the data for the whole
enterprise and the consistency constraints for them.

• Application schema: It represents the programmer's view,
which requires only those data elements that are visible and
used by an application. It is a sub-set of the logical schema. It
can hide data from a program to enforce privacy rules.

• Physical schema: describes how the data is physically stored.
This separation relieves the application programmer from the
need to know the physical storage structure or about data he is
not using. Only the relevant part of the logical structure of the
data, as presented at the application programmer interface, is
included in the programmers view. Compare this to a library: a
user has only to give the 'call number' of the book he desires, it is
not necessary to understand the organization of the stairwells,
elevators, rooms, and shelves where the books are located.

2.9 PERFORMANCE OF DATABASES
The storage and retrieval of data seems a relatively simple task,
but to manage data collections for many concurrent users is
difficult:
• Databases are so large and valuable, that they are stored on

permanent storage—hard disks. Access to data on a hard disk
is slow compared to the access to data stored in main memory.

• Many parallel users must access and possibly change the same
data, but maintain consistency (see chapter 17).

Performance is influenced by:
• (spatial) access methods(Samet 1990; Samet 1990),
• buffer management(Reuter 1981),
• query execution strategies, and
• transaction management(Gray and Reuter 1993).
These performance topics are not further discussed here but they
influence the design of commercially available DBMS.

3. DATA MODELS
A data model describes the tools to describe the world, more
precisely, the representation of the subset of the world of
concern in the application area (which is a system in the sense of
chapter 3). The data model lists the concept available to describe
the representation and limits indirectly what aspects of reality
can be carried over into the computer representation of reality.
This applies to all three levels of the schema, but our focus is on

Figure 221: 3 schemas

Access to data stored on hard disk
takes 10 milliseconds.
Access to data stored in main
memory 100 nanoseconds.
Accessing data on disk is 108 times
slower than in RAM; this is the same
ratio as between one second and one
year! This ratio seems constant and
not affected by changes in the
technology; it was about 107 two
decades ago.

Frank: GIS Theory Draft V15 Feb.05 174

the logical and application schema. Two questions must be
answered by a data model:
• How to construct representations of objects?
• How to model the relations between objects? (see next

chapter)
In the early ‘80s it was observed that the same concerns

appear in the database community—where they were called data
models —but also in the artificial intelligence and programming
language research community. A conference documented the
different points of view(Brodie, Mylopoulos et al. 1984):
• Administrative (DB) programming: few types, many

occurrences; permanence of data.
• Artificial Intelligence: many types, with few occurrences per

type. Limited lifespan of data.
• Programming languages: few types, few occurrences, limited

lifespan of data.

4. HISTORIC DATA MODELS
Admiral Grace Murray Hopper was one of the pioneers of
electronic data processing and promoted the use of computer
data processing in the US Navy for administration and logistics
in the 1950. She was instrumental in the development of the
programming language COBOL designed for administrative data
processing, which organized data in logically connected pieces,
called records, which consists of hierarchically nested fields.

record Person
 field Name
 field FirstName
 field FamilyName
 field Address
 field StreetName
 field BuildingNumber
 field Town

The CODASYL network data model extended these
structures for data and introduced connections between records,
so-called 'CODASYL sets'(CODASYL 1971; CODASYL 1971).
It was widely used for administrative applications (Figure 222).

Data models give the tools we use to
model reality—they are not models of
reality.

Centralizing Data 175

The relational data model (Codd 1970; Codd 1982)
dominates database applications since the 1990s. The schema
describes these tables (Figure 223). Data is arranged in tables
and the schema gives the head of the table (Table 3). Researchers
introduced object-oriented concepts (Atkinson, Bancilhon et al.
1989; Lindsay, Stonebraker et al. 1989; Stonebraker, Rowe et al.
1990) and proposed object-oriented data models, which
overcome some of the limitations of modeling with the relational
data model(Codd 1979; Deux 1989; Bancilhon, Delobel et al.
1992; Tansel, Clifford et al. 1993).

The development in GIS followed similar lines of
development as the commercial applications. Data storage in
GIS started as independent files, with proprietary structures
optimized for the application programs used. Later database
systems were used for storage of the administrative data, but the
geometric data continued in proprietary file structures because
the computer systems and databases of the time were not fast
enough(Frank 1988). Only in the late 90s standard database
systems were extended to include methods for special treatment
of spatial data, which were proposed earlier(Frank 1981; Samet
1990). This permits today the integration of all the geographic
data of a GIS in a single standard database.
FirstName FamilyName StreetName BuildingNumber Town
Peter Artner Hauptstrasse 13 Geras
Susi Artner Hauptstrasse 13 Geras
Karl Artner Hauptstrasse 13 Geras
Sabine Artner Hauptstrasse 13 Geras
Max Egenhofer Grove St 28 Orono
Andrew Frank Vorstadt 18 Geras
Stella Frank Vorstadt 18 Geras
Astrid Frank Vorstadt 18 Geras

Table 3: Example Data

5. CONCLUSION
A database, builds a model of reality representing the
"knowledge" an agent has about the world. The data description
for a database is expressed in a data model, which is a sort of
data language. If the data model is closer to the conceptual or
cognitive models, it is easier for the designer to produce an
appropriate database schema(Booch, Rumbaugh et al. 1997). The
translation of her view of reality to a formal description is more
direct and requires fewer steps. It is likely that the model
contains fewer errors. If the modeling language is closer to a
computer implementation, the database is more likely achieving
acceptable performance. In the past, modeling tools were more

Figure 222: Two CODASIL sets with
records for town with their buildings

Figure 223: Relational Schemas

Models that are close to the
application but not formal make the
translation difficult.

Frank: GIS Theory Draft V15 Feb.05 176

influenced by implementation consideration, the object model in
C++ (Stroustrup 1986) is perhaps the most recent and extreme
example.

Only solutions that have a convincing, simple algebraic
structure endure: good theory remains for decades or centuries.
The relational DB theory, which has a mathematical foundation,
remained for more than 20 years and we will present in the next
chapter a mathematically inspired simplification of it. Ad hoc
solutions are rapidly superseded by ‘new and improved versions’
produced by companies or standardization committees.

Three aspects to retain:
• a language to describe data and how it can be accessed,

independent of programming languages (see chapter 16);
• consistency of the data can be controlled by the database

through the transaction concept; (see next chapter 17);
• a logical data description is separated from the description of

the physical storage (ANSI SPARC).

REVIEW QUESTIONS
• What is a data model?
• What are the 3 levels in the ANSI/SPARC/X3 model?
• DML and DDL—what are they?
• Explain the difference between logical and physical

centralization.
• What is meant by the expression 'sharing life data'? Why is it

important?
• Why centralization of data storage? What is achieved?
• What is the reason that DBMS are technology dependent?

What is the performance issue in a database management
system?

Models, which are close to
implementation make the task of the
analyst difficult and contribute to the
'software crisis'.

Chapter 16 A DATA MODEL BASED ON RELATIONS

Data stored in a central repository must be accessible in a
uniform way for all programs. Data structures built for special
programs can be optimized for particular uses, but this cannot
work, if data is centralized and used by many programs. A
uniform method of access must satisfy the different requirements
of all programs alike. To achieve flexibility a mathematically
clean data model is necessary.

"A data model is a combination of at least three components:
(1) A collection of data structure types …
(2) A collection of operators or rules of inference…
(3) A collection of general integrity rules" (Codd 1982,
395/396)

The relation data model described here is based on the
concept of function, generalized to ‘relation’. It is a further
development of the classical Data Models, like the relational
(Codd 1970; Codd 1979; Codd 1982) or Entity-Relationship
(ER) data model(Chen 1976).

1. RELATIONS
Figure 224 shows two regions A and B which overlap; this is a
relation between them. The geographic relations in Figure 225
are numerous: the lake of Zürich overlaps with the Kanton
Zürich, Kanton Schwyz and Kanton St. Gallen; we see that
Kanton Zürich and Kanton St. Gallen are neighbors, another
relation, etc.

overlap (lake Zürich, Kt. Zürich)
overlap (lake Zürich, Kt. Schwyz)
overlap (lake Zürich, Kt. St. Gallen)

neighbor (Kt. Zürich, Kt. St.Gallen)
neighbor (Kt. Zürich, Kt. Schwyz
neighbor (Kt. Schwyz, Kt. St.Galle

We will write relations as predicates, that is, functions with two
arguments yielding a Boolean result (many texts use a R b for
the predicate R (a,b)). Relations can have several arguments, but
relations with more than two arguments can be split into binary
relations. For example the relation

parents (Andrew, Irja, Stella)
is split in two relations

father (Andrew, Stella)
mother (Irja, Stella).

Figure 224: A overlap B

Figure 225: Kanton Zürich overlaps Lake
Zürich

Frank: GIS Theory Draft V15 Feb.05 178

It is thus sufficient to develop the theory for binary relations
only. We will here always understand ‘binary relation’ when we
use the term relation. Relations have a converse: r: A -> B has
the converse r': B -> A. This is the major difference to
functions, which have not always an inverse. The relations which
are functions are called simple: if the relation rel: A -> B is a
function, then

rel (a,b) = True <=> rel (a) = b.

2. FACTS AND RELATIONS
The representation in a data model conceptualizes the world as
entities and facts that describe the entities and the relations
between the entities.
• Entities are the conceptual units, the "objects" in a broad

sense. We collect information about these entities. They are
represented in the database by identifiers (abbreviated as ID) ,
which are unique like entities are unique. There are no copies
of me!

• Facts assign some properties to an entity, for example a
measurement value as the result of an observation. My weight
is 80 kg. Facts are a (generalization) of a measurement;
prototypically they are the result of an observation of an
aspect of an entity, but they can also describe some derived
properties of the entity. A fact links a value to an entity in a
relation. Facts describe not only properties of entities, but also
relations between entities.

This is a most general approach to recording the knowledge we
have about the world. In this relation (not relational) data model
the database is a collection of relations, which consists of facts
(Figure 226). Identifiers (ID) represent the entities. The database
manages the ID and assures that they are unique in the context of
the database. This data model is a refinement of the ordinary
relational model(Codd 1970): it is restricted to binary relations
and system controlled IDs are used to identify the entities.

Die Welt ist, was der Fall ist.
(Wittgenstein 1960)

An entity is anything conceptualized
as having an independent, permanent
existence

Entities are represented by
identifiers.

Facts describe entities.

Relations are collections of facts of
the same type.

A database is a collection of
relations.

Data Model 179

Because we model facts describing entities, all relations have
the form ID -> value (remember: ID is a special case of value,
ID -> value includes relations with the signature ID -> ID). A
fact makes a statement about an entity and a relation it has to
some value or to another entity (which is a relation ID -> ID).
Many of the relations used to describe real world entities in a
GIS will be functions, but not all; relations give the generality to
cover all cases uniformly. For example, one might think, that
ZIP -> townName is a function (or perhaps townName -> ZIP),
but neither is the case in any country I know of, and we can only
give a relation ZIP -> townName) (Table 4 for an Austrian
example).

3. OBSERVATIONS AS RELATIONS
The data in a GIS represent measurements. These are
observations of some property of the real world. For example,
we observed this morning at 07:12 the exterior temperature at

the airport Vienna-Schwechat and the result was 15.4 °C.
The entity is the space-time point at which a set of

observations were made. This space-time point has the
properties:
• the type of observation: temperature
• the location: Airport Vienna-Schwechat (outside)
• the time: July 9, 2004, 07:12
• the value: 15.4 °C

These measurements are all facts that describe properties of
entity temperature this morning. These relations are all
functions, because only one value belongs to a single space-time
point for each of these observations. Assume that the space-time
point entity at which the observations were made, has the ID
23411 then we can construct four functions:

observation_Type (23411) = exterior temperature
location (23411) = Airport Vienna-Schwechat
time (23411) = July 9, 2004, 07:12
value (23411) = 15.4 °C

4. EXAMPLE RELATIONS
The example data introduced in Table 3 of chapter 15 is broken
into tables, each representing a single function. We have to
introduce entities and the corresponding entity identifiers. We
select P1, P2, P3, and P4 for the person's identifiers, H1, H3,

Figure 226: Relation Database

1010 Wien
1040 Wien
1050 Wien
2093 Geras
2093 Fugnitz
2093 Pfaffenreith

Table 4: Part of the relation between ZIP
and name of town in Austria

Frank: GIS Theory Draft V15 Feb.05 180

and H4 for identifiers for homes, S1, S3, S4 for the street
identifiers, and finally T1 and T2 for the town identifiers.

Person -> FirstName
P1 Peter
P2 Susi
P3 Max
P4 Andrew
P5

Person -> Home
P1 H1
P2 H1
P3 H3
P4 H4
Home -> Street
H1 S1
H3 S3
H4 S4

Street -> Street-Nr
S1 Hauptstrasse
S3 Grove Street
S4 Vorstadt

Home -> StreetNumber
H1 13
H3 28
H4 18

Street -> Town

H1 T1
H3 T2
H4 T1

Town -> Name

T1 Geras
T2 Orono

Town -> ZIP

T1 2093
T2 04469

Table 5: The Example Data as relations

5. RELATION ALGEBRA
Knowledge about the world is stated as the existence of relations
between entities and logical rules are used to combine such
relations. Predicate calculus can be used (chapter 4). The tables
above each represent such a relation: for example

personName (P1, Peter).

An algebraic treatment was suggested by Schröder in the late
19th century (Schröder 1890) and Tarski gave relational calculus
is present form (Tarski 1941). This is the mathematical
foundations for the relation data model presented here cast into a
categorical framework(Bird and de Moor 1997).

5.1 INTENSIONAL AND EXTENSIONAL DEFINITION OF A
RELATION

Like functions (chapter 11), relations can be defined
intensional with a general rule, a formula. For example: the
relation square is all value pairs (x, x2), but also equal, lessThan,
etc. are relations. More common and the situation for which
databases are requires is to store facts by enumeration in tables.
This is said to define relations by extension (extensional
definition, Table 5).

Relations in a database are usually
defined extensionally by tables.

all v15a.doc 181

5.2 THE CONVERSE OF A RELATION
If a relation R relates a to b then the converse relation C relates b
to a. The domain of the converse of a relation is the codomain of
the relation; the codomain of the converse relation is the domain
of the relation.

a R b < = > b C a C = conv R
conv . conv = id
dom R = codom C dom . conv = codom
codom C = dom R codom.conv = dom

Relations are a generalization of functions; they have a converse.
This makes relations different from functions, which have not
always an inverse; only functions that are injections have one
(see chapter 5xx). Relations and its converses are dual categories
to each other.

Rel :: a -> b -> Bool
ConvererseRel :: (a-> b-> Bool) -> (b -> a -> Bool)

For example, the relation inside between an island and the lake is
a function, because an island is in exactly one lake. The
converse, the relation contains between the lake and the islands
are not a function: the lake of Zürich contains two islands,
Ufenau and Lützelau, and functions must always have a single
element as the result (Figure 225).

Contains: Lake -> Island
Lake Zürich Ufenau
Lake Zürich Lützelau

converse: isContainedIn : Island ->
Lake
Ufenau Lake Zürich
Lützelau Lake Zürich

Person -> FirstName
P1 Peter
P2 Susi
P3 Max
P4 Andrew

The converse: FirstName ->
FirstName
Peter P1
Susi P2
Max P3
Andrew P4

 Table 6: Relations and their converse

5.3 ORDER BETWEEN RELATIONS
The definition of a relation as a table, which is a set of pairs,
gives an order relation by inclusion. A relation r is included in
another one p (r ⊆ p) if all the values of p are also values of r.
For example, in a table representing a relation one just deletes a
few rows and gets a smaller relation, which is included in the
first one (Table 7).

This order relation is only a partial order (see next section),
because not every relation can be compared with any other.
Order relations induced by ⊆ have a dual, namely the order

Figure 227: Two relations S ⊇ R (S
includes R)

Figure 228: Partial order; elements that
are comparable are connected, the larger
one above the other

Frank: GIS Theory Draft V15 Feb.05 182

induced by ⊇. To be precise this can be called the "order dual"
and must be differentiated from the categorical dual of a relation
and the converse (Mac Lane and Birkhoff 1991, 145). Inclusion
is distributive with respect to composition:

(s1⊇ s2) and (t1 ⊇ t2) => (s1.t1) ⊇ (s2.t2).

p: Person -> FirstName
P1 Peter
P2 Susi
P3 Max
P4 Andrew

r: Person -> FirstName
P1 Peter
P3 Max
P4 Andrew

Table 7: A relation p ⊇ r

For relations we have a minimal element, namely the empty
relation, and a maximal element, namely the relation that is true
for all entries. Consider the relation neighbor (Figure 225)
between the Cantons Zürich, Luzern, Schwyz, and St. Gallen.
The cardinality of this maximal relation is the product of the
cardinality of the domains; in this case the relation neighborAll ::
Kanton -> Kanton has cardinality 4 * 4 = 16. The relation
neighbor is much smaller and has only 10 entries: neighborAll ⊇
neighbor ⊇ empty.

all v15a.doc 183

neighborAll

• Zürich • Zürich

• Zürich • Schwyz

• Zürich • St Gallen

• Zürich • Luzern

• Schwyz • Schwyz

• Schwyz • Zürich

• Schwyz • St.Gallen

• Schwyz • Luzern

• Luzern • Zürich

• Luzern • Schwyz

• Luzern • St.Gallen

• Luzern • Luzern

• St. Gallen • Zürich

• St. Gallen • Schwyz

• St. Gallen • Luzern

• St. Gallen • St.Gallen

neighbor

6. PARTIAL ORDER AND LATTICE
Assume a set of objects L with a partial order ⊇. The maximal
element is the top (┬) and the minimal element is the bottom (┴),
if they exist. Partial orders and lattice are highly regular theories
that expose duality, which will be used here and later.

Poset (partially ordered set) ordered by ≤
 Reflexivity l ≤ l
 Antisymmetry l ≤ m & m ≤ l => l == m
 Transitivity l ≤ m & m ≤ n => l ≤ n
 Units (if exist) l ≤ ┬, ┴ ≤ l

• Zürich • Schwyz

• Zürich • St allen

• Zürich • Luzern

• Schwyz • Zürich

• Schwyz • St.Gallen

• Schwyz • Luzern

• Luzern • Zürich

• Luzern • Schwyz

• St.Gallen • Zürich

• St.Gallen • Schwyz

Frank: GIS Theory Draft V15 Feb.05 184

6.1 UPPER AND LOWER BOUND
The elements above an element x (e.g., in Figure 229 for D it is
D and ┬) and the element lower than x (e.g., in Figure 229 for D
it is G and ┴) are sets. Elements that are not connected by an
arrow are not directly comparable; they may be indirectly
comparable, using transitivity of the order relation. These sets
contain all the elements that are directly comparable with a given
element and are larger (smaller).

"In many posets (partially ordered sets) one can define two
operations somewhat resembling multiplication and addition"
(Mac Lane and Birkhoff 1991, 144). The upper bound of two
elements is the set of elements that are above both of them and
correspondingly for the lower bound (by duality):

upper bound (x,y) = {m | m ≤x, m ≤ y}
lower bound (x,y) = {m | m≥x, m ≥ y}.

The upper bound may have a unique least element (least
upper bound, lub) and the upper bound a unique greatest element
(greatest lower bound, glb) (Figure 229). The operation that
gives the greatest lower bound for two elements is called meet ∧
and the dual operation that gives the least upper bound for two
elements is called join ∨.

a ∨ b = least upper bound (a,b)
a ∧ b = greatest lower bound (a,b)

6.2 MEET AND JOIN
A partial order in which for every two elements a least upper
bound and a greatest lower bound exist, is a lattice (German:
Verband). A lattice <L, ∧, ∨> is an algebraic structure on a set L
of partially ordered elements (by <), where for each pair of
elements l1 and l2 in L exist unique elements meet (l1, l2) and
join (l1 l2) (Gill 1976, 144; Mac Lane and Birkhoff 1991).

Lattice <L, ∧, ∨>
 idempotent r ∧ r = r r∨ r = r
 commutative r ∧ s = s ∧ r r ∨ s = s∨ r
 associative r ∧ (s ∧ t) = (r ∧ s) ∧ t = r ∧ s ∧ t
 r ∧ (s ∧ t) = (r ∧ s) ∧ t = r ∧ s ∧ t
 absorption r ∧ (r ∨s) = r ∨ (r ∧ s) = r
 consistency r ∧ s >= r r ∨ s <= r
 isotone r <= s then r ∧ t <= s ∧ t r ∨ t<=s ∨ t

Lattices with additional rules are often used; a lattice is called
distributive, if the following distributive law holds.

distributive r ∨ (s ∧ t) = (r∨ s) ∧ (r ∨ t) (r ∧ s) ∨ t = (r ∨ t) ∧(s ∨ t)

Figure 229: Upper and lower bound for D
and E (with lub D E = d join E = A and glb
D E = D meet E = ┴)

join ∨
meet ∧
lattice = partial order with unique
lub and glb for every pair of elements

all v15a.doc 185

A lattice may contain elements 1 and 0, such that:
top, bottom l <= 1, l >= 0
identities l ∧ 0 = 0 l ∧ 1 = 1
 l ∨ 0 = l l ∨ 0 = l

The rules for meet and ∨ are dual; one could think of a lattice as
a combination of two semi-lattices,(L, ∨) and (L, meet), each
with one operation, which is idempotent, commutative and
associative, combined(Mac Lane and Birkhoff 1991475).

6.3 POWERSETS
For a given set of elements, one can consider all possible sets
that can be formed from these elements, starting with the empty
set, then all the sets with one element (singletons), then the sets
with two elements, etc. till one reaches the set with all the
elements. The set of all possible subsets is called the powerset
and expressed for a set of elements U as 2U.The empty set and
the set S are both elements of the power set. The power set is
closed with respect to the operations union and intersection (in
this context sometimes denoted as sum and product).

Example: S = {1,2,3}, 2S = {{}, {1}, {2}, {3}, {1,2}, {1,3},
{2,3}, {1,2,3}}

Powerset
 a ∪ b ∈ powerset s,
 a ∩ b ∈ powerset s.
 a ∪ b = a if and only if a ∩ b = b

The powerset with the subset relation is partially ordered and is a
lattice. In a powerset, the join is the union and the meet is the
intersection of sets.

Relations are elements of the powerset of the Cartesian
product of the domains. The maximal element, the ┬ of the
lattice, is the relation with all entries, the minimal element, the ┴
of the lattice is the empty relation.

7. RELATION CALCULUS
Relations can have properties(Bird and de Moor 1997, 89):

Reflexivity a R a
Irreflexivity not (a R a)
Symmetric a R b => b R a
Assymetric a R b => not (b R a)
Antisymmetric a R b and b R a => a == b
Transitive a R b and b R c => a R c.

Figure 230: The lattice of the powerset of
{a,b,c}, subsets are linked upward to the
superset.

Figure 231: Simple relation

Frank: GIS Theory Draft V15 Feb.05 186

A relation is called simple, if for any b there is at most one a—
the converse relation returns one or no element; it is a partial
function.

f.R < s = r < f'.S
r.f' < s = R < S. f

A relation is called entire, if for any b there is at least one a—
the converse relation returns one or more elements.
If a relation is simple and entire, then it is a total function and
has an inverse function.

f . g = f . g’ => g = g’.
The relation child is irreflexiv and asymmetric. From the
examples above, neighbor is symmetric, contains is transitive.

8. ALLEGORIES: CATEGORIES FOR RELATIONS
An allegory is a category with some additional properties. From
categories we get composition and identity. Allegories are
categories to treat indeterminacy—to an argument there may be
several results: Consider the example data in figure xx in chapter
xx: who lives in Geras? Possible answers Peter, Susi, or Andrew.

Allegories assume the additional operations:
• partial order
• complement
• intersection
• converse
• meet and join

8.1 COMPOSITION
Composition of relations is like function composition; it chains
two relations together. It is traditionally written as “;”, given that
it is equivalent to the function composition in category theory we
write “.” (Note: A;B = B.A)

Traditional: a R b ; b S c < == > a (R;S) c = a T c, where T = R;S
Allegorical: S (b,c) . R (a,b) <==> (S.R) (a,c) = T (a,c), where T = S.R

For example, the relations p: Person->Home and h: Home ->
StreetName can be composed p.h = ph to give a relation ph:
Person -> StreetName. Composition of relations is only defined
when the types correspond, i.e., the type of the codomain of the
first relation is the type of the domain of the second one (this is
like function composition!).

Figure 232: Relation that is not simple

Figure 233: Entire relation

Figure 234: Relation that is not entire

all v15a.doc 187

8.2 IDENTITY
The identity relation, which is true for any a: I (a,a,) is the unit
for composition.

R = I . R and R = R . I
The identity relation can be imagined as a table, which has for
each ID the same ID in the second column (Figure 235).

8.3 MONIC AND EPIC RELATIONS
In the category of relations the concept of injective (see chapter
3) can be generalized. A function or relation f is said to be monic
if for any g, g': f . g = f . g' implies g = g'.. For the category of
sets, a function is monic if it is an injection.

A relation e is epic, if for any g, g': g. e = g' . e implies g =
g'. For the category of sets, a function is epic if it is a surjection.
A bijection is monic and epic

8.4 DUALITY IN CATEGORIES: OPPPOSITE CATEGORY
A category C has an opposite category Cop, in which all arrows
are reversed, that is, for every function A -> B in C, there is a
function fop B -> A. The opposite category for relations is dual to
the original one. Duality in categories maps monic to epic and
epic to monic: if f is monic in C, then fop is epic; if e is epic in C,
then eop in Cop is monic. The dual of an isomorphism is an
isomorphism.

8.5 TABULATION
The relations we consider here have tabulations, they are defined
extensionally by enumeration as a table; already Codd pointed
out, that tables are at a special case of relations(1982).

This can be expressed mathematically: given the relation R :
A -> B and a pair of functions f: C -> A and g: C -> B then R is
tabulation
if R = g . (conv f) and (conv g . g) ∩ (conv f. f) = id
Intuitively, we can see the functions f and g as functions from
the index in the table enumerating the relation r to the first and
second column (Table 8).

8.6 PROPERTIES OF RELATIONS EXPRESSED POINTLESS
The properties of relations can now be expressed pointless (see
subsection 7.1):
Reflexive id < R

Figure 235: The identity relation

Figure 236Monic Relation

Figure 237: Epic Relation

Injection: every element from the
source maps to a different element in
the target domain
Surjection: no two elements from the
source map to the same element in
the target domain.

Figure 238: Condition for tabulation

C -> Person
1 P1
2 P2
3 P3
4 P4 C -> FirstName
1 Peter
2 Susi
3 Max
4 Andrew

Frank: GIS Theory Draft V15 Feb.05 188

Transitive r . r < r
Symmetric r < conv r
Antisymmetric r meet conv r < id
Simple s . conv s < id
Entire id < conv r . r

9. ACCESS TO DATA IN A PROGRAM
Programs access data values at different times during their
execution. This translates to access functions in the program text;
at that place, a variable name pointing to the data is inserted in
the program text. For example to calculate the circumference of
a circle with radius measured as 1.5 cm, where the circle radius
is contained in the variable r and a constant π is defined, a
formulae like 2 π r is used and then assigned to a variable c in a
program statement like (Pascal notation(Wirth 1971; Jensen and
Wirth 1975)):

c := 2.0 * pi * r

The use of the variable name r on the right side of the
assignment statement is accessing a data value, whereas the
variable name c on the left side of the statement is an assignment
of the computed value to the variable c. It changes storage such
that the variable c can be used to access this new value later
(Figure 240). Working with variables in a program assumes—
transparent to the programmer—that the variable name serves as
two different functions: one to get (read) a value and one to put
(write) a value, depending on which side of the assignment it is
used.

If a program is database-oriented, it must get data from the
database and write updated values back to the database. Local
variables are replaced with functions retrieving the value from
the centralized storage and all assignments (in Pascal the “:=”
operation) result in storing the new value in the database. One
could replace the retrieval with a function get and the assignment
with a function put, which changes the storage. In a language
where variables cannot change—like ordinary mathematical
notation—the update must create a new value for the database
that has all the same content except for the element changed. The
above program would then change memory to a new value
memory':

memory'= put (memory, c, (2.0 * pi * get (memory, r))

In a program we have a variable name for each value (above r);
in a database the data is accessed based on identifiers. For
example, the birthday of a person is found by first finding the

Table 8: Two Functions to demonstrate
tabulation

Figure 239: Condition for tabulation

Figure 240: Effect of the execution of the
statement X on storage location r and c

all v15a.doc 189

identifier the database uses for this person given her name and
then find the birthday related to this identifier. Codd has coined
the expression 'relational complete' for access methods that
permit to find all data using the internal relations between the
data(Codd 1982).

10. DATA STORAGE AS A FUNCTION
Data storage can be seen as a function, which produces for an
identifier a value:

get (i) = d
or more detailed including the environment, in which the values
are stored:

get (memory, i) = d.
If we want to update the value associated with an identifier we
produce a new state of the storage (written above as memory')
with the function put. Memory is seen as the extensional
definition of the get function; put is producing a new function.
Extending the function with an additional value is adding a tuple
(x, f(x)) to the table stored in memory. The axioms are:

Memory
 get (put (memory, i, v), j) = if i == j then v else get (memory, j)
 get (new, j) = undetermined.

The hardware used for storing data—hard disk or RAM—have
interfaces to read and write data, which can be used to
implement such a get and put function. The concern here is the
structure of the access function, specifically the arguments
necessary.

Historical comment: the idea to consider database access as a
function was first introduced by Shipman (Shipman 1981) and
later adapted to the then new programming language Ada(ADA
1983). It did not find much attention, despite its attractive clean
structure; the concern for performance and skepticism against
functional approaches convinced the database community that it
would not lead to a usable implementation.

11. FINDING DATA IN THE DATABASE

11.1 SELECTION AND PROJECTION IN RELATIONS
Operations to select and project values from relations are the
building blocks to construct access functions to find data
elements stored in the database. A selection on a relation takes

Figure 241: Data storage and retrieval is
like a store room! The clerk translates the
locker number into a location and retrieves
the contents.

Frank: GIS Theory Draft V15 Feb.05 190

some condition and returns the relation that contains only the
tuples that fulfill the given condition.

select :: cond -> rel -> rel
select c r = { t | t ∈ r & c (t) = true}

To select all tuples that have as a first value a given value v
use a condition like (v==).fst, which composed of a function to
get the first value out of the tuple (respective the second one) and
then compare it with the given value.

The projection on a relation produces from a set of tuples a
set which contains the entire first (respective the second) part.

Examples: consider the relation pfn: Person -> FirstName.
A selection to find the relation of persons with name Peter is

select ("Peter"==).snd) pfn result: {(P1, Peter)}
A projection to the second part in the tuples of the whole relation
is: {Peter, Susi, Max, Andrew}. Note, that the result of selection
and projections are sets; selection produces a set of tuples, which
is a relation, projection a set of values.

11.2 ACCESS FUNCTIONS FOR DATABASE
To find data in a database we need functions, which select some
elements from a relation, for example, all persons with name ==
Susi (gives P2) or all persons living in Geras (gives {P1, P2,
P4}).

The database maintains that IDs are unique and many
relations are functions from ID to a value, we have for relations
which are simple (ie., are functions):

toValue :: ID -> relationType -> db -> value.
This function returns the value of the tuple with the given ID; it
is a selection applied to the relation as a table and projects from
the result the ID. For the general case, when the relation is not a
function, the selection returns a set with possibly more than one
tuple and the projections give a set of values:

toValue' :: ID -> relationType -> db -> [value].
This is a selection on the first part and then a projection on the
second part of the tuple.

The converse relation is not a function and could be
transformed into a function where the result is a set of IDs (this
is the power transpose(Bird and de Moor 1997, 103):

fromValue :: value -> relationType -> db -> [ID].
This is a selection on the second part and a projection on the first
part; it is the operation toValue' applied to the converse relation
(i.e. fromValue = toValue'. converse)

all v15a.doc 191

Complex queries are composed from elementary queries, but
the toValue and fromValue functions do not compose, fromValue
produces a set of ID whereas toValue or toValue' needs a single
ID as input. Similar problems poses the composition of toValue'
and fromValue. Composition is only possible if the result type of
all functions and the input types are the same. We achieve this
by making both functions take sets of values as inputs:

to :: db -> [ID] -> [val]
from :: db -> [val] -> [ID].

As the IDs stand for the facts, we can say, we may want to find
the ID from some value, or to find the value to a given ID. This
corresponds for to follow the direction of the arrow in the
diagram (Figure 242) and for from to go in the direction opposed
to the arrow.

11.3 AUXILIARY FUNCTIONS
These access functions have sets of values as inputs and outputs.
Two functions are used to convert sets to single value and back:
• Singleton—converts a single input value into a set
• Unique—converts a set of one element in Just this element

and Nothing otherwise. It is the partial function
converse . singleton, converted to a total function with the
functor Maybe. It returns the value Just v for queries where
the result is – as expected – a single value, and Nothing if
there is no or multiple values in the result.

12. STORING DATA IN A RELATION DATABASE
In a database with a relation data model, updates in a database
consist of inserting or deleting a fact to a relation; a change is a
delete followed by an insert, no particular operation is necessary.

These two operations have the signatures:
insert:: relation -> ID -> value -> db -> db
delete: relation -> ID -> value -> db -> db

DB
 toValue' (i, r, new) = []
 toValue' (i, r (insert (r, j, v, d)) =
 if i==j then v ++ vs else v'
 where v' = toValue' (i, r, d)
 toValue' (i, r, (delete (i, r, v, d)) =
 if i==j then v' \ [v] else v'
 where v' = toValue' (i, r, d) (\= set difference)

Frank: GIS Theory Draft V15 Feb.05 192

13. EXAMPLE QUERIES
The data given before is described in a diagram, similar to an
Entity-Relationship diagram (Figure 242). Arrows indicate
relations of a 1: n type, of which there are two types: one 1:1
leading from an entity to a value, where the tail of the arrow is
anchored at the entity, and one 1:n between entities, where the
tail of the arrow is anchored on the side with 1 element.
Relations with n:m would be shown with a simple line.
The person has the attributes name, year of birth, the buildings
have a number, street name and number, and the towns have the
attributes ZIP and name.

13.1 FIND NAME OF PERSON, GIVEN ID
To find the name of a person to a given ID, means converting the
single ID to a list of IDs, then move from this list to the list of
Person names (which must be one, or none) and convert it to a
maybe value

findPersonName id db = unique . to db personName .
singleton $ id
For an input of P3 the result is (Just Max).

13.2 FIND NAME OF TOWN, GIVEN ZIP
To find the name to a given ZIP code is more involved: we have
first to find the town from the given ZIP and then take the result
(which is a list of IDs) and get the names to this list. Last check
that the result contains only a unique value.

findTownNameFromZip zip db = unique. to db townName
 . from db townZip . singleton $ zip
To an input of 2093 the result is (Just Geras).

13.3 FIND ALL PERSONS LIVING IN A TOWN, GIVEN BY NAME
Four steps are necessary to find the names of all persons that live
in a town, given by its name:

Figure 242: The schema for the example
data

Figure 243: Person to Name

Figure 244: From ZIP to name of town

all v15a.doc 193

findAllPersonNamesIn name db =
 to db personName
 . from db personBuilding
 . from db buildingTown
 . from db townName . singleton $ name

We first find the town ID from the given name and then find all
buildings in this town (which is also a list of IDs) and then find
the ID of the persons living in the buildings, and last, we find the
names of the persons involved.

For an input of Geras, we find [Peter, Susi, Andrew].

14. OTHER DATA MODELS

14.1 RELATIONAL DATAMODEL
The relational data model uses tables as the major structuring
element. A relational table collects tuples of arbitrary arity. Each
table has a key and the relational table can be seen as a function
from key to tuple: key -> (A × B × .. × M). The relational data
model is based on relational algebra, for which a substantial
theoretical literature exists(Codd 1991).

Operations on relational tables are:
• Select all tuples with a given condition
• Project: retain only some columns of the table
• Join: compose two relational tables using equal values

(comparable to the composition of binary relations)
The inputs and result of these operations are tables. This makes
relational algebra closed. Closedness was a substantial
improvement over previous methods to structure
data(CODASYL 1971; CODASYL 1971), which were not
explained algebraically and were not closed. Closedness has
certainly contributed to the success of the relational data model;
we have seen that closedness is also obtained for the relation
algebra with from and to.
FirstName FamilyName StreetName BuildingNumber Town
Peter Meier Hauptstrasse 13 Geras
Susi Meier Hauptstrasse 13 Geras
Max Egenhofer Grove St 28 Orono
Andrew Frank Vorstadt 18 Geras

Figure 245: Names of person living in a town given by name

Frank: GIS Theory Draft V15 Feb.05 194

14.2 NORMALIZATION RULES
Codd in the original proposal for the relational database model
suggested that relations (tables) should be normalized(Codd
1970), to avoid inconsistencies introduced by updates, so-called
anomalies in updating(Vetter 1977). Normalization forces a
break-up of relational multi-column table if there exist functional
dependencies between columns other than the key columns.

Every relation in the relational model represents a Functional
Dependency. A functional dependency states that there is a
function from the key to the tuple: for each value of the key,
there is only one tuple. The key can be a single column or a
combination of columns. Functional dependencies describe the
intended semantics of the model and are crucial for
normalization in relational database theory(Zaniolo, Lockemann
et al. 2000). Normalization assures that the functional
dependency from key to tuple is the only functional or multi-
valued dependency in the relational table.

14.3 ASSESSMENT OF RELATIONAL DATABASE
The currently available relational databases are the best solution
available for databases. It took more than 10 years between the
original publication of Codd’s ideas (Codd 1970) and the first
viable relational database management systems. Only late in the
1980s the relational database achieved acceptable performance
for use in commercial applications.

The available relational database management systems are
highly standardized. Applications written for one DBMS can be
transferred with not too much trouble to products of other
manufacturers. The clarity of the theory with formally defined
semantics has contributed enormously to the popularity of
relational database. The query language SQL with Mult-Media
Extensions—including spatial and temporal extension—is
currently are standardized (ISO/IEC 13249-3:2003).

15. ADVANTAGES OF THE RELATION DATA MODEL

15.1 BASED ON ENTITIES WITH ID
The ontological difference between objects and values is
fundamental and must be included in the data model. The object
“Antares” (the horse I often ride) exists only once and has

Table 9: A relational table for person data

SQL is intergalactic data speak
(Stonebreaker)

Occam—make things as simple as
possible, but not simpler.

all v15a.doc 195

permanence in time. We can have many references to it. Values
are ideal concepts and many copies exist.

Codd suggested 'surrogates'(Codd 1979), I use here the term
identifier and abbreviate to ID. These IDs are managed by the
database and are only used to connect values to entities. The use
of database managed identifiers is necessary to manage time
varying data: the IDs are the only way to identify an entity
through time; other identifiers can change! For example, in many
cultures women change their name when marrying.

15.2 CONNECTION BETWEEN ENTITIES
The operations of a relational database allow the connection
between any values that has comparable type. Relations are not
maintained by the database and the connection between tuples is
only based on equality of values in both tuples. This connection
is easily lost: The building contains a street address, and the
street name relates the building to the street. The connection is
broken, if the name of the street is changed and one has not
updated all the building records. Similarly, buildings are not
found if the name of the street is not spelled correctly. For
example, real addresses may contain a “B. Pittermann Platz”, a
“Bruno Pittermannplatz”, a “Dr. Bruno Pittermann-Platz”, etc.
etc. all referring to the same plaza in Vienna.

The relational database schema does not contain the
information that these two tables are linked—it only contains the
information that the field streetName in one and strName in the
other are of the same type and therewith a join is possible.

The relation based data model connects only through IDs,
not values of properties. If a link must be constructed from
values, a new relation with a new ID must be introduced (Figure
246, Figure 247)

16. ALTERNATIVES
It is difficult to find agreement on viable solutions to overcome
the disadvantages of relational database. Some proposals
addressed the syntactic restrictions of First Normal Form: NF2,
Not First Normal Form database (Schek 1982; Schek and Scholl
1983; Schek 1985) allow repeating groups and generally
groupings within a value in a table.

Currently, databases are offered that are called 'object
relational'. They are similar to the relation model using

Objects exist only once,
representations(values) can be
copied.

Relational tuples contain values only

Figure 246: Two relations with the same
codomain

Figure 247: The two relations linked

Frank: GIS Theory Draft V15 Feb.05 196

identifiers to represent objects, but allow multi-valued
relations(Stonebreaker 1993).

17. SUMMARY
Relations are an elegant calculus to deal with collection of values
not objects; this creates conceptual difficulties for temporal
databases, where IDs (surrogates(Codd 1979)) are necessary to
maintain the continuation of an object in time(Tansel, Clifford et
al. 1993). The commercially used Relational Databases are based
on set theory and values. The extensions and improvements
added since the initial design have made them powerful, but
added also to conceptual complexity.

The major advantage of the relation data model is the full
generality. Commercial data models, primarily the relational data
model, but also the entity-relationship model and the older
network data model imply rules, which are reasonable in most
cases but not always. These rules and the special situations in
which they do not apply are difficult to identify and then to avoid
(see chapter 18). The relation data model leads also to an
intuitive query language and a simple data manipulation
language.

Last, but not least: The relation data model is a special case
of the relational data model. It can be used with any relational
DBMS—it uses only binary relations. Composition becomes
join, projection is one of the operations domain or codomain.

REVIEW QUESTIONS
• What is an entity? What is a tuple?
• What does the relational data model consist of? What the

relation model?
• What is the data model for relations?
• What is a fact?
• Explain the difference between categories and allegories?
R, S, T are relations:
• What is meant with R;S—give an example.
• What is a lattice? In what sense do relations form a lattice?
• Explain why we can say that relations are ordered? Give an

example.
• When is a relation symmetric, when transitive?

all v15a.doc 197

• What does it mean to state, that a relational database is value
based? Give an example where this becomes visible.

• What is the meaning of a statement like ‘connections between
tuples are value based’? Give example.

• Given two relations from Clients to ZIP and Stores to ZIP.
Transform them to proper relation form and link Clients to
Stores.

Chapter 17 TRANSACTIONS: THE INTERACTIVE
PROGRAMMING PARADIGM -

Storing the data in a central repository makes them available for
many programs; the data remains after the end of the program
that collected them and is available and valid in the future. An
example application for the use of a database with GIS is the
land registry, where the long-term permanence of entries is of
vital interest to all land owners!

Making data permanent is the essential architectural step
towards interactive computing as we know it today(Bachman
1973). In the age of batch processing, data was printed and the
lists were distributed to who ever needed the information. This is
not acceptable today: we want to use the computer to search for
the data we need now and present the latest information at our
screen. The database concept made interactive computing for
many applications possible.

1. INTRODUCTION
Programming under the Input-Processing-Output paradigm starts
with a sequence of input records that are transformed or merged
and results in an output sequence of records (fig. 270.01xx
earlier). This processing was batch oriented, that is, all inputs are
collected and treated at once, for example once per day or month
and the result are distributed to the users in form of a listing.

Figure 248: Database in a network with many users

 199

Modern computing is interactive, where the user starts
arbitrary operations—some of which result in updates other are
simply requests for information—and expects immediate
responses on her terminal or connected personal computer. This
paradigm of interactive computing is only possible with a central
repository of data that is available for all users, and that can
perform updates and queries for many users concurrently. This
central repository of data is connected through a network to the
workstations of the users (Figure 248).

2. PROGRAMMING WITH DATABASE
Programming with the Input-Processing-Output (fig 270-01 in
chapter 15) paradigm is dominated by the structure and sequence
of elements in the input files. It is a transformation of the
sequence of records in the input, one by one, or it is a merge of
two sequences of records (Figure 249). The output file is
produced in nearly the same order than the input. Occasionally
input files are sorted to achieve a faster processing. If something
goes wrong, the process is stopped, the error corrected and the
process started afresh. This translates to programs that read input
files sequentially, record by record, and write output files in a
similar manner.

Users expect today immediate answers from their computers.
Changes in the world are observed and recorded in the database
as they occur. For example, we can access maps showing the
actual traffic conditions on the highways in some metro areas of
the USA (Figure 250).

This interactive paradigm means that a client process
interacts with the database process. Changes are processed one at
a time. The client processes access data randomly in a pattern,
which is not predictable. The result of an interaction is an
updated state of the database. Many users interact with the
database at the same time.

3. CONCURRENCY
Database must be prepared to deal with concurrent users.
Sequential processing would restrict the access to the database to
a single user at a time (Figure 251). It is not acceptable that other
users must wait till the first user has finished and thus
concurrency (Figure 252) is required for a GIS data server.

Figure 249: IPO processing: Merging two
sequential files

Figure 250: the traffic situation in the Bay
Area

Figure 251: Sequential Processes

Figure 252:Concurrent Processes

Frank: GIS Theory Draft V15 Feb.05 200

A single computer cannot really execute several programs at
the same time, but the results of several processes executed in a
single time-sharing system appear as if they were progressing in
parallel. Real parallelism of operations is only possible if several
processors cooperate as shown in Figure 248. Single processors
simulate parallel processing using time-sharing: they execute
some operations for a first process, then stop this process and
advance another process, then go to another one, etc. till
returning to the first one and advancing this one.

4. THE TRANSACTION CONCEPT
The consistency of a database is threatened during updates—just
accessing values for reading does not change the database and
will not change a consistent database into an inconsistent one.
Concurrent update processes have the potential for destroying
the integrity of a database. The transaction concept is a logical
framework in which we can discuss methods to assure
consistency during an update.

Designing a database transaction system requires
imagination of what are all the possible ways a system or the
people using it can fail such that the integrity of the database is
threatened. Then we must design methods that guard against
these mishaps. This will never achieve a hundred percent
security, but an acceptable level of security with acceptable cost.
More security has a higher cost and there is somewhere a
balance between what is achieved and what it costs.

4.1 DEFINITION
The transaction concept postulates:
• All changes to a database occur in a transaction,
• A transaction transforms the database from a consistent state

to another consistent state.
• The database is initially in a consistent state.
With these rules a database remains always in a consistent state.

The initial database is assumed consistent.
A transaction changes the database from a consistent state to
another consistent state.
All changes are in transactions.
The database is always consistent.

The transaction concept is crucial to maintain the database
usable over long periods of time. The transaction concept is the
framework in which all possible problems that result form the

Definition of concurrent: More than
one process is started before all other
are ended.

Murphy’s law: anything that can go
wrong will go wrong.

 201

interaction of multiple updates in an interactive, multi-user
environment are resolved.

4.2 TRANSACTION PHASES
A database transaction is started by a process that intends to
update the database. A series of retrievals and updates to the
database are performed. Finally the process request termination
of the transaction—either asking to commit the changes to the
permanent record or to abort the transaction and to delete all the
changes. The database then confirms the end of the transaction,
either asserting that the changes were committed, or indicating
that a failure occurred and the changes could not be retained and
the transaction was aborted by the database management system.
If the transaction is aborted either by the user or the DBMS, no
change to the database occurs.

Figure 253: Phases of a Transaction

5. ACID: THE FOUR ASPECTS OF TRANSACTION
PROCESSING

A transaction has four properties:
A Atomicity: transactions are atomic operations.
C Consistency; any transaction must leave the DB in a

consistent state.
I Isolation: Concurrently applied changes must not interact.
D Durability: If a transaction has completed, then the result of

the transaction must never be lost!
This gives the mnemonic ACID.

Frank: GIS Theory Draft V15 Feb.05 202

5.1 ATOMICITY
Atomicity means the logical isolation and indivisibility of
concurrent operations. Each transaction transforms the database
from a consistent state to a next consistent state. The transaction
is completely done or nothing of the transaction is executed.

db2 = doTransaction args db1
doTransaction args db = if consistent db’ then db’
else db
 where db’ = changeDB args db

How to achieve atomicity? By creating a copy of all the
changed data and then replacing the pointer to the original data
with a pointer to the new data (Figure 254). It is assumed that
changing a single pointer value in the database is atomic—it
cannot be done half (even if electric power fails in the moment
of changing the pointer).

5.2 CONSISTENCY CONSTRAINTS
At the end of the transaction, the database is checking the new
state of the database against the consistency rules stated. These
rules are expressed as logical constraints on the data stored and
will be discussed in the next chapter. Most relational databases
allow only a limited set of checks.

5.3 ISOLATION
If the database is changed by multiple users at about the same
time, we must avoid all interactions between the changes of
these users: the resulting database must be in the state it was,
after the different transactions had been processed sequentially
(i.e., one after the other). Any sequence is acceptable, but it must
be a sequence, not an interference (Bachman 1973, 277) between
two concurrent changes. It may well be that the result of the
sequence of f before g is different from f after g (f.g ≠ g.f), but
both are acceptable solutions for a transaction management.

5.3.1 Danger of concurrent processes
An example from banking demonstrates the need for transactions
in concurrent update situations:

Three accounts, A has $100; B has $100, C has $100
Two concurrent processes: 1. Put $20 from A to B
 2. put $50 from B to C.
Consistency constraints: the sum in all three accounts
is always $300.

Concurrent processes have the potential to interfere, when
one process reads data that the other process has read before and
will change later. With the execution shown in Figure 255 the

Definition: A transaction is either
completely done or not at all.

Figure 254: Atomicity achieved by
changing only the main pointer

Concept: guard against unintended
interference and contamination
between programs; correct execution
is equivalent to serial execution of all
committed transaction.

 203

clients lose money without justification: the three accounts
together contain only $280. A correct solution is one, which is
obtained by sequential processing of the two requests; in this
case, the result is the same, independent of the order of these two
processes. This problem is not restricted to banking, but can
occur in GIS as well (Figure 260)!

5.3.2 Concurrency of read and update processes
Transaction management is also necessary to protect programs
that only read data if other concurrent users change the data. The
rule is that no intermediate state of a transaction can be observed
by another user; during a read transaction, the data seen must be
from a single state of the database and not changed during the
read transaction by another update transaction, and no data
written by an aborted transaction must become visible to other
processes. Bachman called this contamination(Bachman 1973).

Example of contamination: Process A records that Mr. Smith
has moved from X to Y, both communes in county Clare. At the
same time process B sums the population of all communes in
county Clare. If the process B is not protected by transaction
processing to see only a single consistent image of the database,
the count can be wrong by one person, either counting Mr. Smith
twice or never.

5.3.3 Concurrency control
Do we conclude from the example that all transactions must be
executed sequentially? This is a safe solution, but not optimal
and not acceptable in today’s world. Could one imagine that the
large databases that hold all the flight reservations for an airline
could only be updated one request at a time? Consider again an

Figure 255: Two concurrent update
processes

Figure 256: Interaction of two concurrent processes

Frank: GIS Theory Draft V15 Feb.05 204

example from banking: if we have to transfer money from M to
N and from P to Q, the two processes can read and write in any
order without causing problems. Technically we say that the read
and write sets of the two processes are disjoint.

The examples above demonstrate that problems occur when
two concurrent transactions access the same data elements.
Technically, we consider the set of data elements read and
written by the transactions (the so-called read set and the write
set of a transaction). Two transactions can progress concurrently
if their read and write set does not intersect (Gray, Reuter 1993).

Two different strategies to avoid interference between
concurrent transactions are known:

Locking: a transaction locks any piece of data it reads or
intends to write; another transaction cannot access a locked piece
of data and must wait till the first transaction has concluded and
released all locks. With a two-phase locking protocol, all locks
must be obtained before any unlocking happens; this is achieved
by releasing all locks at the end of the transaction. It guarantees
that concurrent processes remain isolated, but cannot prevent
dead-lock(Ullman 1982; Haerder and Reuter 1983; Gray and
Reuter 1993).

Optimistic strategy: all transactions are permitted to proceed
and at the end of a transaction we check if any of the items the
process wants to write has been written by a concurrent
transaction since it was read by the first one; if this is detected,
the transaction is aborted and starts with reading the now current
values, otherwise it can commit.

The two strategies allow the same amount of concurrency
and have in the general case the same cost. With the locking
strategy there is a potential for a deadlock: process A waits for a
lock that process B currently holds; but B waits to obtain a lock,
which A currently has—a deadlock has occurred and none of the
two processes can advance further. A database may check
occasionally for such deadlocks and abort one of the two
processes to break the deadlock.

Figure 257: Deadlock: A waits for B and
B waits for A

In the presence of updating
processes, transaction management
is necessary even for processes that
only read data.

 205

5.4 DURABILITY
Data can be lost when computers or the storage medium fail
("disk crash") and stored values are lost. With Input-Processing-
Output processing, data security was achieved by making copies
of the inputs, which permits to repeat the processing later again.
This is not possible with databases and interactive computing in
general. With the interactive computing paradigm, the input data
is not available for reprocessing a second time. It is necessary to
find a way to assure that data that were entered and the
transaction committed to the database is not lost by accident.

The durability rule states that the changes committed to a
database must not be lost ever. A naïve answer would be to copy
the database before each transaction to another medium, such
that it cannot be destroyed all at once. This is not possible,
because copying a complete database takes more time than is
available between transactions.

It is sufficient, to have a copy of the initial database and then
preserve the changes applied to it over time. Assume that a copy
of the database was produced Jan. 1 (Figure 258). During every
transaction, all the changed values are written to a file before
they are applied to the database. In this file, the state of a
database part is saved in the state it was after the update (so-
called ‘after images’). This file is stored off-line (e.g., on a
magnetic tape)(CODASYL 1971; Gray and Reuter 1993).

Recovery is possible: assume the third state of the database
is lost, but the copy of the database in state 1 is available from
the archive (Figure 259). The changes of transaction 1 and 2 that
are stored in another file are then played against the database and
step by step, the state of the database after transaction 1 and 2
reconstructed.

The same method can be used to reconstruct a previous
database state from the current one. This is called to roll-back the
database to the beginning of a transaction: before a part of the
database is changed, the state it had before the change is saved in
a file (so-called 'before images').

Arbitrary high level of security can be achieved, but never
hundred percent. The more security, the more cost. Compare the
risk of a threat with the cost to guard against it:
• Disk crash—recover the database from backup magnetic

tapes;

Figure 258: Two Transaction against a
database

Figure 259: Database recovery

Frank: GIS Theory Draft V15 Feb.05 206

• Fire in the computer room—recover the database from
magnetic tapes stored in a secure storage vault outside of the
computer room;

• Burning down of building—recover the database from tapes
stored in secure storage system at a different location.

One can see higher security against loss of data requires more
and more effort; the more devastating an accident is, the less
likely the threat usually is, but the more costly the method to
secure against it. Truly dangerous and difficult to prevent is
human error—either due to incompetence of personnel or even
evil intentions of e.g., disgruntled employees.

6. LONG TRANSACTIONS IN GIS
Discussions and implementations of transaction management
assume that transactions are short, that is, complete within
seconds or minutes. Prototypical examples are reservation
systems. Conflicts are resolved or at least detected and one user
is made to wait till the other has finished his changes. This is
acceptable in many administrative and commercial processing
environments: when a client requests a reservation for a seat in
an opera performance and the same seat is sold in a concurrent
transaction while the client is making up his mind, then the
transaction can be stopped (aborted) and a new transaction for
another seat can be initiated and the client informed that the seat
available a few seconds ago has been sold in the meantime to
somebody else.

This does not work for GIS: Assume a collection of maps
about public utilities in a city: There is a map for each street,
including the water and the electricity lines. Updates are not
randomly distributed (as one may assume in an administrative
context) in space. Actions in the real world are correlated:
constructing a new building will require changes to the
electricity, the water, the sewer, and the telephone lines—all in
the same street with possible conflicts and concurrency
problems. Consider the following sequence of actions: The
electricity group requests a copy of the map for the
Bräuhausgasse to perform some changes. The water group
requests a copy of the same street to update the water lines. The
changed map from the electricity group is copied back into the
archive and a little later the changed map from the water group is

 207

also copied back—effectively wiping out the changes entered by
the electricity group (Figure 260).

Figure 260: Updates are lost because no concurrency control

In GIS—but also in other applications—transactions may be
complex and require substantial preparation. It is not acceptable
to demand that such work is started again all over. Transaction of
this kind last too long for other users to wait for their completion
before they can access the same data.

Consider a complex transaction of parcels: a road is widened
and all parcels on this side of the road must contribute under
eminent domain laws a strip of land to the widening of the road.
This can be seen as one big transaction including all the parcels
along the road and the road parcel as well (Figure 261): In a case
in Schlieren (Switzerland), the road was several kilometers long
and included literally hundreds of parcels; the transaction was
pending for several years due to court cases. Such a transaction
requires substantial preparation for the geometric situation and
may be delayed for years. Neither ‘restarting’ the procedure nor
locking all the parcels involved is acceptable. More intelligent
schemes of transaction management must be found at the level of
the application domain. In software engineering, similar
problems are solved with concepts of versions and branching of
development streams, which are merged later.

Figure 261: A Transaction locking many
entities

Frank: GIS Theory Draft V15 Feb.05 208

7. GRANULARITY OF TRANSACTIONS AND
PERFORMANCE

The transaction management has serious impact on the
performance of a database. When assessing a DBMS it is
customary to test functionality and observe the speed with which
some operations are executed. It is advisable to check that
transaction management is switched on; vendors will ‘forget’
this, because a DBMS without transaction management runs
much faster (twice the performance or better).

Transaction management—especially the concurrency
control—can be established at different levels of granularity.
The simplest solution is to use the full database as the unit of
interaction: all transactions interact and must be executed
serially; this gives least concurrency and the simplest
implementation. The most difficult solution is to select a field in
a record or a single entry in a relation as the unit of transaction
management: only few transactions will be in conflict, because it
is unlikely that two programs need to change the same data field
in the same record at the same time; many concurrent actions are
possible—but the cost for this fine granularity transaction
management in terms of performance may be higher than what is
achieved. Effective solutions are selecting physical storage units
(disk pages or multiple disk pages) that can be read and written
to disk as the units of granularity.

8. SUMMARY
Knowledge is a resource in today's enterprises. Data is
centralized to make it available to many parts of the
organization. If many users interact at the same time with the
data, safeguards must be in place to avoid negative interferences
between concurrent updates. The transaction concept achieves
this. It consists of four parts:
A Atomicity: transactions are done completely or not at all.
C Consistency; any transaction must leave the DB in a

consistent state.
I Isolation: Concurrently applied changes must not interact.
D Durability: If a transaction has completed, then the result

must never be lost!
Atomicity of transactions excludes intermediate states of a

transaction to become ever visible to any user except the one
executing the transaction. The database visible to other processes
is in a state of consistency achieved at the end of the transaction.

 209

Intermediate states, which are inconsistent, cannot be completely
avoided, but these must never be visible to another transaction.

REVIEW QUESTIONS
• What are the four parts of the transaction concept?
• What is the definition of concurrency? Why is it so detailed?
• How to achieve long term usability of a DB using the

transaction concept?
• Explain an example, in which data is lost by incorrect

concurrent processing.
• What is interference between transactions? What is

contamination?
• What is a correct execution of several concurrent

transactions?
• What is the difference between an optimistic and a locking

strategy for concurrency?
• What is excluded by the atomicity principle?
• How is durability achieved?
• Why is a transaction mechanism necessary for readers (in the

presence of concurrent users who change the data)?
• When does interactive data processing require a database?
• Explain for each of the four components of transaction

concept what they prohibit. What is not allowed to happen?

Chapter 18 CONSISTENCY

Databases are created to maintain data useful. The database can
check consistency after each update and abort updates that would
lead to inconsistent states. In this chapter we discuss the methods
to express the consistency constraints. The simplest and most
effective method to achieve consistent data is to reduce
redundancy.

Redundancy breeds inconsistency!

Consistency can only be discussed in a formal framework. It
needs a data model and the rules that are implied by it. Using the
relation data model introduced (chapter 16), consistency rules
are set in the general framework of logic (chapter 4).
Consistency means that the data together with the formalizable
rules about the world are not containing contradictions. The
expressive power of the language used for the description of the
consistency rules determines how much or how little of world
semantics can be carried over into database: What rules can be
stated and checked at the end of the transaction?

1. INTRODUCTION
A data collection is only useful if the deduced information is
correct, that is, the isomorphism between the real world and the
model world in the information system obtains. This cannot be
demanded and checked within the formal framework assumed
for the discussion of formal systems (see chapter 3).

Within the context of the information system, we can only
check that the data stored is consistent, that is, free of
contradiction (see 022xx). The integration of methods to assure
consistency in a database allows to detect errors during data
entry and to correct them immediately.

The importance of consistency in databases has been one of
the driving forces behind the development of the field. In the
early days numerous ad hoc attempts were made to identify
practical rules useful for the design of database schemas. It was
driven originally by a hope that consistency of data could be
described by syntactic rules. It culminated in the collections of
rules about Normal Forms, from 2nd to 4th, 5th, and higher
Normal Forms (Ullman 1982; Date 1983)

Figure 262: The Banana Jr. Computer
checks for correctness of color of flower

 211

Parallel to the development of relational database theory by
Codd and others, investigations into a logical interpretation of a
database were pushed. The seminal paper by Gallaire, Minker,
and Nicolas (Gallaire 1981; Gallaire, Minker et al. 1984) and the
corresponding book (Gallaire 1981) opened a new way to
understand a database and the methods to express consistency
constraints using logic.

2. THE LOGICAL INTERPRETATION OF A DATABASE
Standard database theory gives the semantics of the operations in
terms of algorithms, which deduce values from a given database
by a search method. Codd has shown that relational theory is
database complete; all facts stored in the database can be
retrieved with the operations given. This is—from a
mathematical point of view—a model: the operations are
explained in terms of their effects on a model—possibly a very
simplified model of it, represented in computer storage (chapter
4xx).

A logic view considers the database as a set of facts and a
query as a proof: demonstrate that the query result follows from
the stored facts. Gallaire, Minker, and Nicolas (1984) have
pointed out that searching a database is like doing a logical
proof. The database can be seen as a set of axioms—which is an
extensional definition of relations—and the query as a proof. The
query can be a question ‘what x fulfills the properties p’ and the
result gives a value for x (see example of backward chaining in
chapter 4xx).

The logical framework is more general than a data model
with its corresponding algorithms for computing the result of a
query. The relation framework is equally powerful to the logical
framework. Bird and deMoor (1997) show that for unitary,
tabular allegories (as used above in chapter 16), everything that
can be proven in a set theoretic framework is also true for
relations.

The framework of logic and the concept of "query as a
proof" allow the classification of different collections of
knowledge. Relational databases have a simple structure, namely
collections of tuples that describe facts (which means Horn
clauses with m=1 and n=0, see chapter 4). In such systems,
proof reduces to search. A trivial algorithm to find an answer is
to start with the first element and to check this and any following

Frank: GIS Theory Draft V15 Feb.05 212

one till one reaches the end—the answer to the query is then
‘there is no such element’ — or till a tuple is found that fulfills
the condition. More performant algorithms are just faster
arriving at the same result.

The logical interpretation of the database is promising, as it
helps to discover:
• What are the logical rules assumed and built into the database

without being stated?
• The expressive power of the database: what kind of facts can

be expressed in the database and specifically what cannot be
expressed?

3. LOGICAL ASSUMPTIONS WHEN QUERYING A
DATABASE

With the adoption of a logical viewpoint, database theory can be
compared to logic. In particular, one can ask what the deduction
rules are and what axioms are implied in query processing.
Reiter has identified a number of assumptions, which are
automatically and tacitly made in relational data
processing(Reiter 1984). The implied rules in databases follow
from the ontological commitments appropriate for
administration, but they are not always applicable for
information systems about physical reality.

There are three assumptions invoked:
• the closed world assumption says, that we know all what is

there and what we do not know is false;
• The domain closure assumption says that all the individuals

are known; and
• The unique name assumption says that distinct names relate to

distinct individuals.

3.1 CLOSED WORLD ASSUMPTION
The assumption that all facts about the world are known allows
in database query processing concluding from the absence of
facts that something is not true. This rule is known as ‘negation
as failure’ (e.g., in the Prolog language(Clocksin and Mellish
1981; Colmerauer, Kanoui et al. 1983)): the negation of a fact is
expressed by its absence, and thus by failing when one searches
for it without success. Negated facts are not stored explicitly—
which is effective: Consider how many things are not true in the
world and how much storage space would be needed!

 213

This is effective in administration, where the database is the
ultimate arbiter on questions like ‘is Z a client of this bank’ or ‘is
A student at UCSB’. If Z or A are not in the respective database,
they are not a client or student there!

For a GIS database, this is not as simple: we have never
complete knowledge of the world, thus from an absence of
knowledge one must only conclude ‘we do not know f’, but not
‘f is not the case’. If a piece of land does not show a building, we
should not conclude that there is none. We only know that there
was none of the kind considered relevant when the data was
collected. Land on a map without trees is at best a statement that
no trees were on the land when it was surveyed, but one must not
conclude that this land is currently not tree covered—trees could
have grown since (Figure 263 and Figure 264).

The use of the closed world assumption in a GIS must be
selective and each relation should be labeled for completeness,
thus indicating if absence can be interpreted as negation.

3.2 UNIQUE NAME ASSUMPTION
The relational database query methods assume that all
individuals have unique names. One can thus conclude that one
name always means the same person and those two individuals
with different names are not the same.

Again, this is a dangerous assumption—even in
administrative processing. For example, I had once a student,
Kevin L. Johnson, who had the exact same first name, middle
initial, and last name as another student at the University of
Maine. The other Kevin L. Johnson student was dismissed,
because he had failed some courses and our student found
himself dismissed, because for the administration, the two were
only one. The billing however seemed to have worked
independently and both paid their tuition…

In a GIS, we may have the situation, that the same object is
entered with two different names (Milan and Milano for the
northern Italian city), or two times the same name appears, but
describes different things—Calais, Maine and Calais, France—
just the pronunciation is different!

3.3 DOMAIN CLOSURE ASSUMPTION
Domain closure states that all the individuals that exist in the
world—and could appear in the proof—are known in the

Closed Word Assumption:
What we do not know is false!

Figure 263: A map with a wide meadow
between a road and a forest

Figure 264: The same area in reality, the
forest has grown to the brook and a
building was constructed
Unique Name Assumption:
All entities have one and only one
name.

Frank: GIS Theory Draft V15 Feb.05 214

database and no other individuals exist. Unless we assume
domain closure, we could never answer questions like: find all
cities with more than 100’000 inhabitants in Antarctica. The
response is, of course ‘none’, but only if we assume that we have
a complete inventory of all cities in Antarctica. Or, even more
tricky: ask whether two individuals ever went to the same
university; if we cannot assume that we have a complete list of
all universities, there could exist one, of which we do not know
anything and the two individuals both went there.

4. INFORMATION SYSTEM: A DATABASE PLUS RULES
In an information system, the database is augmented with rules
(chapter 15). If the rules cannot be expressed in a form that can
be stored in the database, then the rules are included in the
application programs, but not in a format that makes it easy to
see what the rules are and where they are expressed. Rules in
programs are not used by the transaction management to check
consistency at the end of all transactions.

The database schema must contain as many of the
consistency rules as possible—initially, it was hoped that all the
consistency rules can be expressed in the form proposed in
database schema languages. This is not possible and will not be
possible, unless the language to express the constraints has full
computational power (i.e., a full programming language).

The difficulty is aggravated by interaction of rules between
transactions: assume there is a constraint stating that either A in
table X or B in table Y exists. In a routine to introduce A we
check for the absence of B in table Y—but how can we lock the
absence in table Y? It is possible, that a concurrent process is
inserting a B in Y while the transaction to insert A in X is
underway and the conflict is not detectable (unless the first
process locks all of table Y).

5. REDUNDANCY
Data is stored redundantly if it is stored repeatedly. Redundancy
is desirable to guard against data loss: we archive copies of the
database. The database however should not contain duplications,
because duplication permits contradictions: if a fact is stored
twice it is possible that only one of the two copies is updated and
then they have different values, which is a contradiction.

Closed Domain Assumption:
All individuals are known.

 215

Redundancy is a more subtle concept than just duplication of
storage: a logical system contains redundant clauses if we can
delete a clause and still derive all the same conclusions as we
could from the whole system (compare the discussion of Euclid's
five axioms, chapter 7). In logic, we say that the clauses are
independent; dependent clauses indicate some form of
redundancy. Of course, if clauses are not independent, changing
one without the other can create an inconsistency.

Consistency considers data and rules. Even data that does not
duplicate directly the same measurements can contain
redundancy and inconsistencies. Take a simple case of storing
the noon temperature of a day for several cities of the world in a
table; to accommodate different cultures, we store temperatures
in °C and °F:

City Temperature°C Temperature °F
New York 35 95
Berlin 29 84
Vienna 26 79
Rome 32 32

The table itself has no redundancy, but with the knowledge of a
conversion formula from Centigrade to Fahrenheit (see chapter
6) redundancy becomes obvious: one of the two temperature
columns is superfluous and can be deleted and reconstructed
when needed using the conversion function.

6. EXPRESSIVE POWER
In a logic view, one can investigate the expressive power of a
database and the rules it allows. The most general case of a proof
system accepts arbitrary collection of first order formulae and
deduces the result like a mathematical proof. No effective
method is known so far to find automatically a proof for the most
general logical system. The simplest case is a set of facts and
only simple queries that can be answered with a sequential
search. A wide spectrum of expressive power and performance is
available (see figure 300-02 in chapter 4).

Relational database allows only ground facts; it does not
allow rules or negated facts ("Peter does not live in Vienna").
This is a limitation in the expressive power of the storage of
facts. Another shortcoming of relational databases query
languages is that they are not computationally complete. This
means that there are things that can be computed, but cannot be
computed with relational algebra. In relational algebra recursion

Famous example:
The proof that the fifth (parallel)
axiom in Euclid's elements is
independent of the others.

Observe the contradiction in the
temperature for Rome (correct 90ºF!

Frank: GIS Theory Draft V15 Feb.05 216

is missing; this seems not of much use in administration—except
for the processing of bills of components, which have
components themselves. It is however necessary for GIS, where
operations that require closure are common:

Example: Find the connected wood area, given a set of plots
(some wooded) and their neighborhood connections (Figure
265). Starting from a given wooded plot, say A find all
connected wooded plots and then all the connected ones to those,
etc., till no more are found (this is called the fixed point: f a = a).
This is not the same result as to find all the wooded area in
Figure 265, which would be a zone (see chapter 14xx)!

7. CONSISTENCY VS. PLAUSIBILITY RULES
Databases add rules to check the plausibility of the data: the age
of a person cannot be more than 100 years, the number of stories
of a building must be less than 100, a birth year must be in the
range of 1900 till 1999, etc.

As the last example shows, for all these plausibility rules,
exceptions are possible. Plausibility rules are useful to check
data and ask for confirmation if values outside the plausible
range are entered, but they must not make it impossible to enter
such values, e.g., my grandmother was 101 when she died.

8. SUMMARY
A database is consistent, if the collection of data and the rules
are logically consistent. The framework of logic applied to
databases reduces database consistency to logical consistency—
and makes clear, that consistency is only meaningful for rules
together with the data. Most database management programs do
not provide a language expressive enough to capture all
consistency rules and these are hidden in application programs.

8.1 REDUNDANCY BREEDS INCONSISTENCY
Redundant storage means to store something twice; and then, the
two copies can differ. The redundancy can be in the data or
result from the combination of data and rules, which make it
possible to construct stored data or deduce data in more than one
way. Redundancy is to be avoided, not because it wastes storage,
but because it can lead to inconsistence.

Figure 265: Find all connected wood
parcels

 217

8.2 REDUNDANCY DEPENDS ON RULES
The observation whether some facts are redundantly stored or
not depends on the rules and the facts, not the facts only. If there
is a rule that says that the relation between ZIP code and name of
town is a function (i.e., a simple and entire relation—see chapter
16), then the relation table in the previous chapter contains
redundancy.

The difficulty is that the world is not simply cut and does not
follow the rules we make to simplify our conceptualization.
There are few rules that have no exceptions.

8.3 EXPRESSIVENESS OF DATA MODEL AND QUERY LANGUGE
Data models restrict what facts can be included in a database; the
relation (and the relational) data model restrict facts to positive
statements. Negative knowledge cannot be inserted in the
database.

Query languages like SQL are not computationally
complete; they lack recursion or a fix point operation, which
hinders computations that need some form of closure. If the
query language is also used to express consistency constraints,
the same limitation applies there.

REVIEW QUESTIONS
• Explain Functional Dependency? What is different in a

Multivalued Dependency? Give examples for both.
• Why is redundancy considered harmful?
• What is lossless decomposition?
• What are the logical assumptions built into the query strategy

of a relational database? What is the Closed World
Assumption? Why is a domain closure assumption necessary?

• What is meant by ‘negation by failure’?
• How to represent negative facts in a database? Give an

example for a negative fact?
• Why and how can a query be viewed as a proof in a logical

system?

The world is more complex than
examples in (database) text books.

Frank: GIS Theory Draft V15 Feb.05 218

PART SIX GEOMETRIC OBJECTS
Part three introduced coordinates to represent point locations.
Our conceptualization of the world uses complex geometric
objects: parcels are defined by corner points that are connected
by straight lines. In this part, a first step towards the
representations for geometric objects is made, namely the
representation of straight lines and similar infinite geometric
objects. The part consists of two chapters only: the first discusses
straight lines in 2d space and presents a solution for the
calculation of the intersection. The second chapter then
generalizes the approach n dimensions and m-dimensional
geometric objects.
A corresponding discussion of temporal objects is not needed:
there is only a single infinite time. Only bounded temporal
objects, namely intervals, are of interest. These will be
discussed in part 6 together wit the corresponding bounded
spatial objects.

The computation of intersection of two lines is an example
why geometric computations are complicated: besides the
simple case where the two lines intersect, there are numerous
special configurations that do not lead to a solution. The two

lines can be parallel or even collinear (Figure 266). The
approach used here—using homogeneous coordinates and
projective geometry (see chapter 10)—leads to an operation that
is total, i.e., produces a meaningful result for all inputs. The
same approach then gives also a dimension independent solution
for the general case—the intersection of planes with lines, planes
with planes, etc. This is one of the building blocks from which a
GIS is constructed. The application of the theory in this chapter
are methods to construct geometric objects, as included in CAD
and GIS programs(Kuhn 1989). For example, construct a parcel
with a boundary parallel to another one of 15 m width from a
given one, which requires the computation of numerous line
intersections (Figure 267).

Figure 266: (a) Simple case for line
intersection, (b) parallel lines l and k do
not intersect, and (c) collinear lines m and
n have infinitely many intersection points

Figure 267: Geometric construction with
conditions

Line intersection p of two lines given
by 4 points:
p = (a x b) x (c x d)

Chapter 19 DUALITY IN PROJECTIVE SPACE: INFINITE
GEOMETRIC LINES IN 2D

Points can be represented and stored in the database (see part 5),
but we have not yet seen how to represent lines and higher
dimensional infinite geometric objects. In this chapter a
representation for infinite straight lines is presented that are the
geometric objects most often used to delimit spatial objects.

Straight lines in the plane and their intersection are studied
since the Greeks investigated geometry(Heath 1981). The
analytical solution for intersection of two linear equations works
only for the 'normal' case of lines that have real intersection
points. Computations must separate the treatment of special
cases, e.g. parallel lines, because computations with parallel lines
lead in many formulae to divisions by zero

Homogenous coordinates were introduced to achieve a
general solution for linear transformations. They are founded in
projective geometry where all lines intersect (no special case for
parallel lines)! Using the same embedding of the plane into the
projective space we used to generalize transformations (see
chapter 10) a formula which works for all situations is found.
This chapter concentrates on straight lines in 2-dimensional
space; the next chapter will discuss the general case in 3- and
higher dimensional spaces.

This chapter is using duality. Duality (introduced in chapter
5.3xx) is a method to reduce the number of axioms, theorems,
and proofs by half: statements with the two terms X and Y
remain true when systematically all terms X are exchanged for Y
and all Y for X(Stolfi 1991). Duality is based on a morphism
(duomorphism) and can even be used for implementation(Guibas
and Stolfi 1987).

We have encountered duality before:
• Boolean algebra is dual: the axioms of Boolean algebra are

valid when one exchanges systematically and for or and T for
F.

• A set partially ordered by ≥ is dual to the same set partially
ordered by≤.

Note: Duality links a primal space to
a dual space.

Frank: GIS Theory Draft V15 Feb.05 220

• In set theory we can exchange the union and intersection
operation and exchange the null set against the all set.

• For lattices join and meet are dual.
• The duality between a right and a left module, which we have

encountered in chapter 10xx discussing the construction of a
vector space as a (right) module.

• A category and the category with all the arrows reversed (the
opposite category) is dual; this was used when discussing
relations (in chapter 16xx).

1. REPRESENTATION OF LINES
Assume that points are stored in relations point :: ID -> coord,
where coord are 2 tuples (general case n-tuples) from R x R.
What is a suitable representation for infinite lines? Several
methods are used to suit particular applications.

1.1 VECTORS
A line given by two points p, q can be represented in vector
notation as (Figure 268):

p = a + λ . v = a + λ . (b – a) = a (1-λ) + b (λ).
The last form can be read as a weighted mean from the two
points. The above formulae in vectors can be separated in
corresponding formulae for x and y coordinates.

1.2 FUNCTION
In coordinate space, the most often used representation is

y = m * x + c, (Figure 269)
but this cannot represent lines parallel to the y axis (Figure 270).

1.3 NORMAL TO THE LINE
For lines in the plane, a line is the locus of all vectors from a
given point and orthogonal to a vector on the line (Hesse Normal
form). This gives the representation (with Ф the direction of the
normal on the line):

x cos Ф + y sin Ф – d = 0 where Ф = v + π/2 =b-a+ π/2.
This can be generalized to a representation of any line in the 2d
plane by three homogenous values t,u,v: t x + u y + v = 0. This
representation is homogenous, because the line

λ * t * x +λ * u* y +λ * v = 0 λ ≠0
is the same line; a line has only two degrees of freedom and a
representation with 3 values is necessarily homogenous. The
Hesse Normal Form (Figure 271) is the one for which sqrt (a2 +
b2) = 1. Because the vector from any point of the line p to a

Similarity in symbols:
∪ -> ∨, ∩ -> ∧

Figure 268: Line in vector representation
with parameter λ

Figure 269: y = m * x + c

Figure 270: Line parallel to y axis

all v15a.doc 221

given point a of the line must be orthogonal to the vector n, all
points p of the line must fulfill

n . (p – a) = 0.
The equivalence can be used to compute the values for t, u, and v
when two points a and b of the line are given:

1.4 LINE DEFINED BY COLLINEARITY
An argument in 3 dimensional space gives a formula for the line
l such that for any point p

 l . p = 0.
Any point p of the line must be collinear with the two given
points a and b, such that triple (a, b, p) = 0. From triple (a, b, p)
= (a x b) . p = 0 and l . p = 0 follows l = a x b. The same result
is obtained when using homogenous coordinates and the relation
triple (a, b, p) = det [a,b,p], which is

By expanding the determinant for the last column we obtain the
same values as above:

2. INTERSECTION OF TWO INFINITE LINES
The computation of the intersection of two straight lines has a
closed solution, if we use the homogenous coordinates
introduced in chapter 10xx.

Figure 271: Hesse Normal Form

Figure 272: p = n . (b-a)

Point p on line l
l . p = 0
Line through a b
l = a x b

Frank: GIS Theory Draft V15 Feb.05 222

2.1 2D-ANALYTICAL GEOMETRY
Given two lines represented as two homogenous equations in
two unknown, namely the coordinates of the intersection point p
= (px, py):

a11 * x + a12 * y + px = 0
a21 * x + a22 * y + py = 0

expressed in vectors and matrices:
A x+ c = 0.

The intersection p (px, py) is found as the solution of the two
simultaneous equations. Using the standard solution formula,
this gives:

x = A-1 (-c).
for which Cramer's rule gives the coordinates:

A test is necessary to avoid division by zero, i.e. det A = 0,
which occurs when the two lines are parallel and have no
intersection point. The function is not total and does not always
give an answer.

2.2 LINE INTERSECTION COMPUTED IN HOMOGENOUS SPACE
In projective space, two lines always intersect. A computation
with homogenous coordinates produces always a result. Given
two lines m and n, the intersection p = m x n is obtained from

triple m n m = triple n m n = 0 (triple product with coplanar vectors is always
0!)

we obtain:
m . (n x m) = n . (n x m) = 0,

replace (n x m) = p and obtain:
m . p = n . p = 0.

This shows that p is a point of the line m and also of the line n,
which is the condition for the intersection point.

A geometric justification for this result is possible following
a model introduced by Menger(Blumenthal and Menger 1970).
To represent 2-dimensional space select a point O (for origin) in
3-dimensional space. A 2-d point is represented by the line
through the origin and the point, called an O-line. A line through
two points is in homogenous space the plane through the origin
and the two points (recall: three points define a plane!), which he
alls an O-plane. We have used this representation earlier when
introducing the general linear transformation in (see section

Figure 273: Intersection of two lines

Intersection point x of two lines m n
p = m x n
If lines m given by points a, b and
line n given by c,d then
p = (a x b) x (c x d).

all v15a.doc 223

10.7xx). In Figure 274 two lines m, and n are given in the z=1
plane with points for m (p,q) and for n (r s).

Figure 274: The intersection of two lines—Line in homogenous coordinates

The points p and q determine a O-plane in the homogenous
space, so do r and s. The intersection point is the O-line through
the origin and the intersection point. This is the intersection of
the two O-planes determined by p, q, respective r, s and the
origin. If we construct the normals to the two planes m and n, we
know that each line in n must be normal to the normal of m and
the same for all lines in n. The intersection line is in m and n and
thus normal to m and normal to n, that is, the normal on the plane
given by the two normals.

This leads to the formula expressed in vector notation in 3d
space: For each plane, the cross product gives the normal to the
plane. Consider the plane through the two normals (and again
through the origin). The normal on this plane is the intersection
of the planes from p, q and r, s, that is, the intersection of the
normal with the horizontal plane z = 1 is the intersection point.
This gives the same formula:

v =m x n = (p x q) x (r x s).
m= p x q is line p,q, n= r x s is line r, s

2.3 SPECIAL CASES
This formula is a total function; it gives a result, even for parallel
lines, but the intersection is not necessarily a real point. The
intersection of two parallel points give a result with a
homogenous value of 0 and the transformation to the Euclidean

Frank: GIS Theory Draft V15 Feb.05 224

representation is not possible (see formulae in section 3
following).

The vector computation does even produce a result if a line
is erroneously defined by twice the same point p. The
corresponding line l = p x p is the 0 vector (i.e. a vector with all
components 0), which is not a geometric element in Menger's
model used above.

2.4 LIMITATION TO 2-DIMENSIONAL GEOMETRY
Above we have used the homogenous coordinate space
represented as 3d and followed a Euclidean (3d) argument, using
vector operations in 3d. We have used the cross product, which
is defined for 3d vector space only, which limits this formula to
the special case of lines in 2d space, which transform to 3d
homogenous coordinates. Homogenous coordinates are a
representation of the projective space. This will be explored in
this and the following chapter to arrive at a dimension
independent solution.

3. PROJECTIVE GEOMETRY
Homogenous coordinates were popularized in computer graphics
to avoid division(Newman and Sproull 1981), but projective
geometry can contribute more to computational geometry than
just a computational trick to improve performance. Projective
geometry is an example of a non-Euclidean geometry, where
straight lines always intersect (see chapter 7). It is an example of
a functor (chapter 6): a situation where we have not enough
elements to represent all situation is solved with a morphism to a
representation with more elements. Projective geometry is
constructed from the ordinary Euclidean plane, to which a line at
infinity is added.

There are different models for projective geometry(Stolfi
1991), which can be used to aid imagination:
• the spherical model,
• the straight model,
• Menger's model of 0-lines and 0-planes, and
• the analytical model;
so far we have used only the analytical model.

3.1 THE SPHERICAL MODEL
The projective plane is the image of a (half) sphere (Figure 275),
projected stereographically on a plane (Figure 277). There are no

all v15a.doc 225

pairs of geodesics that do not intersect: all great circles on a
sphere intersect.

3.2 THE STRAIGHT MODEL
The straight model is the projection of the half sphere to a plain
touching the sphere in a pole (Figure 277). It contains all the
points of plane plus the points of the infinite line, which is the
image of the equator (Figure 276).

Stereographic projection maintains collinearity between
geodesics. The geodesics of the sphere, the great circles, are
mapped to straight lines. As all great circles intersect, all straight
lines in the projection intersect as well. Some of the intersection
points are on the great circle of the sphere in the equatorial
plane, which is projected to the line at infinity. The intersection
points go equally to infinity, indicating the lines in the projection
are parallel (Figure 276).

3.3 MENGER'S MODEL OF 0-LINES AND 0-PLANES
Menger has suggested a model for an axiomatic treatment of
projective geometry, representing points in the projective plane
by lines through the origin (O-lines) and lines through planes
through the origin (O-planes). This model was used above to
justify geometrically the formula for the intersection point. It
generalizes for n dimensions and translates immediately to the
analytical model.

3.4 THE ANALYTICAL MODEL
It consists of the vectors [w, x1, x2, x3…], which are considered
as homogenous, that is, they represent the same point when
multiplied with any constant (≠ 0). It is the model we have used
to represent homogenous coordinates (e.g., in Figure 274). It is
also a model which generalizes beyond 2-dimensional geometry.

Note: I order the coordinates such that the homogenous
coordinate w is the first element in the vector; this prepares for
generalization to n dimension. Most authors place the
homogenous coordinate w as the last element!

Figure 275: The sphere with geodesic lines

Figure 276: Parallel lines in the projective
plane intersect. The intersection point is on
the ideal line.

w is first coordinate!

Frank: GIS Theory Draft V15 Feb.05 226

3.5 CONNECTION OF THE MODELS
The models are connected by central projection from the origin.
Computing with the projective plane is just a different
interpretation of the geometric situation and a different
representation. The 2d vectors are transformed to homogenous
coordinates of dimension 3 (see xx), where the mapping between
the two is:

x = xh / wh xh = x
y = yh / wh yh = y
 wh = 1

the mapping to the unit sphere is
d = sqrt (sqr w + sqr x + sqr y)
xs = x/d; ys = y/d; ws = w/d.

This corresponds to a central projection of R3 onto the unit
sphere or onto the plane tangential to the sphere at (1, 0, 0). The
additional coordinate w can be seen as a scale factor, with which
all coordinates are scaled at the end. Figure 278 shows the
correspondence between as and a; it also shows that a and a, b
and b are the same point, expressed as homogenous coordinates.

The value of the first coordinate in the homogenous
representation indicates, whether the point is a regular point (w
≠0) or is an ideal point at infinity (w = 0).

4. DUAL SPACES: FROM POINTS TO FLATS
The observation that the representation of a line has the same
form than the representation of a point in homogenous
coordinates suggests a duality between lines and points in
projective space. In the projective plane,

“(i) Any two distinct points lie on a unique line;
 (ii) Any two distinct lines intersect in a unique point.

The incidence properties (i) and (ii) are dual to each other, in the
sense that the interchange of the words “point” and “line”, plus a
minor change in terminology, changes property (i) into property
(ii) and vice versa.” (Mac Lane and Birkhoff 1991, 592).

4.1 CONSTRUCTION OF A PROJECTIVE SPACE AS A LINEAR
ALGEBRA
To construct the projective plane, take a 3d vector space V over
F and define the points P as the 1-dimensional subspaces of V
and the lines L as the 2-dimensional subspaces of V. These are
the flats, i.e. the O-points and O-lines of Menger's model. This is
visualized as in Figure 281: the points are the lines through the

Figure 277: Projection of a half sphere to a
plane

Figure 278: Homogenous coordinates a
and a', b and b'

all v15a.doc 227

origin, the lines the planes through the origin. Parallel lines have
intersection points in the infinite line, hence the popular
statement ‘parallels meet in the infinite’
For these points and lines and two operations join and meet, the
following rules apply:

"(1) The join as well as the meet of any element X with itself is
X.

(2) If a point and a line are incident, then their join is that line and the
meet is that point.
(3) Besides the points and lines, there exist a flat V (the vacuum) and
a flat U (the universe) such that the join of V and any flat X is X, and
the meet of V and X is V; and that the meet of U and X is X;, and the
join of U and X is U.
(4) the meet of distinct points is V; the join of distinct lines is U.
(5) a point and a line that are not incident have the join U and the meet
V." (Blumenthal and Menger 1970136)(a comparable description in
terms of vector spaces is given in (Mac Lane and Birkhoff 1991,
592)).
These are the axioms of a lattice with units <L, ∧, ∨, U, V> (see
chapter 16xx); this is no accident, as historically, work on an
algebraic formalization of geometry has produced lattice theory.

4.2 POINTS AND LINES ARE DUAL
We want duality in 2d space to have the following properties:
• the dual from a dual space is the original space.

dual . dual = id.
• the dual of a point is a line, the dual of a line is a point.
• duality preserves incidence: if a point is incident with a line

then the dual line is incident with the dual point.
Figure 282 shows a construction of the duality between line and
point—it reminds us of the Hesse Normal Form —that is related
to the representation of lines as homogenous coordinate triples
and as homogenous points (note that there are other forms of
duality between points and lines, useful in different contexts).

This construction of duality preserves incidence as can be
seen in the following Figure 283. The lines a and b intersect in
point l, the dual points a’ and b’ are connected by the line l’,
which is the dual of the point l.

Duality can simplify geometric computation: we have the
choice to compute in the primal space or in the dual space,
whatever is simpler. It is generally simpler to construct a line
connecting two points than to compute the intersection. The
figure shows, that we can determine the intersection of two lines

Figure 279: Intersection of two lines is a
point

Figure 280: Union of two points is a line

Figure 281: Points and lines in
homogenous representation

Figure 282: A line l and its dual (the point
l’)

Frank: GIS Theory Draft V15 Feb.05 228

by connecting the corresponding two dual points and to
determine the primal point belonging to this line.

4.3 DUALITY IN HOMOGENOUS SPACE
In Menger's model of the projective space, where a 2d point is a
O-line in 3d space, which goes through the origin and the 2d
point in the horizontal plane z = 1 (see Figure 284), duality can
be explained in a visual form:

A line in 2d (given as 2 points) is a plane in the homogenous
space—namely the plane through the origin and the two given
points. The dual of this homogenous plane (a 2d line) is the
normal on this plane—a line in homogenous coordinates and
correspondingly a point in 2d (the intersection of the normal with
the horizontal plane z = 1). The dual of a line given by two
points is thus simply the cross product.
 We can geometrically verify that this is the same duality than
defined before. Consider two points a (x,0) and b (x,1), which
define a line parallel to the x-axis (Figure 285). The cross
product gives the point with y= 1/a, as used above (Figure 286).

4.4 DUALITY IN VECTOR SPACE
The modules, and vector spaces so far, have been built upon a
scalar multiplication where the scalar was the left and the vector
the right argument:

(.) :: scalar -> vector -> vector.

These modules and vector spaces where left modules; the same
construction is possible with a scalar multiplication, where the
scalar is the right argument:

(.) :: vector -> scalar -> vector.

The vector space resulting from a right or left scalar
multiplication are dual to each other.

In accordance with some of the literature (Mac Lane and
Birkhoff 1991) we select a right module for the vector space.
Points are expressed as ‘column’ vectors, linear transformations
are written before the point to which they apply p’ = T p
(premultiplication), where p’ and p are column vectors. Note that
T p looks like the application of a function T to p. For this
choice, the lines are then row vectors, etc. Other texts on the
subject use the other convention (row vectors for points,

Figure 283: Duality preserves incidence

Figure 284: A line is a plane in the
homogenous space

Figure 285 A parallel line and its dual

Figure 286: Cross section of figure 18

all v15a.doc 229

postmultiplication for transformations) and some do not
differentiate between points and lines and write for both row or
column vector(Hartley and Zisserman 2000)).

4.5 FORMAL DEFINITION OF DUALTITY AS A DUOMORPHISM
A projective space can be defined as a tuple T = (F, M, ∨, ∧, V,
U), where F is the set of all flats in the vector space s, M is the
set of all projective maps (automorphism of s) an V, U are the
units. The dual space T* = (F, M, ∧, ∨, U, V) is isomorphic to
T(Stolfi 1991, 83). The isomorphism η from T to T* must satisfy,
for example

η V = U, η U = V
rank (η a) = corank a.

5. REPRESENTATIONS OF POINTS AND LINES
Duality allows us to select between two representation for points
and lines—the primal and the dual one.

5.1 POINTS AS VECTORS
Points are represented as homogenous column vectors
(remember, the homogenous coordinate is first!).

5.2 LINES DEFINED AS LIST OF POINTS
Lines can be defined by enumeration of the column vectors of
the two points that they are defined by. The dual of a line is a
point, which is the row vector v = p x q.

6. TRANSFORMATION OF A LINE IN DUAL SPACE
The transformation in dual space must correspond to the dual of
the transformation in primal space. A point x on a line u before
transformation must be on the line u' after transformation x' = A
x; therefore uT x = 0 and u'T x' = 0. The line is transformed by
the inverse transformation A-1.

Figure 287: A point p(px, py)

Figure 288: A line given by two points

Frank: GIS Theory Draft V15 Feb.05 230

Note: if space and dual space are identified and points and lines
represented by the same vector (as many texts do), then the
transformation is the contragradient transformation, that is,
transpose of the inverse transformations (A-1T uT)= u'T = (uA-1)T).

7. LATTICES FOR GEOMETRIC OBJECTS
The usual program for geometric studies classifies objects and
the applicable operations by dimension, that is, point, lines, and
areas, and introduces with each additional dimension new
objects and operations. Menger suggested a dimension
independent program based on joining and intersecting
generalized geometric objects(Blumenthal and Menger 1970,
135). It initiated investigation in an algebraic structure, which
became generalized to include other similar structures and is
called now Lattice theory(Birkhoff 1967).

A lattice is an algebraic system with two operations, called
join and meet (sometimes written as sum for join (+) and product
for meet (*)).These operations are commutative, associative—
like a group—and absorptive. A lattice may have two distinct
elements—called top ┬ and bottom ┴ (sometimes written as 1
and 0, universe and vacuum) such that the regular axioms for
unit elements are satisfied; if a lattice has these distinct elements,
then they are unique.

a ∨ 0 = 0 a ∧ 0 = a
a ∨ 1 = 1 a ∧ 1 = 1

Lattices are dual with respect to join and meet and top and
bottom.

With this definition of lattice, a dimension-independent
description of the geometry of incidence can be achieved, but it
is not sufficient to deal with orientation. The line from A to B is
not differentiated from the line B to A, which makes it
impossible to say that a point P is left of the line (Figure 289).
Stolfi gives a description of a anti-commutative lattice-like
theory, where a ∨ b ≠ b ∨ a and a ∧ b ≠ b ∧ a , which can
represent an oriented projective space. It is a generalization of
Menger's approach with an orientation added. Lines have an
orientation and there is an operation opposite to convert a line to
the line with the opposite orientation. A description of the theory
for the general n-dimensional case follows in the next chapter
but meet and join in the following sections are understood as
following the rules of this anti-commutative lattice.

Figure 289Point P is left of A to B

all v15a.doc 231

7.1 JOIN OF POINTS GIVES LINE
A join of two points gives a line (see section 4 above),
represented as two column vectors. The representation of the line
as a (dual) point is the cross product of the two vectors that
represent the two points. This can be checked, as the two points
are on this line (i.e., the inner product of line and point is zero).

Join is only defined if the two points are distinct; if the same

point appears twice, then the resulting is the homogenous triple
(0, 0, 0), which does not represent any real point (this is different
from lattice theory, where a ∨ a = a). This observation can be
used to determine if two points are the same:

a = b iff a x b = (0, 0, 0).

7.2 MEET GIVES INTERSECTION OF TWO LINES
The meet of two lines is the common part, i.e. the intersection
point. The meet is the dual of the join, thus the l ∧ n = l' ∨ n',
where l', n' are the duals of l and n. If the two lines are given by
points a,b and c,d then the dual of the lines l' = a x b, and n' = c
x d. Meet is expressed in terms of join and dual operations,
which both translate to the cross product.

p = l ∧n
p' = l' ∨n'
p' = (a x b) ∨(c x d)
p= (a x b) x (c x d)

One can verify that p is on line l and m by checking
p . l = 0 and p . m = 0.

The duality between points and lines and the correspondence
between join (connecting) and meet (intersecting), leads to
commutative diagrams like Figure 291, which show that only
one of the two operations and duality must be given to construct
the other. Join of two points translates to cross product × and is
therefore the preferred implemented operation.

a ∧ b = dual ((dual a) ∨ (dual b))
a ∨ b = dual ((dual a) ∧ (dual b))

Figure 290: A point p = l ∩ m = l ∧ m

Frank: GIS Theory Draft V15 Feb.05 232

8. POINT—LINE RELATIONS:
Two relations between points and lines are derived from vectors.
They are widely used and are related to the more general
Matroid theory(Knuth 1992; Oxley 1992; Björner 1999):
• Which side of a line is a point?
• Distance of point from line?
• Is point inside of circumcircle of three points?

8.1 WHICH SIDE OF A LINE?
A method to determine if a point is left or right of a line (Figure
294) is to compute the determinant from the two points defining
the line with the third point. The determinant gives twice the area
and is signed: The determinant is positive if the three points are
encountered in anticlockwise (positive) order and therefore the
point c left of the line a to b. It is 0 if the three points are
collinear.

If the line l is given by its dual point, then we can use the triple
product:

det (a,b,c) = triple (a,b,c) = triple (c, a, b) = c . (a x b) = c . l

8.2 DISTANCE OF POINT FROM LINE
The distance of a point from a line can be determined by division
of the above determinant by the distance between the two points
of the line.

8.3 INCIRCLE TEST
A test whether a point is inside a circle determined by three
points will become important later (chapter 30xx). Given three
points ABC, not collinear, incircle (A,B,C,D) is true, if A B C
define in clockwise order a triangle and the point D is inside the
circumcircle of this triangle. This is equivalent to test

Angle ABC + Angle CDA < angle BCD + angle DAB.

Figure 291: Duality

Figure 294: Point c is left of a – b

all v15a.doc 233

The test can be written as a determinant (for details see Guibas
and Stolfi(Guibas and Stolfi 1987), where the sign of the
determinant must be the same as for the ccw predicate(Knuth
1992):

This determinant gives the same formula as when we compute
the center of the circumscribing circle for the points A, B, C and
then compute the distance from this center to one of the points
and to the new point. The derivation is easier, if we use a local
coordinate system with A = (0,0) and translate all other points to
this system.

Figure 295: Incircle test

Frank: GIS Theory Draft V15 Feb.05 234

9. CONCLUSIONS
Coding intersection of lines is one of the more tricky parts of

geometric processing(Goldenhuber 1997). The solutions
achieved through the use of projective geometry are clean and
elegant, when compared the solutions which need complicated
tests. The principles found here can be generalized to n-
dimensional space. The arguments here for geometric objects in
the 2d plane and the corresponding 3d projective space use the
cross product for the transformation to the dual. Cross product is
defined for 3d vectors only and the next chapter will need a
generalization to n-dimensions.

REVIEW QUESTIONS
• What is duality? Explain with already known algebras (set

theory).
• What is the meaning of homogenous?
• What is a lattice structure? In what sense is it dual?
• How do the operations meet and join apply to geometry?
• Explain the duality of points and line?
• Why are we using projective space?
• Give the formulae for the intersection of two lines given by

points.
• What is the difference between the geometric program by

Hilbert compared to the approach by Menger?

all v15a.doc 235

Chapter 20 GENERALIZATION TO N-DIMENSIONS: FLATS

In the previous chapter we have seen how projective geometry
and duality leads to a simple formula for the calculation of the
intersection. This chapter will generalize the solution found for
lines in 2d space in the previous chapter to n-dimensional infinite
geometric objects. We use Menger's approach to investigate
joins and meets of subspaces. These subspaces, considered as
geometric objects, will be called flats. In preparation for
geometric operations defined later, the space investigated is
oriented and the algebra is lattice-like, specifically anti-
commutative. The chapter concludes with a single formula for all
intersection calculations, whatever the dimension of the space
and the geometric element, using dual and join as the
fundamental building blocks.

The solution found for 2d objects uses extensively the cross
product, which is defined only for 3-vectors. This restricts the
formulae given to 2d (3d homogenous) geometry. This chapter
starts with the identification of vector and matrix operations that
are dimension independent and generalizes vector (cross) and
triple product from 3 to n-dimensions. This leads to a
generalized cross product gpc on nearly square matrices (n by n-
1). With this operation, the dual of k-dimensional objects in n-
dimensional space can be defined for all k < n and operations to
compute the intersection follow immediately.

1. SUBSPACES OF N-DIMENSIONAL SPACE
In the following we will assume an n-dimensional, oriented
space (n >=2). In 2d we had infinite geometric objects point and
line, which were dual to each other. The approach used in
section 19.2xx defining points in a 2d space as the lines through
the origin of a 3d space (O-lines) can be generalized. To
represent a n-dimensional projective space P, we use a n+1-
dimensional vector space V and a mapping P = P(V). The
subspaces of this n+1-dimensional vector space each contain the
origin; otherwise they would not be the sub-spaces. We can
visualize them as the O-lines, O-planes etc. of Menger's model.

A subspace of m-dimension is defined by m+1 point; a line
(1-space) is defined by 2 points, a plane is defined by 3 points

There is a morphism P from the sub-
spaces of the vector space V:
P = P(V)

Frank: GIS Theory Draft V15 Feb.05 236

etc. k+1 points in an n-dimensional projective space V (with k
<= n) define a k-dimensional vector subspace of V of k+1
dimension. We will call a subspace of V a flat, specifically k-flat
where k is the dimension of the subspace (and thus the rank of
the projective geometric object). A k -flat has dimension k and
codimension n-k. Subspaces with dimension n-1, i.e., with
codimension 1, are called hyperplanes; they are dual to points.

Subspaces are partially ordered by an inclusion relation: S ⊆
T, that is, S is a vector subspace of another vector subspace T.
With this inclusion relation, the subspaces form a lattice, where
the meet is the intersection and the join is the direct sum of the
two spaces (Mac Lane and Birkhoff 1991, 594/5). The mapping
to from the k+1-dimensional vector space to the corresponding
k-dimensional projective spaces T -> P(T) preserves this
inclusion and is an isomorphism of lattices.

2. REPRESENTATIONS FOR LINES AND PLANES IN 3-
SPACE

For comparison and reference, I include here a description of the
often used representations of lines and planes in 3-dimensional
space.

2.1 REPRESENTATION OF LINES IN 3D SPACE
A line can be defined as the geometric locus of all points
collinear with given two points (Figure 296). Using the fact that
the vector product of two collinear vectors is 0 gives:

(b-a) x (p-a) = 0, or (p-a) x u = 0 where u = b – a.

2.2 REPRESENTATION OF PLANES IN 3D SPACE
In addition to the description as a function

z = f (x, y) = a * x + b * y + c,
which cannot represent vertical planes, a plane is defined as all
points p for which the following equation in two parameters is
valid.

p = a + λ . v + μ . w = a + λ . (c-a) + μ . (b – a)
where v and w are two vectors in the plane. Using that the triple
product for coplanar vectors is 0, follows

triple product (v,w,p) = 0.
The definition using an orthogonal vector n = v x w (Figure 297)
gives n . p = 0.

A k-flat is a k-dimensional subspace
of the projective space.
A hyperplane is the dual to a point.

Figure 296: A line in 3d space

all v15a.doc 237

3. JOIN AND MEET: DIMENSION INDEPENDENT
GEOMETRIC OPERATIONS

Only few geometric operations are possible in spaces of arbitrary
dimension. The workhorse so far was cross product, which exists
only in 3d space. Independent of dimension are:
• join: the construction of linear subspaces of higher dimension

from points or generally from other flats, and
• meet: the intersection of two flats that results in another flat.

3.1 JOIN: CONSTRUCTING FLATS FROM POINTS OR OTHER FLATS
Geometric object of higher dimension are constructed from
objects of lower dimension: A line is constructed with two
points, a plane with three points (or a point and a line). k points
in n space (in general position) form a k-dimensional subspace, a
k-flat. This join operation, which combines two flats to produce a
flat of higher dimension has the usual properties. The units are
the flat, defined with zero points (dimension -1), called vacuum
and the (n+1) flat, which is the n-dimensional space, called
universe.

Join is only defined, if the two objects have no common part.
Geometrically evident is the rank of the result of the join:

The primary representation for projective k-flats in n space is

the matrix with k columns and n+1 rows, which results from
joining the column vectors standing for the points into a matrix
(Figure 298).

3.2 MEET: INTERSECTING TWO FLATS
Intersection of two flats gives another flat. Meet is dual to join.
The direct calculation of the is avoided here and replaced by
duality:

dual (a meet b) = (dual a) join (dual b)
and obtain

 a meet b = dual ((dual a) join (dual b)).

4. DUALITY IN N-DIMENSIONS
Duality must be self-inverse: dual . dual = id. It is useful to
introduce rank and co-rank to explain what objects can be dual to
each other.

Figure 297: A plane defined by the normal
on it

Figure 298: Construction of geometric
objects from points

Frank: GIS Theory Draft V15 Feb.05 238

4.1 RANK AND CO-RANK
The rank of an object is the number of points used for its
definition, which is its dimension plus one. A k-flat has therefore
rank k+1 (and dimension k). The co-rank is the same as the co-
dimension and counts how many points must be added to get the
universe.

rank = 1 + dim
rank + corank = (1 + dim) + (n – dim) = n + 1

4.2 DUAL OBJECT
The rank of the dual of an object is its co-rank and the co-rank of
the dual of an object is its rank: rank . dual = corank; corank .
dual = rank. This duality applies to 2-space and gives the
previously encountered duality between points (rank 1, corank 2)
and lines (rank 2, corank 1).

In 3d space, points (rank 1) are dual to planes (rank 3, corank
1). Lines are dual to lines (rank 2, corank 2).

4.3 DUALITY OF JOIN AND MEET
The rank and corank of the result of a join or a meet are dual if a
and b are disjoint:

rank (a ∨ b) = rank (a) + rank (b)
corank (a ∧ b) = corank (a) + corank (b)

5. ORIENTATION
Each flat has an orientation. For lines, the orientation is the
direction of the line from first to second point (Figure 299); for
planes, the orientation is the sense of turning given by the order
of the three points (Figure 300).
The operation reverse ¬ converts a flat in the corresponding flat
with the other orientation.

(line a b) = ¬ (line b a)
(plane a b c) = ¬ (plane a c b)

The flats occurring in a GIS are orientable, but the projective
plane, into which they are mapped, cannot be consistently
oriented. It behaves somewhat like a Moebius strip (Figure 301),
which is the prototypical non-orientable surface. If geometry is
restricted to the non-ideal parts of the projective plane, then
orientation can be consistent (for more details see(Stolfi 1991).
This means that we cannot construct figures that include the line
at infinity and must not transform figures through this line.

Ranks: Point = 1-flat
 Line = 2-flat
 Plane = 3-flat

Figure 299 Line A to B is oriented

Figure 300: Plane given by A, B, C is
oriented positively

all v15a.doc 239

6. THE ANTI-COMMUTATIVE LATTICE OF ORIENTED
FLATS

Lattices are commutative (a ∧ b = b ∧ a; a ∨ b = b ∨ a), but the
join operation used here is anticommutative to respect the
orientation.

Anti-commutative Lattice <L, ∧, ∨, V, U, ¬>
 anti-commutative p ∧ q = ¬(q ∧ p) = ¬q ∧ p p ∨ q = ¬(q ∨ p) = ¬ q ∨ p
 (for p, q of rank 1)
 associative r ∧ (s ∧ t) = (r ∧ s) ∧ t = r ∧ s ∧ t
 r ∧ (s ∧ t) = (r ∧ s) ∧ t = r ∧ s ∧ t
 units V ∨ a = a = a ∨ V V ∧ a = V = a ∧ V
 U ∨ a = U = a ∨ U U ∧ a = a = a ∧ V

Join and meet are only defined when the operands are disjoint;
Stolfi suggests that implementations make the operations total
and introduce a "undefined" object 0 (respective one for each
rank). This can be used to test if two flats are disjoint by
computing the join and then check whether the result is 0(Stolfi
1991 45).

The rank of a join of two disjoint flats is the sum of the ranks
of the flats; the co-rank of the meet of two flats is the sum of the
co-ranks, but we can also say that meet lowers the rank of the
first flat by the co-rank of the second flat:

corank (a ∧ b) = corank (a) + corank (b)
rank (a ∧ b) = rank (a) – corank (b) = rank (b) – corank (a)

For p and q flats with rank a and b and co-rank a' and b' the
commutative law is

p ∨ q = ¬ (a + b)(q ∨ p);
p ∧ q = ¬ (a' + b')(q ∧ p);

this means each swap of two of the defining points changes the
orientation (reminds of the change in sign of matrix determinants
and swap of columns or rows).

7. THE DUAL OF FLATS
The dual of a line (a 1-flat) in 2d space is defined as the vector
such that all points p of the line l given by two vectors a and b
are given by the equation l' . p = 0 where l' = a x b is the dual of
the line . How to generalize this to n-1 flats in n space? This
means first, how to replace the cross product with an operation
that is available in all dimensions? We will approach this
problem in four steps, (1) determining the dual of a hyperplane

Figure 301: A Moebius strip - has only one
edge and one surface!

Frank: GIS Theory Draft V15 Feb.05 240

(n-flat) gives point in n-space, (2) the dual of a line in 3-space,
(3) the dual of a line in n-space and (4) a fully general solution
for k-flats in n-space.

7.1 DUAL OF HYPERPLANE GIVES POINT
By definition of hyperplanes they are dual to points. In n-
dimensional projective space, a hyperplane has n-1 dimension (it
is an n-flat), rank n and co-rank 1. Its dual has rank 1 and is a
point.
We map the projective n space to subspaces of n+1 vector space
(homogoneous coordinates). The hyperplane is given as a join of
n vectors, each with n+1 coordinates. From the equation for
coplanarity in n space, we find that for any point p in this
hyperplane the determinant of the join of h with p is 0. This
formula is independent of dimension. Can we use it to determine
p?

det (h ∨ p) = 0 = det | x1, x2, x3… xn, p| = 0

The hyperplane h is defined by n points; when joined, this
gives nearly a square matrix n by n+1, resulting from the join of
n point vectors in homogenous coordinates. The expansion of the
determinant det | x1, x2, x3… xk, p| for the last column gives a
vector h', for which h' . p = 0 (see before cofactors of a matrix;
chapter 10).

The operation gcp (for generalized cross product) takes a

nearly square matrix of n (n+1)-vectors x1, .. xn and computes a
vector h' = gcp (x1…xk), such that h' . p = 0. It is computed as
the values of the subdeterminants of the nearly square matrix,
crossing out one row after the other. The computation of
cofactors and the inner product is independent of dimension.
Note that gcp has no inverse; it can only transform a join of
points to a dual space, not the inverse.

gcp (x1..xn) . p = det (p, x1…xn)

Nearly square matrix:
A matrix with one row more than
columns, respectively
one column more than rows.

all v15a.doc 241

Footnote:
The computation is connected to the Hodge operator and the
Eddington or Levi-Civita tensor(Faugeras 1993, 160-62); it
follows from the Kronecker or outer product when computing
the products of the base vectors such that any product of e(n-1)
factors, where any of the ei appears twice is 0 and we identify the
product e1…ej-1, ej+1, .. en = ej. This gives for the regular cross
product the products of the base vectors as e1 * e2 = e3, etc. The
argument using the expansion of the determinant for the missing
first column and the analogy to the triple product seems simpler
and suggest the generalization following in the next section.
endFootnote

This derivation gives for to the 2d projective space the cross
product:

A hyperplane h of dimension n-1 can be represented in
homogenous coordinates by a n by n+1 nearly square
matrix. It includes all points p, such that det (h ∨ p) = 0
(observe that (h ∨ p) is square). It has a dual h' = gcp h,
which is represented as an n (row) vector, such that h' . p
= 0.

7.2 DUAL OF LINE IN 3-SPACE
Lines in 3d projective space have codimension 2, they are 2-
flats. The dual of a line is again a line, because a line has rank 2
and corank = codimension 2.

The determine the dual of a line in 3d projective space,
consider the situation visualized in (Figure 302). One could get
the dual of the line p1, p2 by determination of the dual p1' of p1
and p2' of p2. Then the intersection of these two planes p1' and

Primal to dual transformation = gcp

Figure 302: Construction to compute the
dual of a line in 3d

Figure 303: Dual of the line, connecting
the dual points of the two planes Π1 and Π2

Frank: GIS Theory Draft V15 Feb.05 242

p2' is the dual l' of l. Unfortuantely, this requires the computation
first of the dual plane to a point remember gcp does compute
only the dual point to a plane) and of an intersection (meet),
which we want to avoid and replace by the easy to compute join.

A second and successful approach to determine the dual of a
line l given by two points p1, p2 is obtained by considering two
planes Π1 and Π2 through this line and two arbitrary points x1 and
x2 (different from p1 and p2). The dual points for these two
planes are Π1 = gcp (l ∨ x1) and Π2,= gcp (l ∨ x2). The dual of
the line is the join of these two points (Figure 303).

 l' = Π1 ∨ Π2 = (gcp (l ∨ x1)) ∨ (gcp (l ∨ xl)) = [gcp [p1, p2, x1], gcp [p1, p2,
x2]]

The approach results in a description of the line with 2 * 4
parameters, when only 4 are necessary. The result is one out of
an equivalent class of descriptions of the same dual line and is
influenced by the choice of the arbitrary points x1 and x2, for
which is required that det |x1 Π1 | ≠ 0 and det |x2 Π2 | ≠ 0.

Footnote: The method proposed by Plücker would use only 6
Plücker coordinates. The approach presented here and the
methods using Plücker coordinates produce both results that are
just one element of an equivalence class. The major difference in
the approach presented here is that the arbitrary elements are
introduced initially when selecting the two points x1, x2. Plücker
gives a general solution that is then constrained with the so-
called Plücker constraint. The approach suggested here is similar
to the approach selected in (Leonardis and Bischof 1996) for a
different problem; it is attractive, because the x1, x2 can be
selected to produce numerically good conditions for the resulting
matrices.
Endfootnote

7.3 DUAL OF LINE IN N-SPACE
The generalization of the approach discussed for 3d projective
space to n-dimensional projective space is immediate. A line in
n-dimensional space is defined by 2 points (n+1 homogenous
coordinates), it has rank 2. The dual has co-rank 2 = rank (n+1-
2) = rank (n-1). For example, a line in 4d has as a dual a plane
with rank 3 = 4-1. To determine the dual we have therefore to
identify n-1 dual points.
To determine a dual point with gcp, we have to join the two
points p1, p2 of the line with n-2 arbitrary points x1… nj and

all v15a.doc 243

compute the dual point q = gcp (p1, p2, x1…xj). For example, for
a line in 4d, this requires 2 arbitrary points xi. This must be
repeated to obtain the n-1 points which joined together give the
dual flat.

7.4 DUAL OF K-DIMENSIONAL OBJECTS IN N-DIMENSIONAL
SPACE
In general, the dual for a k-flat in n-dimensional space is a (n+1-
k)-flat and is determined by (n+1-k) dual points. For each such
point, the k vectors of the flat must be joined with n-k (linearly
independent) vectors to form the nearly square (n by n+1) matrix
of which the generalized cross product gap is computed to obtain
one of the dual points which determine the dual flat. Joining
these dual points give the dual flat.
Footnote:
The generalization of the above approach to higher dimension is
attractive, because the number of Plücker coordinates in spaces
of higher dimension grows rapidly for 4-dimensional space (i.e.,
homogenous coordinates of dimension 5). Stolfi suggests a
mixed representation(1991, 195/196), which represents k-flats in
n space for k < n/2 as joins of the points used for the
construction and for k > n/2 their duals (which use (n-k) points).
Stolfi proposes a more compact ‘reduced simplex
representation’. To achieve this, a direct calculation of
intersection would be necessary for cases where the primal
representation is more compact than the dual representation,
which is the case for all flats k <= n/2; the intersection is then
computed, for example, using s Single Value Decomposition
(SVD) from which the nullspace of the two intersecting
subspaces results (Hartley and Zisserman 2003 70)
End footnote.

7.5 JOIN AND MEET FOR FLATS
With the operation to determine the dual for any flat independent
of the dimension of the flat or the space and the join operation
given by simple collection of column vectors of points into a
matrix we have the key to a generalized intersection operation
which gives the dual of the intersection:

 (a ∧ b)' = (a' ∨ b')

Frank: GIS Theory Draft V15 Feb.05 244

7.6 CONSIDERATION OF TYPES
We have selected column vectors to represent points and row
vectors for the representation of lines. Dual points are lines,
therefore dual points are also row vectors and duality transposes
rows to column vectors and in general a k-flat, which is a k by
n+1 matrix into a n+1 by (n-k) matrix (k<= n).

Join of dual elements combines them vertically and the gcp
of a dual geometric object is the transposed gcp of the transposed
object : gcp r = (gcp rT)T.

Mathematicians and engineers tend to ignore the

homomorphism, which embeds one type into another more
complex one. For example it seems that vectors representing
points and the dual of a line could be equated and we are
tempted to write a . b = aT b. Checking the types reveals the
difference: the inner product yields a real number, whereas the
result of the matrix multiplication is a matrix with a single
element. It would be correct to write a . b = det (aTb). It is often
useful to differentiate between row and column vectors, between
scalars and matrices which have just a single element etc.

8. METRIC RELATIONS
Distance between two points, the volume (respective area) of the
convex hull of a set of points, and the incircle relation are the
generally useful geometric relations. They identify discrete
relations to metric properties and are used to deduce the discrete
relations from the continuous metric.

8.1 DISTANCE
The distance between two points is a property of a metric space.
In a vector space, it calculated as the length of the vector
between the two points. From the definition of distance follows
that two points are equal if they have distance = 0. This
translates in a test for equality:

dist (a,b) = sqrt ((a-b) . (a-b))
a == b = dist (a,b) ==0

all v15a.doc 245

8.2 VOLUME
The determinant of n vectors in n-space gives the area of the
volume of the convex hull of these n linearly independent points
and the origin (Figure 304). The area or volume of an n+1
polytope given by n+1 vectors in n-space is computed with the
determinant in the homogeneous space (n+1 vectors, with h=1).

If n+1 points are given to describe a polytope in n-
dimensional projective space, then the determinant is computed
from their homogeneous (n+1) coordinates, divided by the
product of the wi. The polytope in the n+1-dimensional vector
space has height 1 and therefore the value for the volume and the
area is the same v = h * a (Figure 305). A proof for the general
case follows from the definition of the vector operations and
homogeneous coordinates by simple algebraic computation.

The volume computed with this formula is signed and has a

positive value if the points are listed in counter clockwise order.
The determinant can be used to test for the counterclockwise
ordering of the points or to determine if a point is left or right of
a flat. This is a generalization of the CCW predicate from
chapter 19. The determinant is 0 for points that are collinear,
resp. coplanar.

9. CONCLUSION
The introduction of a generalized cross product for nearly
square matrices, together with join interpreted as building flats
from points and meet as intersections gives a compact and
dimension independent formalization of intersection of flats of
any dimension. The solution avoids the use of Plücker
coordinates and gives a uniform representation for all infinite
objects, albeit not minimal, but the loss of storage space is today
not a primary concern.

REVIEW QUESTIONS
• Three planes intersect in a single point. How can this be used

for a test of gcp in 3d space?

Figure 304: det is area spanned by vectors

Figure 305: The area from 3 points

PART SEVEN BOUNDED GEOMETRIC
OBJECTS

The previous chapter introduced points and flats, subspaces of
limited dimension but infinite size and the geometry of
intersections. In this part, finite objects, objects with boundaries
are introduced; finite, bounded objects consist of an inside and
outside, which 'hang together'. This part explores this 'hanging
together' as topological property, considering neighborhoods and
transformations that transform a neighborhood into a
neighborhood (Figure 306). These topological transformations
are a much larger class of transformations than the general linear
transformations (discussed in chapter 10), but including these.

The treatment follows the dimension independent approach
to geometry. As far as practical, the discussion is not in terms of
objects of a specific dimension, but stresses operations and
relations that can be explained independent of the dimension of
the objects or the space in which they are included.

The first chapter in this section introduces topology: space as
sets of points and their boundaries in continuous space. The
second chapter discusses topological relations. The following
part combines then the topological concepts with algebraic
approaches.

Figure 306: Five topologically equivalent
figures

Point set topology 247

Chapter 21 POINT SET TOPOLOGY

In this chapter space is conceptualized as an infinite set of points.
Space is a base category of human experience and perception.
Everybody experiences space and time as continuous; this
chapter should capture this experience as a formal property of
point sets. Continuity does play a role in the axiom system of
Euclid: it is postulated that there is a middle point between two
points; this is essentially stating that the line is continuous. This
chapter generalizes this notion of continuity from the continuity
of a line to the continuity of space in general.

Topology captures the notion of "continuous" independent
of numbers. There are no breaks in space—only breaks in the
geometric structure we impose on it and there are no breaks in
time—only the structure we impose on it creates distinct objects.
This is an application of Jordan’s curve theorem that separates
objects with a boundary from its environment (see section xx).

Topology is used in a GIS in many ways: topology defines
the relations between an area and its boundary or the relation
between two areas. We may have a list of countries belonging to
the EU—can we determine the boundary of the EU? What
countries are neighbors? Topology deals with invariant
properties of figures. All the geometries in Figure 306 are
equivalent. Each figure can be transformed to any of the other
ones by a homeomorphic transformation

Point set topology consider space as a collection of points.
There are topologies for spaces represented with a finite number
of points, so called discrete spaces; they could be potentially
very interesting for GIS but have not yet been explored (see
especially studies of lattices, which are also used in
crystallography). This chapter concentrates on space formed by
an infinite number of points. The next part will show the
combination of algebraic methods with topology to achieve finite
representations of spatial objects.

homoemorphism =
topological transformation

Frank: GIS Theory Draft V15 Feb.05 248

1. TOPOLOGY IS BRANCH OF GEOMETRY
Topological relations are the relations that remain the same,
remain invariant, under continuous transformations. Topology is
the branch of mathematics, which discusses topological
relations. ‘Topology is geometry on a balloon’ is a popular
expression of what is studied here (Figure 307). Point set
topology is based on the notions of neighborhood and
homoemorphic transformations, which are continuous
transformations which have an inverse which is also a
continuous transformation.

Set theory with the major operations union and intersection
has been introduced before (chapter 5 xx). Most sets encountered
before had a finite number of elements in them; the sets used to
represent continuous space are typically sets with an infinite
number of points in them. Only an infinite number of
dimensionless points together capture our perception and
experience with continuous space. The impossibility to directly
represent this infinite number of points in a computer is the
source of a large part of the difficulties in implementing GIS.

2. DEFINITION OF NEIGHBORHOOD AND CONTINUOUS
TRANSFORMATION

Topology is the geometry that investigates properties that remain
invariant under topological transformations, that is,
transformations that preserve neighborhoods. An axiomatization
of topology starts with capturing the properties of a
neighborhood and then leads to the definition of continuous
transformations as transformations that map neighborhoods into
neighborhoods. Neighborhoods are fundamental for the
definition of open and closed sets and other topological concepts.
Alternatively, one can select open sets as fundamental and then
define neighborhoods from them.

A neighborhood in usual n-dimensional space is the
homoemorph image (topologically equivalent image) of an n-
sphere; a 3-sphere is a ball, a 2-sphere is a disk, a 1-sphere is an
interval (Figure 308).

2.1 AXIOMS FOR NEIGHBORHOODS
Topology introduces the concept neighborhood as a fundamental
concept and defines it with the following axioms(Alexandroff
1961, 9):

A homoemorphism is continuous
transformation and has a continuous
inverse

(different from homomorphism)

Figure 307: The same topology on a
balloon when inflated and deflated

Topology = geometry on a balloon

Figure 308: A 1-, 2- and 3-sphere

Point set topology 249

Figure 309: Illustrations for the axioms for a neighborhood

Neighborhood Axioms
H1: To each point x there corresponds at least one neighborhood U(x);
 each neighborhood U(x) contains the point x.
H2: If U(x) and V(x) are two neighborhoods of the same point x,
 then there exists a neighborhood W(x), which is a subset of both.
H3: If the point y lies in U(x), there exists a neighborhood U(y), which is a subset of U(x).

2.2 DEFINITION OF CONTINUOUS TRANSFORMATIONS
PRESERVING NEIGHBORHOODS
Transformations that do not change the neighborhood are called
continuous: Neighborhoods are mapped to neighborhoods. The
exact definition is:

 “A mapping f of a topological space R onto a (proper or
improper) subset of a topological space Y is called continuous at
the point x, if for every neighborhood U(y) of the point y= f(x)
one can find a neighborhood U(x) of x such that all point of U(x)
are mapped into points of U(y) by means of f. If f is continuous
at every point f ∈ R, it is called continuous in R.” (Alexandroff
1961, 9)

If there is a neighborhood around a point—whatever small—
which is not preserved (i.e., is not mapped to be contained in a
neighborhood around the mapped point) then this points is a
discontinuity point.

2.3 DIMENSION OF A SPACE
The dimension of a (usual) space is defined as the dimension of
the neighborhoods. Neighborhoods are homoemorph for
example, to a 2d disk or a 3d sphere.

A space with neighborhoods is a
topological space.

Figure 310: Topological transformation

Figure 311: Not a topological
transformation

Frank: GIS Theory Draft V15 Feb.05 250

3. METRIC SPACES
A space in which there is a distance defined for any pair of
points is called a metric space. A definition of a distance
function induces a concept of neighborhood to a space. Different
distance functions (see chapter xx) give different neighborhoods
but not necessarily different topological spaces (Figure 312).

The natural topology for geographic space is the topology
following from the ordinary Euclidean metric. Other topologies
are possible, but seldom used in applications.

4. INTERIOR, EXTERIOR, AND BOUNDARY POINTS
It is useful to differentiate points inside, on the boundary or
outside of a set:
• Interior Point (Figure 313): a point for which any sufficiently

small neighborhood contains only points which are in the set.
• Exterior Point (Figure 314): a point for which any sufficiently

small neighborhood contains only points which are not in the
set.

• Boundary points (Figure 315) are those points, for which any
neighborhood contains points that are inside and points that
are not inside the set.

Definition boundary point:
 In any neighborhood of a boundary point—whatever
small—there are points that are outside and points
that are inside

5. BOUNDARY, INTERIOR, EXTERIOR
The notions of importance for practical work are boundary,
interior, and exterior. The interior of a figure is the set of all
interior points; the boundary of a figure is the set of all boundary
points. The figure is the union of interior and boundary, and
closed. The exterior is the complement of the figure.

Egenhofer has shown, how ordinary geometric relations like
touch, intersect, etc. can be defined using only the notions of
interior, boundary, and exterior (Egenhofer 1989) (see next
chapter). For every geometric figure, operations to determine
interior, boundary and exteriors will be required and then the
determination of the topological relations as defined by
Egenhofer follows from intersections of these parts of the
figures.

Topological transformation preserve
dimension.

Figure 312: Two different distance
functions give different neighborhoods(but
the same topology)

Figure 313: Interior point

Figure 314: Exterior point

Figure 315: Boundary point

Figure 316: A is closed

Figure 317: The complement of A (open)

Figure 318: Outside, boundary, and
interior

 Boundary—All points that are
neither interior nor exterior.

Point set topology 251

6. OPEN AND CLOSED SETS
A set is called open, if it contains only interior points. A close set
contains the interior points together with the boundary points. A
set is close or open or neither of the two.
Open and closed sets can be taken as fundamental for topology
and a set of axioms given (S1 to S4). This is an alternative
approach to the axiomatic foundation given before. The axioms
H1 to H3 (above) follow from the axioms for open and closed
sets; if H1 to H3 are assumed as axioms then S1 to S4 follow as
theorems: the two theories are equivalent.

Open and Closed Sets (subset of M)
S1. The empty set and the set M are open
S2. The intersection of two open sets is open (as is the intersection of finitely many open sets)
S3. The union of open sets is open (finite or infinite union).
S4. A subset of M is a neighborhood of x if there is an open set O such that x is element of O and O a subset

of M.
For subsets of a set the operation complement applies also to
open and closed sets, such that the complement of an open set is
closed and vice versa.

Complement
 open a => closed (complement (a))

Closed set could be defined using the complement operation.
The complement of open set is closed; a set is closed, if the
complement is open. Sets can be half-open – being open in some
place and closed in others.

7. CLOSURE
The operation closure adds the boundary to a set, and converts it
to a closed set. An already closed set is not changed, the
operation is idempotent (closure . closure = closure). The
closure of a half-open or open set is a closed set containing the
given set. The axioms for closure give yet another axiomatic
base for topological space::

topological space is a pair (X, closure), consisting of a set X and a mapping
 closure : Powerset X -> Powerset X, such that for all a, b < X:
 closure 0 = 0
 a ⊆ closure a,
 closure (closure a) = a
 closure (a ∪ b) = closure a ∪ closure b

Open set = interior only
Close set = interior and boundary

An open set is a set that does not
include its boundary.

Figure 319: Set A is half-open, A union B is
closed

Frank: GIS Theory Draft V15 Feb.05 252

 closed (closure a) = True
 closure . closure = closure

8. CONNECTED
A space is connected if it cannot be written as a disjoint union of
open sets; for most applications the simpler notion of 'path
connected' is used: A figure is connected if between any two
points is a path that is completely in the interior (Figure 320).
Figure 321 gives an example of a space which is connected, but
not path connected: there are no interior points in the line
connecting the two parts, therefore no path 'in the interior' goes
from left to right. Continuous mappings of connected spaces are
connected; the union of non-disjoint connected spaces is again
connected (Figure 322).
A region is simply connected, if it has no holes. Every closed
path in a connected figure can be transformed
homoemorphically to every other closed path; this is not
possible in a figure, which is not simply connected (Figure
325).
Holes are crucial for the way objects can be used: Rooms are
holes in buildings, as are windows, a needle without a hole is
useless etc.(Casati and Varzi 1994). Lakes are holes in the land
(2d view) and islands are holes in the water surface (Figure
326). The number of holes in a figure are related to the Betti

number, another topological invariant, which is increasingly
studied in computational geometry [chazelle, Edelsbrunner].

9. INTUITION AND TOPOLOGY
Some aspects of point set topology are not directly connected to
our experience. We think of objects always including their
boundary. counterintuitive. In Figure 327 we see a lake with an
island: the lake is closed and has a boundary towards land and
towards the island. But the island has also a boundary, and island
and lake do not overlap! The same difficulty applies to parcels
with boundaries (Figure 327)
The intuitive statement that the lake and the parcel do not
overlap, in the sense that they do not have points in common is
false: lake and parcel overlap, they have the boundary in
common. If we remove one of the parcels, then the other parcel
and the lake are half-open, they lack the boundary with the

Figure 320: Connected figure

Figure 321 Connected but not path
connected figure

Figure 322: The non-disjoint union of two
connected spaces is connected

Figure 323: Simply connected figure

Figure 324: Not simply connected

Figure 325: Path A cannot be transformed
to path B

Figure 326: The Hotel Faakersee on the
island in the lake

Point set topology 253

removed parcel. What are the options to resolve this
contradiction?

9.1 PARTIALLY OPEN, PARTIALLY CLOSED OBJECTS
From a position of point set topology, either the parcels are
closed and the lake open (does not have a boundary) or the
parcel is partially open and the lake closed as shown in Figure
327. This solution is not practical, as all parcels then have to be
partially open and the assignment of the boundary to one of the
two parcels must be organized (for example, the boundary
belongs to the parcel north or west).
Intuitively, we seem to attribute the boundary to the harder
object. The river bed (Figure 328) has a boundary, the water in
which it floats does not have a cognitively salient boundary; the
boundary between the river bed and the water is attributed to the
earth, the boundary between river and air above it is attributed to
the river. In the composition, the river seems half-open. But
when considering the earth, the river or the atmosphere
individually, then each is seen as closed.

9.2 ALL OBJECTS ARE CLOSED AND OVERLAP
If both lake and parcels are closed and have boundaries, then
they overlap and the overlapping part is the boundary (with an
area of zero).This is again counter-intuitive, as the partition of
parcels and lakes is made such that they do not overlap.

9.3 PLAUSIBLE ALGEBRA
To capture our intuitions about boundaries better, it is customary
to consider all regions as closed and a test for overlap yields a
positive answer only when more than just the boundary have
points in common (i.e., a non-zero area of overlap). If two
objects have just the boundary in common, then we say they
‘touch’ (for a definition see next chapter).

The result of deducing an object B from another one A,
which is the intersection of A with the complement of B, is a
partially open, partially closed object A \ B. For a plausible
topological algebra, every object is closed; after every operation,
closure is applied to all objects. A theory of regular regions is
suggested by(Randell, Cui et al. 1992).

Figure 327: Two parcels on a lake

Figure 328: Cross section of a river

Figure 329: Parcels and lake as close

Figure 330: The difference of two sets is
half open

An intuitive topology: Closure is
applied to all objects.

Frank: GIS Theory Draft V15 Feb.05 254

10. TOPOLOGICAL CONSTRUCTIONS
From sets A with a topology (A, O) other topologies can be
constructed using the normal methods to construct sets from
given sets (subset, sum, and product). The most are:

10.1 SUBSPACE
A subset B of the set A can be a topological space (B, O) with
regards the topology O.

10.2 SUM
The (direct or disjunctive) sum of two sets is defined as the

X + Y = X ×{0} ∪ Y ×{1}
If X and Y are topological spaces, then the direct sum is a

topological space, sometimes called the topological sum of X and
Y.

10.3 (CARTESIAN) PRODUCT
The product of two topological spaces (Figure 331) is a
topological space if there are neighborhoods of (x,y) ∈ W = X x
Y, such that U is a neighborhood of x in X and V is a
neighborhood of y in Y and U x V subset W {Jänich, 1987
#8849@, 14; Jänich, 2001 #10601; Jänich, 1987 #10602}

11. BASE AND SUBBASE OF A TOPOLOGY
We have seen the importance of the base for a vector space. A
similar construction is useful for topology. For example, the
boxes U x V of a product topology form a base.

A base for a topological space A is a set B of open sets, such
that every open set of A is a union of open sets from B. A
subbase A is a set C of open sets, if every open set of A is the
union of the intersection of a finite number of sets from C. If X is
a set and S a subset of the powerset of X then there is exactly one
topology for X for which S is a subbase.

12. SUMMARY
Point set topology is constructed to capture the continuity of
space and axiomatizes this notion. It starts with the concept of
space as an infinite, continuous set of points. For point set
topology, the fundamental concept is neighborhoods, and open
and closed sets, for which properties are defined.

Axiomatic definitions of point set topology and topological
relations do not produce in constructive solutions. In particular

Figure 331: Product space

Point set topology 255

the influential RCC theory is not constructive, it cannot be
implemented directly(Cohn and Hazarika 2001). Point set
topology is based on infinite sets, which cannot be implemented
directly; for implementation, we need finite representations,
which we will achieve with combinatorial topology (see next
part xx).

REVIEW QUESTIONS
• What is the essential property of space?
• Define boundary, boundary point?
• What are open and closed sets? Why do they lead to counter-

intuitive rules?
• Explain the concept of neighborhood.
• Why is point set topology not directly implementable?
• Draw a simply connected region! Draw one that is not!
• Proof that circles based on the regular Euclidean distance are

neighborhoods fulfilling the axioms.

Chapter 22 TOPOLOGICAL RELATIONS

The relations between two objects that are not changed by
topological transformations are suitable to describe geographic
situations. They are cognitively salient and used in human
communication. Natural language terms describe such
topological relations (the words inside and overlap are just two
examples); but natural languages do not provide strict definitions
for these terms, nor do they have a single, always applicable
meaning(Frank and Raubal 1998; Frank and Raubal 1999). This
chapter gives definitions for a comprehensive set of topological
relations.

Topology determines
metric refines (Egenhofer).

Topological relations play a role in geography and a large
variety of definitions and names were proposed for spatial query
languages and analysis functions(Frank 1982; Frank, Raper et al.
2001). The goal is to find a function that assigns to every
topologically different situation a value describing the
topological aspects of the situation. This is not achieved yet; the
relations Egenhofer introduced assign to each situation of two
simple connected regions with codimension 0 a value, such that
this assignment is invariant when the situation is transformed by
a topological transformation. There is not yet a function that
assigns to each topologically different situation a different value
and it is not clear, if such a fine differentiation would be
desirable.

The concepts of point set topology are used in a GIS query
language, when we ask for all the towns in a county or check,
whether Lake Constance is inside Switzerland or at its boundary.
Point set topology provides the axiomatization, but is of limited
use for implementation.

Topological relations can be composed: If all our knowledge
about a situation covers the (topological) relations without
knowledge about the metric properties, we still are able to draw
interesting conclusions. For example, from knowing that the
hotel Faaker See is on the island and the island is inside the
Faaker See and the Faker See is in the land of Carinthia, we

Figure 334: Two island with different
shape, but same topology

Simplex 257

immediately conclude that the hotel is in Carinthia (see figure
previous chapter xx).

1. INTRODUCTION
Among topological properties relations between objects stand
out. Whether two objects touch or overlap or are disjoint
influences often what we can do with them. Topological
relations are easily observable without measurements and are
invariant under topological transformations. There are many
ways an island can be inside a lake and many of these situations
can be transformed continuously into each other; the functional
properties are preserved by these continuous transformations
(Figure 334): the island remains an island. It is sufficient to
know the topological relation, because it determines the
functionality and we need not know anything in particular about
the metrics of the situation.

In this chapter we concentrate on the relations between two
simple (connected) objects (Figure 335) that are invariant under
topologically transformations. The chapter starts with Jordan's
curve theorem, which separates objects from their environment.
The topological relations were originally investigated for
intervals of time by Allen(Allen 1981; Allen 1983; Allen 1984;
Allen and Hayes 1985; Allen and Kautz 1985). This
investigation of relations between intervals of time mixes the
aspect of continuity with order (Figure 336). The subsequent
generalization to regions of (unordered) space by Egenhofer
discussed the special case of 2d simply connected
regions(Egenhofer 1989). The treatment here separates these two
aspects of continuity and order (Figure 335, Figure 336). First,
the topological relations for unordered space are discussed
before relations between intervals of an ordered domain—for
example time, or the z axis, which is strongly ordered by gravity,
are discussed.

The purpose of the chapter is to define a function topRel that
assigns to any two regions in space a single Egenhofer relation.
This assignment is invariant under topological transformations.

topRel (a,b) = topRel (f (a), f(b))
 where f any topological transformation

Figure 335: Topological relations in 2d
space and

:
Figure 336: The same topological relations
in an ordered domain

Figure 337: (a) simply connected, (b)
and (c) are not simply connected regions

Frank: GIS Theory Draft V15 Feb.05 258

The approach is restricted to simply connected (Figure 337)
regions with codimension 0. The figures must also be
homogenous in the dimension; they must have locally
everywhere the same dimension. This precludes figures with
spikes, etc. (Figure 338)

2. JORDAN'S CURVE THEOREM
The Jordan curve theorem—probably one of the simplest but
most important theorems of geometry—says that a closed curve
divides a plane in two regions (and correspondingly for higher
dimensions) (Figure 339). From the curve theorem follows, that
a line connecting and interior point of a region with an exterior
point crosses the boundary line.

3. TOPOLOGICAL RELATIONS BASED ON SET
OPERATIONS ONLY

The relations between two regions obtained by the set operations
are invariant under continuous transformations. One could just
separate disjoint, intersect, equal, inside, and contains/inside.
• A disjoint B: A ∩B = 0
• A intersect B: A ∩ B ≠ 0, A ∩ -B ≠ 0, -A ∩ B ≠ 0
• A equal B: A ∩ B = A, B ∩ A = B
• A inside B: A ⊆ B
• A contains B, B inside A: B ⊆ A
Contains is the converse of inside, whereas disjoint and equal
are symmetric.

These relations do not cover all the relations that people
differentiate and that are relevant for the functioning of objects.
It is, for example, not possible to differentiate between general
disjoint and the special case of being the neighbor; Zurich and
Rapperswil are on the Lake Zurich, but Schwyz and Uster are
not (Figure 341). It is to differentiate such situations and the
topological relations Egenhofer differentiates achieve this:

4. TOPOLOGICAL RELATIONS FOR SIMPLY CONNECTED
REGIONS

For simple connected regions (Figure 337) in any unordered
space, 8 relations can be separated: disjoint, touch, overlap,
covers (with the converse covered by), inside (with the converse
contains) and equal. The semantics of these 8 terms are not the
same as those with the same name defined by set operations (see
section 3 above). They were formally defined by Egenhofer in

Figure 338: Not a figure of geographic
interest

Figure 339: A line connecting an interior
point with an exterior point must cross the
boundary

Figure 340: The characterization of the
five relations differentiated with set
operations

Figure 341: Relations of cities and a lake

Simplex 259

his Ph.D. thesis (Egenhofer 1989) and later included in the
spatial extension of the SQL standard (Egenhofer used the term
"meet", which I replace here with "touch" to avoid confusion
with the lattice operation meet). These relations are independent
of the dimension of the unordered domain and require only that
the regions are simply connected (Figure 337).

4.1 TOPOLOGICAL RELATIONS OF SIMPLY CONNECTED OBJECTS
WITH CO-DIMENSION 0: THE 4 INTERSECTIONS
Egenhofer observed that topological relations between simple-
connected areas can be expressed in terms of the intersection of
the interiors and the boundaries of the two objects; it is sufficient
to observe, whether these intersections are empty or non-empty
(Figure 343).

Relations characterized in this way are certainly invariant
under topological transformation: topological transformation
must transform the interior of a region into the interior of the
transformed region and the boundary into the boundary of the
transformed region. The four characterizations of a relation
between two regions are the same before and after the
transformation:

For simply connected objects with co-dimension 0 it is
possible to differentiate between topological relations by
considering the pairwise intersection of boundaries and interiors
and testing only for emptiness or non-emptiness. This gives a
total of 42 = 16 different combinations of boundary or interior that
can be intersected and the result is either empty or non empty.
From the total of 16 different combinations, only 8 can be
realized with simply connected figures with codimension
0(Egenhofer 1989).

In Figure 344 and Figure 345 the eight possible topological
relations geometric configurations are shown, the termini
Egenhofer proposed (with touches for Egenhofer's relation meet)
and the defining 4 intersection values are given as empty (E) or
non-empty (NE).

Four relations are symmetric: rel A B => rel B A . The
matrix for the intersection values for these relations must be
symmetric. They are: disjoint, meet, overlap, and equal. Four
relations are non-symmetric: inside and covers. They have a
converse relation, namely contains and covered by.

Figure 342: The eight topological relations
in an unordered domain (the last column
gives the names used in the RCC calculus)

Figure 343: The four intersections for
boundary and interior

Frank: GIS Theory Draft V15 Feb.05 260

Figure 344: The 4 symmetric relations Figure 345: The four non-symmetric
relations

The relation overlap is special for the 1d case: the
intersection of the two boundaries is empty (Figure 346), the
entry for overlap in Figure 344 is valid for d >= 2.

4.2 CLASSIFICATION BASED ON THE CONNECTED PROPERTY
At about the same time as Egenhofer proposed the classification
of topological relations based on the intersection of boundaries
and interiors, Cohn and co-workers proposed a classification
based on a single predicate connected. Their RCC contains
different definitions for the same 8 relations between simply
connected regions(Cohn 1995).

This second definition of the same topological relations
confirms the fundamental nature of the relations identified by
Egenhofer. Egenhofer's approach is based on the intersection of
boundary, interior and, later, exterior of the regions connects
better to combinatorial topology (see later chapter 24xx) and is
directly implementable, whereas the RCC axiomatization is
based on point set topology and difficult to use as guidance for
implementation; technically we say that the RCC calculus is not
constructive(Cohn and Hazarika 2001).

5. CONCEPTUAL NEIGHBORHOOD FOR TOPOLOGICAL
RELATIONS

The 8 topological relations can be arranged in a succession
of relations that are obtained if one figure is moved with respect
to the other figure (Figure 349, The relations that can be
differentiated with set operations are different from the
Egenhofer relations, even if they have the same names. For
them, a conceptual neighborhood graph can be drawn (Figure
348); it is similar, but contains less relations.

Figure 346: Overlap in 1-d

Simplex 261

). Freksa proposes to call such diagrams conceptual
neighborhoods(Freksa and Mark 1999). Consider two figures of
unequal size: First the two figures are disjoint, then they touch,
overlap, cover, are inside (if the two figures of equal size, then
the succession is disjoint, meet, overlap, equal). Relations equal,
touches and covers/coversBy are dominant(Galton 1997); they
hold only for one instant, whereas the other relations hold for
many different positions.

Figure 349: Conceptual neighborhood

The relations that can be differentiated with set operations
are different from the Egenhofer relations, even if they have the
same names. For them, a conceptual neighborhood graph can be
drawn (Figure 348); it is similar, but contains less relations.

6. EXTENSIONS OF THE FOUR INTERSECTION
TOPOLOGICAL RELATIONS

From Egenhofer’s thesis sprang a rich literature discussing
extensions to the base set of topological relations. There are
clearly topologically different situations that have the same
Egenhofer four-intersection values (Figure 352) and suggestion
how to separate them abound.

6.1 RELATIONS BETWEEN OBJECTS WITH CO-DIMENSION NOT
ZERO
The original definitions by Egenhofer are valid for simple-
connected, 2d regions in 2d space. For lines in 2d space, which
have co-dimension 1, topologically different situations can not
be differentiated (Figure 352). For 2 simple lines, the four
intersection method gives one more symmetric relation: intersect
(Figure 350) and a non-symmetric one (touches-1, touchedBy-1,
(Figure 351). These relations are topologically invariant, but

Figure 347: Conceptual neighborhood
graphical

Figure 348: Conceptual neighborhood for
set operation based relations

Figure 350: Intersection of two line
segments(codim = 1)

Figure 351: Two line segments touch-1

Frank: GIS Theory Draft V15 Feb.05 262

configurations that are topologically distinct result in the same
relations; they are not sufficient to differentiate all topologically
distinct situations (Figure 352).

6.2 NINE INTERSECTION MODEL OF TOPOLOGICAL RELATIONS
To differentiate the two situations in Figure 352 observe not only
the intersections between boundaries and interiors, but also the
intersection between them and the exteriors of the figures. This
is called the nine-intersection model, because the intersection
between boundary, interior and exterior are checked; this gives 9
intersections, which are tested for empty or not(Egenhofer and
Herring 1991).
The two relations touches' and touches'' can be distinguished in
the nine-intersection model (Figure 353, Figure 354). The nine-
intersection model is a superset of the four-intersection model
and distinguishes between simple connected regions with co-
dimension 0 the same relations than the four-intersection model.
There are 29 = 512 relations possible, but most of them cannot be
realized with simple connected objects.

There are a total of 33 topologically distinct relations
between two simple lines and 24 additional ones between non-
simple lines (Figure 356). Egenhofer and Herring have also
identified 20 relations in 2d space between a region (without
hole; Figure 355) and a line(Egenhofer and Herring 1991). Ten
relations exist between two regions with holes in addition to the
8 that exist also between regions without holes. Even with these
fine distinctions, which are much finer than what natural
languages has simple terminology for, nine-intersection can still
not differentiate all topologically different situations (for
example the two situations in Figure 359 are not distinguished).
It seems not possible to achieve such a definition for topological
relations..

The topological relations assign to two regions an Egenhofer
relation, such that any topological transformation of the two
regions gives the same relation. Two situations (A,B) and (C,D)
that result in the same topological relations r (based on the 4 or 9
intersection model) r = topRel (A, B) = topRel (C, D), can be
topologically distinct, i.e. there is no topological transformation
g, such that g (A) = C and g(B) = D. This means: Two pairs of
regions which result in the same Egenhofer relation are not
always topologically equivalent (Figure 358).

Figure 352: Two distinct configuration
result in the same Egenhofer relation

Figure 353: Touches'

Figure 354: Touches''

Simplex 263

6.3 REFINEMENTS OF THE TOPOLOGICAL PROPERTIES
Egenhofer and Franzosa have identified a number of refinements
for the intersection of boundary and interior, which distinguishes
the situation. For each intersection it is not only tested if it is
empty or non-empty, but for non-empty intersections we
distinguish:
• the number of components (in Figure 358 the number of

components of interior-interior intersection is in the upper
figure is 1 and in the lower figure is 2)

• the dimension of the component is identified (in Figure 358,
the upper figure has dimension 0 for the intersection of the
two boundaries, the lower figure has dimension 1)

• the sequence of boundary-boundary intersections or the types
of boundary-boundary intersections(Egenhofer and Franzosa
1995).

The distinction of intersection of different dimension helps
to distinguish between two types of neighbors. Consider the four
parcels in Figure 357: both 1 and 3 and 1 and 5 are touching—
are 3 and 5 both neighbors of 1, and with what definition? We
will later call the 1 – 3 relationship a 4-neighborhood and 1 – 5
an 8-neighborhood (see xx).

6.4 HOLES
Regions with holes, which were excluded in the initial
definitions by Egenhofer, pose additional problems for the
classification of topological relations: Figure 360 gives two
situations that give relation overlap, but are topologically
distinct. A region with holes can be seen as a region without the
holes plus a collection of holes. The topological relations
between n regions (without holes) are completely specified by n2
relations. Between two regions with m and n holes exists a total
of (m + n + 2)2 topological relations describing the
configuration. Some relations are redundant and only m*n + m +
n + 1 are necessary(Egenhofer, Clementini et al. 1994).

6.5 COMBINING TOPOLOGICAL RELATIONS WITH METRIC
RELATIONS
The topological relations relate to an order relations between
simply connected regions:

A inside B implies (size A) < (size B)
A equal B implies (size A) = (size B)

Figure 355: A region with and without
hole; with a connected or disconnected
boundary

Figure 356: A simple and a complex line

Figure 357: Parcels

Figure 358: Two pairs of regions which
both overlap but are not topologically
equivalent

Figure 359: Two situations which are only
differentiated by the dimension of the
intersection

Frank: GIS Theory Draft V15 Feb.05 264

Inside imposes a partial order, whereas size a total order: from
(size A) < (size B) does not follow that A inside B (Figure 363).

It is tempting to record in the values of the intersection
matrix an indication how much they intersect. For example, two
areas that overlap a little bit and two areas that overlap a lot have
both the same topological relation, but the Gestalt is different
(Figure 364). The same applies for touching and the other
topological relations. The measure of how much the two
boundaries or interiors overlap, is best expressed as a ratio of the
overlap, which makes the measure independent of the size of the
objects. Such relations are not topological because they are not
invariant under a continuous transformation, but they are
expressing useful properties in a scale independent manner.

6.6 TOPOLOGICAL RELATIONS AND APPROXIMATIONS
Objects with indetermined boundaries (Burrough and Frank
1995; Burrough and Frank 1996) can be represented by an area
that certainly is occupied by the object and a second area where
perhaps the object is situated (Figure 362). One might ask what
are the topological relations between two objects represented in
this way? What relations obtain certainly? What relations may
obtain? This has been explored but applications are not yet using
these distinctions(Clementini and Di Felice 1996; Cohn and
Gotts 1996).

7. COGNITIVE PLAUSIBLE TOPOLOGICAL RELATIONS
The differentiations in 8 topological relations covered by the
four intersection model cover a large part of the practically
relevant cases(Mark and Egenhofer 1992; Egenhofer, Sharma et
al. 1993; Egenhofer and Mark 1995; Shariff, Egenhofer et al.
1998). Mark and Egenhofer have checked with extensive subject
tests that the topological relations differentiated by intersection
of interior, exterior, and boundary are cognitively plausible: they
are the kind of relations people differentiate(Mark and Egenhofer
1992; Egenhofer and Mark 1995).

8. ALLEN’S RELATIONS BETWEEN INTERVALS IN TIME
Allen (Allen) has classified the relations between time intervals
into 13 named relations (Figure 365). Time intervals are simply
connected regions of an oriented line. Oriented intervals have a
start and an ending point that is differentiated. This leads to a
finer distinction of the relations, where relations that are

Figure 360: Two topologically different
pairs of regions, which cannot be
distinguished by the 4-intersection

Figure 361: The 4 intersection for both
pairs in Figure 360

Figure 362:An Egg-Yolk representation of
two objects with uncertain boundaries:
"perhaps overlap" (Cohn and Gotts 1996)

Figure 363:(size A) < (size B) but not A
inside B

Figure 364: Two different gestalt of
overlap

Simplex 265

symmetric in an unordered domain become antisymmetric in the
ordered domain:
• Disjoint becomes either before or after
• Touches becomes meets or met-by
• Overlap becomes overlaps or overlapped-by, etc.

9. GENERALIZATION TO TOPOLOGICAL RELATIONS IN
ORDERED N-DIMENSIONAL SPACES

Allen's characterization of relations between temporal intervals
can be derived from the Egenhofer relations and a differentiation
of order. It is customary to express this as conditions on the
starting and ending points:

starts i j = (start i == start j) && (finish i < finish j).
It may be simpler to determine the center of gravity (the zero
moment, see xx) of the two intervals and classify first using the
four intersection model and then select the precise temporal
relation:

A before B = A disjoint B && center A < center B
A start B = A covers B && center A < center B

Figure 365: The relations which are differentiated between
simply connected regions of an ordered domain

Frank: GIS Theory Draft V15 Feb.05 266

etc.
This approach is generally useful in 2d (general n-d) spaces. In
an ordered 2d space, we can find one or two ordered axis.
Geographic space, for example, is ordered by the north-south
direction, which influences the amount of sunshine available,
and on the east-west direction or an inland-sea direction. Italy
touches Switzerland, but this is mainly in the north-south
direction, whereas the relation between France and Germany is a
touching in east-west direction (Figure 366 and Figure 367). The
same qualifications can be applied to covers, contains etc.: Styria
is south inside in Austria (earlier figure xx).

10. PROJECTIONS AND TOPOLOGICAL RELATIONS
Most GIS represent objects with the 2d projection in the x-y-
plane. Unfortunately, the topological relations between two
regions in 3d space and the 2d projections are not simple and I
know of no coherent theory. The problem is that the projection
of the boundary of a 3d object is not the boundary of its 2d
projection (Figure 369), the projection of the interior is the
interior of the projection (Figure 368), but the projection of the
exterior is not the exterior of the projection (Figure 370).

Similar Projections occur when we consider space and time.
Hagerstrand has introduced the Space-Time diagram into
geographic research, where the projection of the location of a
moving object is combined with time shown on the z-axis
(Figure 371). In such space-time diagrams we can show as cones
all the points a person can possibly reach when we know her
location at a given time (Figure 372). One may then ask if two
people can possibly have met, i.e., if their cones of reachability
have intersected(Hornsby and Egenhofer 1997).

Figure 366: Touching southward

Figure 367: Touching eastward

Figure 368: Projection of interior is
interior of projection

Figure 369: Projection of boundary is not
boundary of projection

Figure 370: Projection of exterior is not
exterior of projection

Simplex 267

11. SYMBOLIC PROJECTION
An earlier approach to classify relations between objects was
using on symbolic projections(Chang, Jungert et al. 1989;
Jungert and Chang 1989; Chang, Jungert et al. 1990; Jungert
1992; Jungert 1993). It characterized the relations of regions by
the relations of their projections to the coordinate axis (Figure
373). This approach was designed for searching in a large
database of images, because each image can be represented by
two strings and search for substrings is fast. The major
disadvantage is that this approach is not invariant under

rotation.

12. MOVING AND CHANGING REGIONS
Egenhofer's topological relations and especially the conceptual
neighborhood can be understood as the sequence of relations
between a fixed and a moving object (Figure 376). A sequence
of topological relations is characteristic for certain types of
changes in regions. In the conceptual neighborhood graph
different movements result in different transitions between two
relations that can occur without any other intervening
relations(Egenhofer and Al-Taha 1992). This can be used, to
differentiate different types of movements —rotations or
translations—and changes to the region—growing or
shrinking—as distinct patterns of changes (Figure 375, Figure
377, Figure 378, and Figure 379):

13. CONCLUSION
A cognitively plausible set of topological relations has been
identified and formally defined by Egenhofer(1989). The
relations are differentiated by overlap of interior or boundary of
the objects. To compute these relations from geometric objects
represented in a GIS, it is necessary to be able to compute the
interior and boundary of the objects and to test these for
intersection or emptiness of intersection.

Figure 371: A person’s trip from home to
work, lunch at a restaurant and a stop at a
shop on his way home

Figure 372: Cone of points reachable in 30
minutes

Figure 373: Symbolic projection of A and
B

Figure 374: Transition by move or change
of region

Figure 375: Pattern for translation

Figure 376: A moving object A at three
different times before the fixed object B

Frank: GIS Theory Draft V15 Feb.05 268

These topological relations are invariant under continuous
transformation f:

topRel A B = topRel (f A) (f B)
but not all topological separable relations result in different
Egenhofer relations. Egenhofer's approach differentiates
originally between 16 relations (24), of which not all can be
realized in 1d or 2d space for simple connected figures. For
simple-connected 2d regions in 2d space, only 8 are possible for
objects with codimension 0.

Egenhofer relations are restricted to simple connected
figures. The generalization to consider the 9 intersection between
interior, boundary, and exterior of the figure can differentiate
more relations; refinements are possible if the dimension of the
intersection, the number of components or even the size of the
intersection is considered. The resulting large number of
different topological relations may be useful in some
applications, it seems not to lead to a generally useful,
cognitively manageable set of relations.

For objects with multiple components or holes, a matrix that
gives the relations between all the components describe the
relation; again the analysis of such situations is application
dependent. For example, it may be interesting for some
applications to observe that the components of object A and
object B pairwise overlap, or pairwise touch (Figure 380).

In ordered domains, some relations can be differentiated by
observing the relation of the center of gravity of the two objects.
For time, Allen's differentiated 13 relations between two
intervals. This can be seen as the product of Egenhofer's
relations and the order of the center of gravity.

14. REVIEW QUESTIONS
• What are the topological relations defined by Egenhofer?

How are they defined? Why are exactly these relations
differentiated?

• What does it mean to say that a relation is dominant? Which
relations are dominant?

• What relations can be differentiated when only interior and
exterior are considered?

• What is a ‘conceptual neighborhood’?
• What is the difference between 4 and 9 intersection relations?

Figure 377: Pattern for rotation

Figure 378: Pattern for expanding A or
shrinking B

Figure 379: Pattern for shrinking A or
expanding B

Figure 380: Components A touch
components of B (from south-east)

Simplex 269

• What are space-time diagrams? Draw one for your trip from
home to the university.

• Why do symmetric relations not have a converse?
• Build the table of distances between the relations in the four

intersection tables (count each difference in an entry as 1 unit
distance); what are the connections with the smallest distance?
How to interpret?

Frank: GIS Theory Draft V15 Feb.05 270

PART EIGHT ALGEBRAIC TOPOLOGY:
SIMPLEX AND COMPLEX

Combinatorial topology is approaching topological problems
with algebraic methods. In part 6 the geometry of unbounded
geometric objects (flats) was clarified and in part 7 topology and
how it structures the continuous space of bounded objects were
shown. The three chapters in this part use combinatorial or
algebraic topology to deal with geometry of finite objects:
segments of infinite lines, triangles, but also regions of arbitrary
shape, and eventually, subdivisions of space. A GIS is using
these structures to record the shape and the position of all the
things it collects information about: parcel and their boundaries,
lakes and woods but also street networks or the gas distribution
pipes.

Combinatorial topology is based on counting of finite
objects(Henle 1994, 5). Countable, finite objects are more
amenable to implementation on computers than sets of infinite
number of points in point set topology. What are the geometric
objects that can be counted to capture the notion of continuous
space? The well-known Euler characteristic for a cell is a prime
example for a count, which is invariant under topological
transformations (Figure 381): F – E + V =1, where F is the
number of faces, E the number of edges and V the number of
vertices.

Combinatorial topology studies invariants of bounded
geometric objects under topological transformations. We first
investigate the simplest geometric configurations: points, straight
line segments, triangles and operations applicable to them. These
simplices have great advantages. They are convex parts of flats
and have a fixed number of boundary points for each dimension.

The second chapter constructs complex geometric objects
from simplices. The purpose is to construct an algebra that is
closed under intersection and union. The third chapter shows
how metric information is used to construct the simplicial
complex necessary. This completes the goal of this part: a

The goal of the chapter is a method
to calculate the intersection of two
arbitrary figures, independent of the
dimension or complexity.

Figure 381: Euler's polyeder formula for a
cell

Simplex:
part of flat
convex
fixed number of boundaries

Simplex 271

general method to intersect arbitrary figures results from the
merging of the cell complexes of the given figures.

Simplicial complexes have several applications in GIS: they
are a generalization of graphs, which will be treated in the
following part, and subdivisions, especially triangulations (part
10).

Frank: GIS Theory Draft V15 Feb.05 272

Chapter 23 GEOMETRIC PRIMITIVES: SIMPLICES

Geometric objects are composed of points, lines, and areas. We
study in this context the simplest forms, called simplices (Figure
382). They form the building blocks from which more complex
objects are then constructed in the next chapter.

Union and intersection is not computable for simplexes
(Figure 383). This chapter is therefore laying the ground for the
discussion of simplicial complexes in the next chapter, where
eventually merging complexes allows union and intersection of
arbitrary complexes (chapter 25xx).

1. INTRODUCTION
The vector algebra (chapter 9xx) introduced geometric lines of
infinite length, which was generalized to the notion of flats
(chapter 19xx). In this chapter we construct geometric values for
the simplest geometric configurations with finite geometries:
points, straight line segments, triangles, etc. There is an simplex
for any dimension, generally described as n-simplex (or n-simp).

Similar to previous chapters, the focus is on the general case,
the n-simplices. Dimension of objects is decisive: we have
different words for properties of depending on their dimension
(length, area, volume). This is traditional approach for
computational geometry, which goes back to Hilbert's approach
to geometry, applies also to GIS and CAD; it is cognitively well
justified, but has not lead to a consistent and attractive theory.

In this chapter, different geometric objects—points, lines,
and triangles—are generalized to a single class simplex (n-simp)
with operations that apply to all of them. Object-oriented
software engineering (Wegner 1987; Meyer 1988; Rumbaugh,
Michael Blacha et al. 1990; Egenhofer and Frank 1992) calls this
generalization: the common operations applicable to several
classes are identified and described at a general level. This
dimension independent approach continues the dimension
independent treatment of flats and the discussion of topology.

Figure 382: Simplices (they are open and
do not include the boundaries!)

Figure 383: The intersection of two
simplices is not a simplex!

Simplex 273

2. SIMPLEX DEFINITION
Simplices are the simplest finite, open geometric figure in space
of any dimension (Figure 382). They are constructed from the
least number of simplices of a lower dimension.

Simplices are the object of studies in combinatorial (or
algebraic) topology; for their use in GIS, we must consider their
metric aspects as well: their properties, the relations between
simplices and the operations applicable to them can be separated
in metric and topological ones. Topological properties are:
• Rank, dimension, codimension, and corank
• Orientation
Metric properties are:
• Length, area, volume, generalized to size, moments
• Distance
• Orientation.
Relations between simplices are:
• Equality
• Incidence and adjacency relations,
• Boundary relation and the converse co-boundary.
Operations applicable to simplices are:
• Join, to construct a simplex from points,
• Reverse a simplex,
• Intersection test,
• Point in simplex test,

3. TOPOLOGICAL VIEW OF SIMPLEX
A simplex is the image (under continuous transformation) of the
unit sphere of the appropriate dimension (Figure 384). The
sphere of 2-dimension is a circular disc, the sphere of dimension
3 is a ball—higher dimensions are somewhat more difficult to
imagine, but they are topologically equivalent to the image of the
product of n unit intervals (0..1) (n= number of dimension). The
unit sphere is part of the flat of the corresponding dimension and
the simplex is imbedded in the flat of the corresponding
dimension.

0 simp – point,
1 simp – line,
2 simp – triangle,
3 simp – tetrahedron, etc.

Rank = dim + 1
A simplex of rank n is spanned by n
points.

Figure 384: Simplex is topological image
of unit sphere or product of unit intervals

Frank: GIS Theory Draft V15 Feb.05 274

The simplices are open, they do not include their boundaries.
The closure of a simplex is called the body of the simplex; it
includes the simplex and all its boundaries (Figure 385).

4. A SIMPLEX RESULTS FROM JOINING OF SIMPLER
SIMPLICES

Simplices are constructed form a number of points in most
general position (not collinear, not coplanar) (Figure 386). One
point gives a 0-simplex, two points give a 1-simplex, etc. (Figure
382). We consider here only oriented simplices, for which the
order of points is significant. They are constructed from
oriented flats (see chapter 19xx). The operations join used to
construct is the same as in chapter 19 and not commutative (as
is it usually in lattice theory).
join a b = reverse (join b a).

Note: the coordinates are expressed in homogenous
coordinates.

The join operation is the same as used to construct flats: the
result of the join is the matrix of the (column) vectors of the
points. The matrix construction maintains the order of the
points. The points must be in general position,. If the points are
not in general position the determinant of the resulting matrix is
0; this is a convenient test to identify degenerated simplices
(Figure 388).

Join is generalized and takes not only points as inputs, but
simplices of any dimension can be joined (this is similar to the
composition of flats to flats of higher dimension). Joining a point
with a 1-simp gives a 2-simp, etc. (Figure 389).

The inverse operation to join is 0-skeleton: it gives for each
simplex a list of the 0-simplices it is constructed from.

5. DIMENSION, RANK,
It is convenient to define the rank of a simplex as its dimension
+1. The rank of a simplex is the number of points it is
constructed from, i.e., the rank of a simplex is card . skeleton. A
simplex is embedded in a flat—this is called the span of the
simplex. The dimension of the simplex and the dimension of the
span is the same.

Figure 385: The body of s a 2-simplex: the
2-simp, three 1-simps and three 0-simps

Figure 386: Construction of simplex as join
of points

Figure 387: The construction of a 3-simp
from 3 points

Figure 388: 3 collinear points are not a
triangle, 4 coplanar points are not a
tetrahedron

det (join a1, a2,, .. an) = 0
<=> a1, a2,, .. an not in general
position

Figure 389: Join a point to a line gives
triangle

Simplex 275

The dimension indicates how many degrees of freedom or
how many parameters are necessary to describe such a figure
(Figure 391). The points of the simplex define vectors, which
can be seen as bases for a space. The dimension of this space is
the dimension of the matrix formed from the points of the
simplex. For an n-simplex with points a0, a1, .. an the vectors a1-
a0, a2-a0, … an-a0 are linearly independent and define the span of
the n-simplex (note: a0,… an are not linearly independent!).

For regular simplices dimension is 0 or a positive integer; it
will be written as n-simp. By convention the empty set is defined
by 0 points, has rank 0 and dimension -1.

6. CO-DIMENSION
Simplices are embedded in geometric space. The codimension of
a simplex is the difference between the dimension of the
embedding space and the dimension of the simplex. A point in
3d space has codimension 3, whereas a line in 2d space has
codimension 1. Co-dimension is 0 or positive integer. The same
as for flats, the co-dimension is the same as the co-rank.

Codim (dim space) – (dim simp) = codim (dim space) – (rank simp) + 1
codim = corank

7. ORIENTATION
The orientation of simplices follows from the orientation of the
flats, which we constructed as oriented. A simplex embedded in
an oriented flat inherits the orientation. The orientation of a
simplex is either positive or negative (represented by the values
+1 or –1). The direction of a line is either from point A to point
B or the reverse. Areas have two directions as well, defined as
the sense in which the points on the circumference are listed:
anti-clockwise is positive, clockwise is negative (Figure 392,
Figure 393). By convention, a 0-simplex has positive
orientation.

Volumes have two orientations as well. The orientation of a
volume is defined positive if the vectors resulting from the cross
product of the edges point all outwards,; if they point inside, then
the volume has negative orientation. Areas and volumes with
negative orientation can be interpreted as holes in an area or
volume of positive orientation (Figure 394).

Figure 390: l is f μ, with f μ = a + μ * (b-a)

Figure 391: Triangle is g(μ , λ) = a + μ *
(b - a) + λ * (c - a)

The rank is dimension plus one and is
always >= 0.

Figure 392: The positive arrow on a
simplex S

Figure 393: Simplices with positive
orientation

Frank: GIS Theory Draft V15 Feb.05 276

The orientation in the projective representation is taken as the
sign of the determinant of the homogenous matrix that defines
the simplex (function clockwise respective counterclockwise).
This is the counterclockwise (CCW) predicate in chapter 20.

orientation (s0, s1,.. sn) = sig (det (join (s0, s1…, sn))

8. EQUALITY OF SIMPLEX: PERMUTATIONS OF
BOUNDARY REVERSE SIMPLEX

Two simplices are equal if they consist of the same points in the
same order, but this is too restrictive a definition of equality: the
triangles (ABC), (BCA), and (CBA) are the same.

Two matrices describing a simplex change only the sign of
the determinant if two rows are columns are exchanged, called a
transposition (see chapter 10). This applies to simplices, which
can be seen as a topological image of the simplex spanned by the
unit vectors transformed by a matrix(Stolfi 1991 192).

Two simplices are equal if they consist of the same points
and the order of the points can be transformed from one to the
other with an even number of exchanges between two points.
Cyclic permutations of n element correspond to n-1
transpositions. A cyclic permutation of a 2-simp gives the
simplex with the reversed orientation. AB is the reverse of BA.
A cyclic permutation of a 3-simp does not affect the simplex.
A B C -> C B A -> B C A are all the same simplex. (Stolfi 1991,
192)

9. BOUNDARY
The boundary of a simplex has a dimension of one less than the
dimension of the simplex: the boundary of a line (1d) is two
points (0d). The boundary of a triangle (2d) is the three lines
(1d). The boundary of a point is the empty set. The dimension of
the boundary is one less than the dimension of the simplex (for
consistency, the dimension of the empty set is defined as -1).

Attention: boundary for simplex is not the same as boundary
in point set topology. Take a 2-simp (Figure 385), the boundary
are the 3 1-simps and does not include the 0-simps at the
corners! The point set topological boundary includes the lines
and the corner points.

Boundary is a relation between a simplex of dimension n and
simplices of dimension n-1. It has a converse relation, co-
boundary, which will be used in the next chapter on complexes.

Figure 394: Triangle ABC with hole EFG

The sign of the determinant is the
orientation
sig x = if x > 0 then +1 else
 if x = 0 then 0 else -1

Cyclic permutation of 2-simplex does
not change; cyclic permutation of 1-
simplex does change the orientation.

Simplex 277

From the boundary relation follows the boundary function,
which takes a simplex and returns the set of boundary simplices.

boundary :: simplex -> [simplex]

10. METRIC OPERATION: LENGTH, AREA, VOLUME,
ETC.

All simplices have a size: 1-simplex have a length, 2-simplex an
area, 3-simplex a volume. For n simplices (rank n+1) with rank
>=the volume is the value of the determinant of the (n+1)
vectors in homogenous (n+1) coordinates, corrected for the
product of the homogenous values and divided by the factorial of
n (n!).

The size of a simplex of dimension 0 (point) is assumed to be 0.
The size of a 1-simp is the length, computed as the norm of the
difference of the two vectors. If the points are given in ordinary
(not homogenous) coordinates, then the volume is determinant of
the matrix formed by subtracting one of the points from all the
others:

vol [A0, A1, .. An] = (1/n!) * det |A1 – A0, A2 – A0,.. An-A0|.

The computation of the size yields a signed quantity that
gives also the orientation; "ordinary" size is the absolute value,
expressed as a real (and approximated by a Float). One might
think of the area as the absolute value of the determinant, and
think of negatively oriented simplices as holes!

orientation = sign vol

11. TEST FOR POINT IN SIMPLEX
The test whether a point is inside a simplex or not is the base
operation for the general intersection test for simplices. It is
useful to separate the case, where the given simplex has
codimension 0 or not.

11.1 POINT IN SIMPLEX WITH CODIMENSION 0
Take the example of a triangle (Figure 395) and test three times
if the new point is left of the 1-simp, which means apply three
time the counterclockwise (ccw) predicate (chapter 19): X is
inside if it is left of AB, BC and CA, which means ccw (ABX) and
ccw (BCX) and ccw (CAX) must all be positive.

Figure 395: X is inside

Frank: GIS Theory Draft V15 Feb.05 278

Note: to properly deal with degenerated simplices or points
lying on the boundary, the CCW test must yield a result of (+1,
0, -1} which leads to a three valued logic(Sinowjew 1968); this
is a consequence of the topological division of space in 3 disjoint
sets: interior, boundary, exterior (chapter 21).

This generalizes for higher dimensions. A test for a point in a
line is a special case (no triangles!) but follows directly from the
order of points on the line (x > a, x < b) (Figure 397)

11.2 POINT IN SIMPLEX WITH CODIMENSION >0
If co-dimension is not 0, then one must first determine if the
point is on the span of the simplex. Consider a point and a line
(Figure 398). We determine first, if the point is on the flat AB or
not, i.e. if ABX are collinear. For this determine the size of the
area ABX and test against 0. If not 0 then point is not on in the
span of the simplex AB.

This is the general test for a point to be in a flat or not (see
chapter 20). If the given simplex of rank n and the point together
determine a new simplex with rank n+1, which means det (n,x)
> 0, then X is not inside.

If the point is in the flat spanned by the simplex then use the
test for codimension 0 given above to determine if the point is
inside the simplex or not.

12. INTERSECTION POINT OF TWO 1-SIMPLICES
Two simplices intersect, if they have points in common. One
could separate the test for intersection from the calculation of the
intersection geometry. The general case of intersection of 2 n-
simplices does not result in an n-simplex (Figure 383) and will
be dealt with in the next chapter. In preparation, the special case
of computing the intersection point of two 1-simp is given here
(Figure 399):

Figure 396: The CCW test: is point A to the
left of line B-C

Figure 397: X is inside AB (1D space)

Figure 398: Point not in simplex AB

Figure 399: P is the intersection point of
the two 1-simp

Simplex 279

To determine the intersection point, the formula for
intersection of flats is used (see chapter 20 and 21), but the
computed intersection of the two infinite lines is not necessarily
a point within the 1-simplices (Figure 400). It must be inside the
quadrilateral ADBC. This can be tested with the ccw predicate
(Figure 401): the following four values must all be true:
ccw(ABC), ccw(ADB), ccw(ADC), and ccw(BCD).

13. INTERPOLATION AND CONTOUR LINES
An often encountered task is the interpolation of a point into a
simplex with codimension 1 (i.e., a line in 2d space or a triangle
in 3d space). Simplices are flat and permit linear interpolation.

Expressing the position of the new point as a
parameterization, one can calculate the weighted average of the
values for the boundary points. This can be generalized for linear
interpolation in any dimension. It uses a barycentric coordinate
system (Figure 403).

13.1 CONTOUR LINES
To determine the pieces of a contour-line in a triangle is a useful
function which can be used to construct contour lines for
triangulated surfaces later. The endpoints of the contour lines
result from the intersection of the boundary 1-simp with the
horizontal planes.

Figure 400: Three configuration where the
2-simp do not intersect.

Figure 401: Four ccw tests to see if P is

Figure 402: Interpolation problems

Figure 403: Barycentric coordinates

Frank: GIS Theory Draft V15 Feb.05 280

14. REPRESENTATION IN DATABASE
Simplices are represented in the database as entities. For each
simplex, we can define a relation that gives the dimension of the
simplex. Points are 0-simplices.

The relation boundary gives to each simplex the boundary
simplices. This gives for the join operation a different
implementation than the join for flats; it creates a simplex and
inserts the boundary points in the relation boundary.

15. CONCLUSIONS
Combinatorial topology considers topological relation of
simplices and figures constructed from simplices; it counts
distinct elements and is closer to implementation than the point
set topology with infinite set we have used in the previous two
chapters.

The operations on simplices use topological and metric
properties of the simplices. This brings together the geometric
operations on flats (part 3 and 6) with topology (part 7)..Often
metric operations are at the base for topology. For example, the
orientation of a 2-simplex (a triangle) is determined by testing
whether the determinant is positive or negative.

Summary of operations applicable to simplices in general:
• Rank, dimension, codimension, and corank,
• Equality, orientation and reverse,
• Boundary relation and the converse co-boundary,
• Intersection test.
Metric properties are:
• Length, area, volume, generalized to size,
• Point in simplex test,
• Intersection between two 1-simplex,
• Parameterization, used for interpolation.

REVIEW QUESTIONS
• How to compute the height of a point inside a triangle?
• What operations on triangles are necessary to construct the

contour lines for a triangulated surface?
• Why is the join of two points not commutative? What is the

difference between join (a,b) and join(b,a)?
• What are the topological operations and relations that apply to

simplices?

Figure 550-34

Simplex 281

• Which operations on simplices require a metric space?

Chapter 24 SIMPLICIAL COMPLEX

The program of combinatorial topology is the transformation of
topological problems into algebraic questions. The primary
method is a form of counting(Henle 1994, 5); for example,
Euler's polyhedron formula. F - E + V = 1.

The simplices introduced in the previous chapter are in this
chapter combined to complexes, which are triangulations of
space. Simplicial complexes are collections of simplices, such
that for each simplex all its bounding simplices are also part of
the complex. Simplicial complexes for 2d are triangulations, but
simplicial complexes exist for all dimensions and the treatment
is mostly dimension independent.

Geometric figures will be represented as subcomplexes and
mapped to chains of simplices. This approach is viable, because
most topological properties are independent of the details of the
triangulation; any triangulation will produce the same
result(Henle 1994, 157).

Simplicial complexes and their subcomplexes are useful in a
GIS because in a simplicial complex
• the intersection and union of two arbitrary subcomplexes is

again a subcomplex, i.e., a total operation;
• for subcomplexes the topological relation defined by

Egenhofer can be derived algebraically.
Simplicial complexes can be generalized to cell complexes and
then include graphs and raster representations as special cases.
This chapter shows how to deal with geometry in a GIS; it uses
finite representations that can be implemented in today's
computer systems and stresses topological invariants over the
vagaries of approximation of metric operations with floating
point numbers.

Terminology: all complexes in this chapter will be
understood as simplicial complexes.

1. INTRODUCTION
This chapter shows how to represent arbitrary geometric figures
that are closed under union and intersection and for which
topological relations can be computed easily.

Program: Transform all geometric
operations into operations on
simplicial complexes

all v15a.doc 283

The geometric problem posed here is the one of union of
figures, such that interesting geometric operations op distribute
over union:

op (a ∪ b) = op' a ∪ ' op' b where a∩b=0.
Two examples: Compute the length of the metro network of
Vienna, which is the union of the lines U1, U2, U3, U4 and U6
(Figure 404) or determine the area of a forest F within a
watershed W (Figure 405). The lines and areas encountered in
reality can be approximated with collections of simplices.
Simplicial complexes are constructed such that they can be
treated with algebraic methods.

Many discussions in GI Science centered around a
representation for geometric figures and their topological
relations(Dutton 1979). Rules restricting representations to
subdivisions(Corbett 1975)) and later to (essentially) cell
complexes (Frank 1983) were proposed. The use of the algebraic
topology and specifically simplicial complexes were suggested
first in 1986 {Frank, 1986 #325} and commercial
implementation of the overlay operation using cell complexes
appeared(Herring 1990; Herring 1991).

2. SIMPLICIAL COMPLEX
A triangulation in 2d-space is a simplicial complex and we can
generalize the notion to any dimension: a line or a graph is a 1-
dimensional complex, the triangulation of an area a 2-
dimensional one, and a 0-dimensional complex is a collection of
points.

A general simplicial complex is an arbitrary collection of
simplices, resulting from the triangulation of some
polyhedron(Alexandroff 1961). A simplicial complex is defined
as a collection of simplices (Figure 406), such that
• for each simplex in the complex all the boundaries are also in

the complex (i.e. all edges for the faces and all vertices for the
edges) and

• the intersection of two simplices in the complex is empty or a
simplex already in the complex.

A simplicial complex does not allow points which are not
boundaries of an edge, edges that are not bounding two faces,
etc. (Figure 407). The dimension of a complex is the maximum
of the dimension of the simplices in the complex.

Figure 404: Metro lines in Vienna

Figure 405: The intersection of a forest
and a watershed

Figure 406: A 2-, 1-, and 0-complex

Frank: GIS Theory Draft V15 Feb.05 284

Operations with subcomplexes of a simplicial complex (e.g.,
a triangulation), are not requiring any metric operations. The
representation of all geometric figures here will be by
subcomplexes and all geometric operations in this representation
will become algebraic computations (mostly operations with
finite sets); the integration of geometries from different sources
into a single complex is the operation, where the spatial
information is converted into a discrete structure.

The simplicial complex is a most restricted and complete
representation of the topological relations between the elements
without reference to the coordinates. Changes in coordinates, for
example by numerical operations which are only approximate,
are not affecting the topology. This is the fulfillment of the
motto: topology determines, metric refines(Frank and Kuhn
1986; Egenhofer and Sharma 1992). For example in Figure 408,
the movement of X to X' changes the positive orientation of the
triangle XBC; it becomes X’CB with a negative orientation. A
representation using only coordinate values would require a test
for X inside of ABC based on approximate metric properties. If
the figure is represented as a complex, the topology is fixed.

The definition of a simplicial complex corresponds to what I
initially called 'completeness of incidence' (Frank 1983; Frank
and Studenmann 1983) and which Kuhn and I refined later,
using combinatorial topology(Frank and Kuhn 1986). A
simplicial complex lists explicitly a small number of relations to
preserve the topological structure even in the presence of errors
in the metric processing. Numeric problems cannot change the
topology in a simplicial complex!

The simplicial complex represents all the intersection
between the closure of the faces. This can be generalized to an
abstract notion of complexes over arbitrary sets and their
intersections. The complex then is the nerve of a system of
sets(Alexandroff 1961, 39).

3. DIRECTED SUBCOMPLEXES REPRESENTED AS
CHAINS

A complex K is directed, if every edge of K is given a direction
from a start node to an end node, and every face a direction
around the polygon(Henle 1994 185). A directed subcomplex is
a subset of the oriented simplices of a complex, such that the
subcomplex is a complex. A k-subcomplexes can be represented

A simplicial complex of dim n
consists of simplices, such that
- for each simplex all boundaries are
in the complex,
- pairwise intersection is either empty
or simplex (dim n-1).

Figure 407: Not a complex!

Figure 408: Points cannot move in a
triangulation without violating explicitly
stored relations

Terminology:
By complex we will in this chapter
understand a subcomplex of a
simplicial complex.

all v15a.doc 285

by a sum of k-simplices, expressed as an k-chain. A simplicial k-
complex (or a subcomplex) is a sum of k-simplices from the
complex:

C = a1 S1 + … an Sn = Σ ai Si
where the ai are integers. ai = +1 indicates that the simplex is in
the chain, ai = -1 that the reversed simplex is in the chain, aj =
0 means that the simplex Sj is not in the chain. The empty chain
is the chain with all factors 0. The addition of chains must be
defined such that

f (c1 + c2) = f c1 + f c2.
The representation of the chain as a sum of products is similar to
vectors, except that the factors are integers (and mostly restricted
to +1, 0, or -1). We define a multiplication with -1 in the usual
sense and say that it reverses the complex by reversing all the
simplices. For the addition, we will use four different rules:

OR: 1 + 1 = 1, 0 + 1 = 1 + 0 = 1, 0 + 0 = 0
XOR: 1 + 1 = 0, 0 + 1 = 1 + 0 = 1, 0 + 0 = 0 -- generalized: addition

mod 2
AND: 1 + 1 = 1, 0 + 1 = 1 + 0 = 0, 0 + 0 = 0 -- this is called an

idemgroup (x=-x)
Signed addition: 1 + 0 = 0 + 1 = 1, 0 + 0 = 0, 1 – 1 = 0, -1 + 0 = 0 – 1 = -1

With these rules for addition, four different kinds of addition
of chains are executed pointwise, like vector addition or the
addition of polynoms:
c1 = Σ aj sj c2 = Σ bj sj
c1 + c2 = Σ (aj + bj) sj -- where + may be any of the four operations.
If the rule for additions has the properties of a group (XOR, and
AND), the corresponding additions of chains are groups as well.

3.1 UNIONS AND INTERSECTION OF CHAINS
The area of two complexes given as 2-chains of the same
simplex is the sum of the two chains, using the signed addition
rule. The intersection of the chain is the result of the AND rule.

3.2 SIZE
Size Operations distribute over union and intersection, as
desired. For example, the area of two disjoint 2-complexes is the
area of the union of the two complexes.

3.3 BOUNDARY OPERATOR FOR CHAINS
The boundary operator for simplices gives as a result a chain: the
boundary of a 1-simplex (an edge) is a 0-chain with two
elements: the start (factor +1) and the end point (factor -1). In
Figure 412, δ(a) = -B + C. This boundary operator carries over
to sums of chains, such that the boundary of a sum is the sum of

Figure 409: Union and difference of two
chains

Figure 410

δ (a ∪ b) = δa ∪ δb

Frank: GIS Theory Draft V15 Feb.05 286

the boundaries, using the signed addition rule for the coefficients
ai:

Δ W = a + c + b
δ V = e + d + b’ = e + d – b
δ (W+V) = a + c + e + d

The boundary operation so defined works even for complex
with holes (Figure 413). The result is a single chain, not
separated in outer and inner boundaries. The boundary of the
boundary of a 2-d area is 0; this can be used as a test.

Algebraic topology develops the theory of homology, which
is a method to capture invariants of surfaces. It gives a
justification why the approach suggested here works: Most
topological properties of figures are independent of the
triangulation selected (General invariance theorem,(Henle 1994,
157).
Let T be a triangulatable space of dimension two, that is, a complex
composed of simplexes of dimension two or less. Then the homology
groups of T are independent of the choice of triangulation.
I have not yet found a direct application of homology for GIS so
far. It is useful for a generalization of the Euler polyeder formula
to become the Euler characteristic of a surface and contributes to
the solution of the 'map coloring problem', which says that all
maps can be colored with just 4 colors.

3.4 SKELETON OF COMPLEX
The k-1 skeleton of a k-simplicial sub-complex is the set union
of all the (k-1) boundaries of the components (Figure 414). The
skeleton of an area (i.e., a sub complex with triangles) is a set of
boundary lines(Egenhofer 1989). It can be computed as the sum
of the boundary of each k-simplex in the chain, using the OR
rule for the addition

The interior skeleton (Figure 414) is defined as the skeleton
minus the boundary (i.e., only the interior boundaries). The
interior skeleton can be computed as the sum of the boundary
chains, using the AND rule.

3.5 INTERIOR OF COMPLEX
The interior of a complex consists of all faces minus the
boundary. If a k-complex is given by a set (or chain) of k-
simplices, the interior consists of these faces, their inner skeleton
and again the boundaries of these (Figure 414).

Figure 412: Boundary of sum is sum of
boundaries (unoriented simplices)

δ (δ (r)) = 0 iff r a 2d-area

boundary distributes over sum:
δ(Σ ci) = Σ (δci)

Figure 413: Subcomplex with hole

Figure 414:Skeleton, interior skeleton and
interior

all v15a.doc 287

4. TOPOLOGICAL RELATIONS BETWEEN 2D SIMPLE
REGIONS

Egenhofer has identified (see chapter 22) eight topological
relations between simple regions(Egenhofer 1989), which are
derived from the intersections of the interiors, the intersection of
interior and boundary and the intersection of boundaries. The
classification whether these intersections are empty or not
determines the topological relations. To determine the
topological relations between two regions given as simplicial
subcomplex, we have to compute their boundaries and interior
and then to test whether the intersections are empty. These
operations are all algebraic.

The argument is given for two 2d regions, each a
subcomplex of a complex and given as a k-chain. The case of a
1d line and a 2d region is considered in the third subsection. The
approach generalizes to higher dimensions, but Egenhofer's
definition of relation is only given for the relations between two
2d regions.

4.1 COMPUTE BOUNDARY AND INTERIOR
To compute the boundary and the interior of the two regions for
testing Egenhofer relations must be attentive to the difference
between the notion of boundary in point set topology (which
Egenhofer's definition use) and the boundary operation in
combinatorial topology, which is used for the implementation.

The interior of a 2-subcomplex is the 2-chain of triangles,
plus the 1-chain of the interior skeleton, plus the 0-chain of the
interior point.

The boundary of a 2-subcomplex is the boundary operator
applied to the 2-chain, which gives a 1-chain of the 1-simplices
in the boundary. Then determine the skeleton of this 1-chain,
which gives a 0-chain, which are the points in the boundary (why
is it not the δ (δ (r)) ?).

4.2 INTERSECTION TESTS
Simplices in a simplicial complex have only simplices in
common which are part of the complex, there are no other
intersections. Only simplices of the same dimension can intersect
and if they are intersecting then they are equal—this converts the
test for intersection in a test for equality!

Frank: GIS Theory Draft V15 Feb.05 288

Figure 416 shows which tests must actually be done: The
interior consists of a 2-chain, a 1-chain and a 0-chain, the
boundary consists of a 1-chain and a 0-chain. Only intersections
of same dimension must be checked. We can exclude the
intersection of the interior 1-chain and the 0-chain: two
complexes can only have common interior skeletons, if they are
common interior faces (Figure 415).

Figure 416: The seven intersections necessary

4.3 EGENHOFER RELATIONS BETWEEN 1D REGION AND 2D
REGION
For the intersection between two 1-complexes or a 1-complex
with a 2-complex, the tests reduce further. For the 2-complex,
the interior faces can be ignored and we have to consider only
the interior skeleton (1-chain and 0-chain). For a 1-complex, the
interior is the interior skeleton (1-chain and 0-chain) and the
boundary is a 0-chain.

Figure 417: The intersections for the relations with a line

5. SUMMARY
Simplicial complexes and specifically subcomplexes are the
representation for which geometric operations, especially sum
and intersection, are total. The topological relations are the result
of simple arithmetic and set operations and do not rely on metric
operations with approximate floating point numbers. The next
short chapter shows how two complexes are integrated to form a

Figure 415: Intersection of interior
skeleton only possible if the faces intersect

all v15a.doc 289

single complex for which both are sub-complexes, such that the
above described operations apply.

Simplicial complexes are triangulation and generalize to
complexes built from cells. Most of the principles of simplicial
complexes apply directly to cell complexes. A triangulation of a
given situation includes more geometric objects than the same
situation represented by cells, but operations on cell complexes
require more complex implementations(Herring 1987; Herring
1990; Herring 1991). The theory is better explained with
simplicial complexes, even if commercial GIS use cell
complexes for performance reasons. Alternatively, better
performance of simplicial complexes may be achieved with the
reduction in the number of objects may also be achieved with the
methods necessary for multiple representations (Lieblich and
Arbib 1982; Minsky 1985; McKeown and Lai 1987; Beard 1988;
Buttenfield and Delotto 1989; Günther 1989; Timpf, Volta et al.
1992; Buttenfield 1993; Frank and Timpf 1994; Sester 1996) and
different levels of detail {Frank, 1986 #325}.

REVIEW QUESTIONS
• Why is the incremental overlay method less sensitive to the

problems of approximate calculation with coordinates?
• Why is this called algebraic topology? What is it contrasted

with?
• What is the difference between a cell complex and a

simplicial complex?
• What is the definition of a simplicial complex?
• What is the boundary of a boundary? Where is it used?
• Why is Figure 407 not a simplicial complex?

Chapter 25 OPERATIONS FOR COMPLEXES

We have seen that the intersection of two triangles is not a single
triangle, but 4 triangles and therefore intersection is not an
operation applicable to triangles resulting in a triangle (figure in
previous chapter 24).A general method to intersect any
geometric figures can be given; it reduces to merging the two
figures as two complexes to a single complex and then determine
the intersection of the two subcomplexes. If we take each
triangle as a simplicial complex then the intersection operation is
just merging the two triangles, which are complexes, and
determining the intersection of the two subcomplexs. This
operation is closed; the result is a subcomplex of the complex
and can be used for other operations!

This chapter describes the operations necessary to manage
the simplicial complex and to integrate two complexes in a
single one. Simplicial complexes are built according to a
parsiomous principle(Knuth 1992, 62): no inconsistency can
occur if nothing is ever tested for which the answer can be
deduced from previous tests.

This merging of complexes achieves the geometric part of
most GIS operations which is an overlay operation. For example
the overlay of the subdivision of an area into parcels and a
valuation map let us compute the value of each parcel (Figure
419, Figure 420). Assume that the two subdivisions are given as
simplicial complexes; the overlay operation reduces to the
integration of the two complexes into a single one, of which each
is then a subcomplex. Then the intersection of the two
subcomplexes is just an intersection two chains.

Figure 418: Example of the merge of two
complexes

all v15a.doc 291

Figure 420: Overlay of land parcels and land value

1. OVERLAY OPERATION
The combination of two subdivisions is regularly occurring task
in applications. It is called overlay operation. Examples are the
overlay of the ownership partition and the valuation partition of
some land (Figure 420), but the same operation is used to assess
how much forest area falls into a town, computed as the overlay
of land use with the political boundaries, etc. The operation
consists of a geometric and a thematic part: in the geometric part,
the smallest common areas are found and then the attributes of
these faces are computed. In this chapter, only the geometric part
is discussed.

The result of an overlay operation is a subdivision, where
each cell is entirely included in a cell of each of the given
subdivisions (Figure 420, with indications from which original
cells a new cell derives); with the result of the overlay, the value
of each of the original parcels can be computed as the area of
one of the cells with uniform value times the value and then
summed for the parcel. For example, the value of the parcel B is
the area of (B,2) times value 2 and area of (B,3) times value 3.
The overlay operation is the common first step in all similar
operations.

The overlay operation has been one of the oldest and most
difficult problems for GIS.. Chrisman et al. has published a first
approach as WHIRLPOOL(Dutton 1979). Properly working
implementations were difficult to achieve; first, because
inconsistency were introduced by the approximation of real
numbers with computer arithmetic and, second, by the many
special cases, in particular areas with holes. In the mid 1980s a
U.S. Federal agency tested a number of commercially available
overlay operations and all failed on some inputs (Figure 421
shows a difficult input, which creates many sliver polygons)!

We face these difficulties by two measures:
(1) Complexity and special cases are reduced by the

restriction of all figures to simplices.
(2) Avoiding deducing a topological relation from

coordinates twice reduces the influence of errors induced from
approximate computations. This parsimonious principle (Knuth
1992, 62) was suggested in (Frank and Kuhn 1986) and by
Steven Fortune(Knuth 1992). The result of a decision based on

Figure 419 Parcels and valuation of a
piece of land

Figure 421 Test figure to check overlay
operation

Frank: GIS Theory Draft V15 Feb.05 292

coordinate calculations may contradict another approximate
calculation using the same coordinates computed earlier. These
differences in the calculation with approximations result—from
the point of view of the logic of the algorithm—as
inconsistencies in the data structure, which algorithms cannot
tolerate and stop. Deriving the topological situation only once
avoids this difficulty. An alternative approach is using
computation with realms(Schneider 1997).

2. MERGING COMPLEXES
Merging two complexes is approached as the element-wise
insertion of the simplices of the smaller one into the larger one
(Figure 422). Specific operations which insert points, lines and
faces into a complex are required, as well as an operation to
create a new, empty complex. With these operations, any
complex can be constructed as merging two complexes.

The discussion here is in terms of operations for a 2-
complex; the extension to higher dimensions is left for future
extension.

3. STARTING CASE: CREATE EMPTY |COMPLEX
The starting case is an empty complex. To avoid difficulties with
the outer edge, we start with a 2-dimensional simplicial complex
which triangulates the sphere (Figure 423). Note that only the 2-
simp A and B should be used and the other 'triangles" are only to
complete the figure and assure that all nodes have the same
structure. It also achieves that the computations are restricted to
the part of the projective plane which has a consistent
orientation.

4. TEST FOR POSITION OF POINT IN A COMPLEX
The first step in the insertion of simplices in a complex is the
determination of the affected simplices. This reduces primarily
to the determination of the position of a new point within the
complex. A point can be
(a) Coincident with a 0-simp already in the complex
(b) Incident with a 1-simp (line segment) in the complex
(c) Incident with a 2-simp (triangle) in the complex
No other case can occur, because the triangulation covers the
whole projective plane.

Parsimonious principle: "do not ask
dumb question", i.e. questions that
can be answered from what is
already known.

Figure 422: 2 regions, triangulation of the
two regions, integration

Figure 423: Triangulation of the sphere
with 6 2-simp

all v15a.doc 293

The test uses the CCW predicate. In principle, one triangle
after the other is tested with the point, but this is not
parsimonious, the same questions are asked repeatedly, once for
inclusion in the triangle on the left side of a line, once for
inclusion in the triangle on the right side of the line. Using the
CCW predicate to determine if the point is left of a line in the
following algorithm has been suggested by Stolfi and
Guibas(1982):

Start with an arbitrary 1-simp.
If point is left of 1-simp then
 Select next left 1-simp at end and test point
 against this one
 If point is left then
 Select 1-simp at end and test point againt
 this one
 If point is left then point is inside the
 triangle found
 else
 select 1-simp right at end and test point
against this one …

repeat till point was left to the past three lines.

The idea is to restrict the search to the subspace formed by the
infinite extensions of the 1-simp where we have not yet tested
that the point is outside (Figure 425). If the test with the current
line is true then continue with the next 1-simp of the triangle (in
positive turning direction), if not continue with the next 1-simp
of the triangle on the other side.

If three sides in a row test positively, then the point is inside.
Figure 426: Split 1-simp

The algorithm given by Guibas and Stolfi does not deal only
with points in general position. An implementation for GIS must
detect when the point is incident with a line or coincident with a
point in the complex first.

5. ADDING A POINT TO A COMPLEX
Adding a single point maintaining the complex structures is the
building block of the algorithm. Adding a point in a complex
must make this 0-simp a boundary of at least one 1-simp, and
this 1-simp must be a boundary of some 2-simplex. Three cases
are differentiated, depending where the point is lying.

Case a: New point coincident with other point—nothing
needs to be done for the geometry

Figure 424: Repeated CCW test

Figure 425: Each test excludes a half-
space

Figure 427: Barycentric split of 2-simp

Frank: GIS Theory Draft V15 Feb.05 294

Case b: New point incident with line. The 1-simp must be
split in two 1-simp and the adjacent triangles split as well
(Figure 426).

Case c: New point incident with triangle: The triangle must
be split in three and three new 1-simp introduced (Figure 427).

6. ADDING A LINE TO A COMPLEX
Adding a line of a complex requires first to add the two 0-simp
that are the boundary of the line. Assume this is done and we
have only to add the 1-simp between two 0-simp of the complex.
Case 1: Both boundary points are within the same triangle (i.e.,
the 1-simp is completely in one triangle) and nothing additional
need be done; with the insertion of the two boundary points the
line is already inserted (this is even the case when the second
point is coincident with one of the newly inserted 1-simps)
(Figure 428).
Case 2: The boundary points are in two different triangles.

Subcase 2a: the points are in neighboring triangles: Insert the
two points and determine the intersection point of the new 1-
simp with the boundary lines of the triangle. Insert this point and
the new 1-simp is also in the complex (Figure 429).

Subcase 2b: the endpoints are not in adjacent triangles. Insert
the two endpoints and determine the intersection points with the
1-simp in the complex (not all need to be tested!). Insert these
points and the 1-simp is also in the complex (Figure 430).
Note that the determination of the intersection points of 1-simp is
restricted to the boundary of the triangle in which one of the
endpoint is lying, respective where a new point of the line is
inserted. An efficient algorithm is proceeding from the start to
the end of the new 1-simp, inserting the start point, determining
the intersection with the boundary and inserting this point,
selecting it as the new start point of the reminder of the line to
insert (Figure 431). This is using subcase 2b repeatedly till
eventually subcase 2a applies, which then reduces to case 1. This
shows that this approach can handle all insertions of 1-simplices.

Figure 428: Different cases on insertion of
1-simp where inserting the points inserts
automatically the line

Figure 429: Endpoints of line in
neighboring triangles

Figure 430: Endpoints not in neighboring
triangles

all v15a.doc 295

7. INTERSECTION OF SIMPLICIAL COMPLEXES
Intersecting two complexes means first to integrate the two
complexes into one and represent the two given complexes as
subcomplexes of the merged complex, and then to compute the
intersection as an operation on integral chains, representing the
two subcomplexes.

Merging the two complexes is done with adding one of the
two complexes element by element to the second one complex.
The two complexes A and B are given (Figure 432). Take the one
complex A and determine the skeleton of the simplex B, which is
a 0-chain and a 1-chain. The simplices of these chains are now
added elementwise:

Step 1: Start with the integration of the points from the 0-
chain. Repeat for every point: The point is (Figure 433)
• coincident with a point of A, nothing needs to be done
• incident with a 1-simp of A, split the line and both

neighboring triangles
• inside a 2-simp of A, then split the triangle
Details of these operations have been discussed before (section
4); the result is shown in Figure 433.

Step 2: integrate the 1-simps of B. Repeat for every 1-simp
in B: A 1-simp of B can
• coincident with a line in A': nothing needs to be done.

or
• intersect one of the 1-simp of the augmented complex A' (i.e.,

A plus all the 0-simps from B). Compute the intersection
points with 1-simp in A' and insert these points in A'. This also
inserts the line

For the example, one line needs to be added, which intersects
another line; it is necessary to insert a new 0-simp, which then
inserts automatically also the two 1-simps (Figure 434).
With this a complex integrating both A and B is established and
A and B can both be expresses as a chain of 2-simp. The
intersection is then the intersection of the two chains and one
could also determine Egenhofer relations as computations with
the chains.

Figure 431: Gradual insertion of 1-simp

Figure 432 Two complexes A and B

Figure 433: The three cases for integration
of points

Figure 434: Adding one more 0-simp and
two 1-simp

Frank: GIS Theory Draft V15 Feb.05 296

8. MAINTAIN SPLITTING HISTORY OF A LINE
The approximation of coordinates by floating point number
introduces small errors. If a line from A to B is repeatedly split,
the splitting points P1, P2, .. Pn are not exactly situated on the
original line (Figure 436). If one is later taking the azimuth of
any of the resulting segments Pi to Pi+1 the value obtained may
be considerably off.
In each case of a split, remember the original and how it is split.
This gives a relation: consist_of. The GIS must maintain the
original line AB and record that it is split into lines AP1, P1 P2,
etc. Similarly for areas: The two regions representing the object
geometry are given—after triangulation of the region—as 2-
chains. After the integration we must still be able to reconstruct
the original triangulations.

In Figure 437 the two triangles A and B are integrated. The
original situation is given by two boundary relations: 0-
boundary, which connects a 1-simp with the 0-simps, and the 1-
boundary relation, which gives for each 2-simp the bounding 1-
simps. The Figure 438 gives the original boundaries plus the
addition of new boundaries as they are split (but no existing
entries in the relations are dropped!). In addition, history
relations are maintained, 1-history gives for the new 1-simps that
other 1-simp they are part of, and similar for the 2-history which
gives the parts for the original two triangles A and B (Figure
439).

Figure 435: Labeled 2-simps

Figure 436: A line with multiple splitting
points

all v15a.doc 297

9. SUMMARY
Simplicial complexes and specifically subcomplexes were the
missing concepts to compute union and intersections of arbitrary
figures. If geometric figures are represented as subcomplexes of
a single complex then the operations necessary to compute
intersection, unions or the topological relations based on the 4 or
9 intersection become operations on chains. .

The integration of two simplicial complexes in 2 dimensions
needs two steps, which are repeated:
• Integrate a point from one simplicial complex into the existing

one. This has been covered as the insertion of a point into a
triangulation.

• Integrate a line from one simplicial complex into the existing
one. This is covered in the first subsection, differentiating
several cases.

An additional operation to integrate the faces is not required (for
2-dimensional complexes). However, relations that record how
simplices are subdivided during the integrations steps are
necessary to have access to the original definition of the figures
and avoid influences of the accumulation of approximation
errors when computing intersection coordinates.

Figure 437 Two triangles A and B to
integrate

Figure 438: The integration of A and B

Figure 439: The history relations

PART NINE AGGREGATES OF LINES GIVE
GRAPHS

This part discusses special simplicial complexes, namely 1-
complexes, complexes that consist only of lines. Connections
between points are often used to conceptualize our world: roads
between villages (Figure 440), telephone lines between
buildings, but also rivers flowing towards lakes and the sea. Such
networks are seen in all applications of GIS: concrete
representation of linear features like street networks, rivers, but
networks are also used to conceptualize abstract situations like
migration flows, trade between countries (Figure 441), etc.
Networks can be shown well graphically. Maps show networks
as lines and our concept of geography is influenced by the
representation of space and objects in space as maps. The graphs
discussed in this part are abstractions from lines on maps.

The abstract notion of network and the analysis of network
properties are generally useful. Kirchhoff's laws, originally
formulated for electric networks, apply in many similar
situations. They state (1) that the sum of flows in and out of a
node must be zero and that (2) that the sum of the differences in
potential around a closed circuit must be zero as well.

This parts introduces properties of networks, abstracted to
graphs of nodes and edges that have clean definitions and allow
meaningful analysis operations. The foundation provided by
graph theory contributes to the advancement of the topical
sciences like regional economy, hydrology, transportation etc.

The first chapter introduces graphs as an abstract concept of
nodes and edges connecting them. It introduces a number of
notions that are widely applicable and ends with the description
of an algorithm to find the shortest path in a network. The
properties discussed in this chapter are invariant under
topological and even more general transformations.

The second chapter then brings back the geometric aspects;
it concentrates on graphs that are embedded in 2d space and

Figure 440Towns and streets between them

Figure 441Trade flows between European
countries

all v15a.doc 299

shows how this additional knowledge can be used to improve the
algorithm.

Chapter 26 ABSTRACT NETWORKS: GRAPHS

The famous mathematician Euler (1707 – 1783) regularly
walked through the city of Königsberg and asked himself,
whether he can have an evening walk, such that he crosses each
bridge exactly once and return home (Figure 442)? The question
identifies what is important in the situation and what can be left
out: it does not depend on the form and position of bridges in
Königsberg, but only on islands and the connections between
them. This abstraction and the theory that belongs to it is today
called graph theory. The simplification to nodes and connections
between them yields a an elegant theory that answers many
questions that depend only on lines and how they connect nodes,
not on the particulars of the form of the lines or the position of
the points in space.

Graph theory is motivated by spatial situations, but it is an
abstract theory. Street networks, rivers and similar structures
show properties, which are captured with the structure of graphs.
They are all forms of connected lines and one can ask questions
like: Is there a connection between A and B? What is the shortest
path from A to B?

A graph consists of nodes and the lines between them, which
we call edges. Graph theory is constructed as a bi-partite algebra
over nodes and edges and a relation incidence of a node with an
edge. Graphs are invariant under topological transformation and
other transformations that preserve the incidence relations. The
embedding of a graph, which is necessary to show a graph, is
arbitrary (Figure 443).

Figure 442: Königsberg and its islands

Graph—a bi-partite structure of
nodes and edges, with an incidence
relation.

Terminology:
An edge is incident with a node.
Two nodes are adjacent if connected
by an edge.

Graphs 301

1. INTRODUCTION
Graph theory captures the connectivity in a situation. Street
networks are an example, where a road connects towns, but
airline connections form graphs as well as the water lines or the
sewage pipes in a city. They are all forms of connected lines and
one can ask questions like: Is there a connection between A and
B? What are the neighbors of B?

Graph theory concentrates on the structure of connections
between points. From a graph point of view, the map of
Königsberg reduces to nodes and the connections, with arbitrary
position in space. The graph in Figure 444 is equivalent to the
original map (Figure 442). Graph theory is the geometry in
which incidence and adjacency between points are the
invariants; all other aspects can change without affecting the
results. Even in this abstract form, the core of the problem is
present and one can demonstrate why Euler cannot walk once
across all bridges and reach home. Can you see the reason? Can
you express it as an abstract rule?

Graph theory defines terms like path, walk, etc. in a strict
way. Interesting are optimal paths, called shortest path between
two nodes. Dijkstra has published in the early days of computers
an elegant, non-trivial algorithm to find the shortest path in a
graph(Dijkstra 1959).

2. ALGEBRA OF INCIDENCE, ADJACENCY, AND
CONNECTIVITY

Graphs are bi-partite algebraic structures, which consist of
Nodes and Edges and an incidence relation between them. The
intuition for nodes is points (0-simplices) and for edges are line
segments (1-simplices or 1-cells). A graph is an abstract
simplicial 1-complex.

Graph theory was developed early and the terminology in is
often at odds with current terminology in other fields of
mathematics.

2.1 DEFINITION
A graph consists of a set of Nodes N = {n1 … nn} and a set of
edges E = {e1 .. ee}. The edges are not oriented and the edge eik
= (ni, nk) and the edge eki = (nk, ni) are equivalent. The graph is
a function from the edge to a pair of nodes (under the
equivalence Eq: (nk,ni)=(ni,nk)) :

Figure 443: The same graphs with different
embedding in 2dspace

Figure 444: The graph theoretical essence
of the map of Königsberg

node = 0-simp
edge = 1-simp

The function from edge to nodes is
the boundary operation for a 1-
simplex

 Figure 445: Graph (N, E, g) with
N = {n1, n2, n3}, E= {e1, e2},
g (e1) = (n1, n2), g (e2) = (n2, n3)

Frank: GIS Theory Draft V15 Feb.05 302

g:: e -> (n,n)/Eq.
The triple (N, E, g) is a graph (Figure 445). The function g gives
the incidence relation, from which an adjacency relation can be
derived.
• Incidence: a node is incident with an edge if the edge starts or

ends in it:
incident (n,e) g (e) = (n1, n2) && n==n1 || n== n2

• Adjacency between two nodes means that the nodes are
connected by an edge:
adjacent (n1, n2) == exist e | incident (n1, e) && incident (n2, e)

2.2 WALK AND PATH
A walk is defined as a sequence of edges ei such that ei and ei+1
are both incident with the same node. A walk can contain an
edge more than once (e.g., {e1, e2, e3, e4, e5, e2} is a proper walk,
containing e2 twice) (Figure 446). A walk between n1 and nm is
defined as an alternating sequence of nodes and edges

n1, e1, n2, e2, …. nj, ej, n(j+1)…. nm
where for all i incident (ni ei) and incident (ei, n (i+1))

A walk is closed if the last edge ej and the first edge e1 are
incident with the same node (Figure 447). A path is a walk such
that no edge appears twice; a path can be closed and is then
called a cycle (Figure 447). The length of a path is the number of
edges it contains.

A path is called Hamiltonian, if it uses each node exactly
once. A closed walk is Eulerian, if it uses each edge exactly
once.

2.3 DEGREE OF NODE
The degree of a node counts how many edges are incident with
this node (Figure 448).

2.4 CONNECTIVITY
A number of notions relate to the connectivity in a graph: Two
nodes are connected if there is a path between them. All nodes
that are adjacent to a given node are connected, but also all
nodes that are adjacent to the connected nodes are indirectly
connected. Adjacency is in this context called directly connected.
The relation connection is transitive:

con a b and con b c => con a c.

Two relations:
Incidence of node and edge
Adjacency of two nodes connected by
edge

Figure 446: A walk

Figure 447: A closed path, which is a cycle

Graphs 303

A graph, in which between any pair of nodes an edge exists, is
called 'completely connected' (Figure 449). A bridge is an edge,
which if removed, disconnects the graph in two components.

The connectivity of a network can be measured by
comparing the existing number of edges with the maximum
number of edges possible. This connectivity measure can vary
from 0 to 1, 0 being a graph with no connectivity, no edges at all;
1 is obtained for a completely connected graph (Figure 449
above). A connected graph has minimum connectivity, if all
nodes are connected to some other node, with a connectivity
value of 2/m(Abler, Adams et al. 1971, 259).

2.5 COMPONENTS OF A GRAPH
The components of a graph contain each all nodes which are
connected (Figure 450). Connectivity is a transitive relation and
forms equivalence classes which are the components.
Components are the fixed points or closures of the connected
relation; they contain all nodes that are directly or indirectly
connected to a given start node.

To identify the components of a graph requires an inspection
of every element of the graph. One can imagine, connectivity
spreading out from a start node, first connecting the nodes with
path of length 1 (i.e., directly connected), then connecting nodes
with path of length 2, then with path of length 3, etc. (Figure
451)
We will in later sections see methods to maintain a graph
connected (part 10).

Figure 448: Graph with nodes labeled with
degree

Figure 449: Completely connected graph

Figure 450: A graph with three
components

Figure 451: A nodes are directly connected
to O, B nodes are connected by path of
length 2, etc.

Frank: GIS Theory Draft V15 Feb.05 304

2.6 CENTER AND RADIUS OF A GRAPH
In analogy to the diameter and radius of a circle we can speak of
diameter and radius of a graph, taking each edge as unit length.
We start with defining the excentricity of a node: it is the largest
distance to any other node in the graph. The radius of a graph is
the minimum excentricity of any node; the diameter is the
maximum excentricity of any node.

3. SPECIAL TYPES OF GRAPHS
A simple graph has only an incidence relation: does an edge
start- or end at a given node. Edges can carry more information:

3.1 LABELED GRAPHS
In labeled graphs every edge has a label, which contains some
information. Labels are functions from an edge to a value
(Figure 453):

label: edge -> value

Labels on the edges are used in GIS to describe properties of the
edges of a graph—width of a road, length of a road segments, or
the cost of traversing the edge.

In a labeled graph properties based on the labels can be
determined; for example the sum of the labels or the maximum
or minimum label ("a chain is only as strong as its weakest
link"). The sum of the length labels of a path is the length of the
path.

A special case of a labeled graph is a weighted graph,
where the labels are all positive numbers. For example a graph
with labels indicating the length of the edge, is a weighted graph.

3.1.1 Directed graphs
In directed graphs, the edge (N5, N6) is different from the edge
(N6, N5). Two nodes A and B are only adjacent if the edge (A,B)
is in the graph; it is not relevant if an edge (B,A) is in the graph.
Sometimes we speak of an oriented graph, which is a graph
where each edge is given a direction and labels then reference
this direction (e.g. flow graphs).

Directed graphs are used to model street networks, where
some roads are restricted to ‘one way streets’. One can either
represent a one-way street by a directed edge and use two
directed edges to represent the two directional lanes of a two
way street (Figure 454). Alternatively, a oriented graph can be

Figure 452: Radius of a graph: The nodes
are marked with the excentricity

Figure 453: Graph with labels

Graphs 305

labeled with labels ‘oneWay’, ‘oneWay the other direction’, ‘two
ways’. In a graph where edges are labeled with their directed
flow, Kirchhoff's law says that the sum of the flows in and out of
each node is zero, which translates to: for each node, the sum of
the labels on the adjacent edges is zero.

For directed graphs, the in-degree (edges ending at the node)
and the out-degree (edges starting at the node) are differentiated.

indeg, outdeg :: n -> g e n -> Int

In a directed graph, a node A can be connected to B but B not
connected to A (this is avoided in street networks!). For directed
graphs, two forms of connectedness can be differentiated: A
directed graph is strongly connected, if for any two nodes A and
B A is connected to B and B is connected to A. If only one of the
two connections exist, the graph is said to be weakly connected.

3.2 TREES
Certain applications lead to graphs that do not have cycles—for
example, river networks (Figure 455); in such a tree, any two
nodes are connected by exactly one path. If the graph has
multiple components and any two nodes are connected by at
most one path, then we have a forest (Figure 456).

Trees are often used to classify entities; taxonomy is a
classification of terms and has typically tree structure. The
hierarchical structure of political subdivisions form a tree (Figure
457) as do depiction of a person's ancestor (a family tree).

Trees do have special properties that are useful when
constructing algorithms(Samet 1989). If data is properly
organized in a tree, one can search for an element by binary
decisions between the left and the right subtree. Processing of a
tree is a recursive procedure, which follows from the recursive
definition of the data structure (see chapter 4). Decision can be
analyzed using trees, where each bifurcation in the tree
represents a decision; if observed values are given, then a
decision tree can be reconstructed; this is a popular method in
data mining [sheckar book].

Figure 454: Two-way edges are modeled
with two (anti-) parallel edges.

Figure 455: An acyclic graph

Figure 456: A forest consisting of three
trees

Figure 457: The tree of the political
subdivision

Frank: GIS Theory Draft V15 Feb.05 306

In a directed tree, we can label edges from the roots forward,
adding one for each successive edge and taking the maximum
value at each node. For stream networks, these labels are called
stream order (Figure 458). Real streams, but also other
applications lead to graphs which do not have cycles following
the direction of the edges (Figure 459). For acyclic graphs a
partial order relation obtains and some acyclic graphs are
lattices.

3.3 BI-PARTITE GRAPH
A graph where the nodes can be separated in two sets such that
no edge is between two nodes from the same set is called bi-
partite. They are used to describe matching problems, for
example matching people with a set of jobs. Petri-nets are
another application for bi-partite sets; Petri-nets contain place
nodes and transition nodes (Figure 460) and the nodes are
marked by tokens, which move in time. A transition "fires" when
both input nodes are marked by a token and then all the output
nodes get marked.

3.4 SPECIAL CASES
Some special cases which are either potentially difficult to
handle in an algorithm or cannot be represented are often
excluded:

3.4.1 Loops
An edge that connects to the same node is called a loop (Figure
461).

g (e4) = (N3, N3)
For most applications loops do not make sense, and algorithms
assume that a graph does not contain a loop and fail if they
encounter one.

3.4.2 Multi-Edge (Zweieck)
If two edges run between the same two nodes, we say they form
a multi-edge ('zweieck’, Figure 461). Such edges are excluded
in the definition of a graph where edges are identified by the pair
of nodes they are incident with. If multi-edges are required for
the application, then edges must have independent identifiers and
we cannot just use the pair of node identifiers as identifiers for
the edge.

Figure 458: Stream order labels

Figure 459: An acyclic graph

Figure 460Petri-net showing service to
customer

Figure 461: A graph with a multi-edge and
a loop.

Graphs 307

4. PLANARITY
A graph is said to be planar, if it can be drawn in 2d space (a
plane) such that no two edges cross—independent of location of
nodes and form of edges.

The interesting question, whether a graph can be drawn in a
plane without crossing of edges (other than those incident in
nodes), can be answered without reference to the location of the
nodes. There are two non-planar graphs (Figure 466), and any
graph that contains one of the two cannot be drawn in a plane
and all other graphs are planar.

5. REPRESENTATIONS
There are many ways to represent a graph. All are based on the
storage of the incidence or the adjacency relation.

5.1 REPRESENTATION AS ADJACENCY MATRIX
A graph is represented by the adjacency relation: which nodes
are incident with an edge. This can be captured, for example, in
a square matrix, where for each combination of nodes 0 signifies
that the nodes are not adjacent and 1 when they are adjacent.

The adjacency matrix A(G) of the graph G is an n x n-matrix
where n denotes the number of vertices in G. Its entries aij are 1
if the (directed) edge from node i to j exist in the graph G and 0
otherwise. For non-directed graphs, the matrix is symmetric. The
row or column sum gives the degree of a node, for directed
graphs, the in- and the out-degree separately. The sum of all 1s
in the adjacency matrix gives the number of directed edges (or
twice the number of non-directed edges).

The adjacency matrix can be can be read as base for a vector
space, even without coordinate values assigned to the points.
This opens opportunities to apply methods from linear algebra to
the analysis of graphs in the abstract [ref?].

5.2 CONNECTIVITY
The multiplication of an adjacency matrix with itself gives the
connectivity of path length 2, further multiplication path length
3, etc. Figure 467 gives the square of the adjacency matrix of the
simple graph from Figure 464; it shows the number of path of
length 2 in this graph. Note that it contains in the diagonal the
degree of the nodes; each edge starting at a node gives rise to a
path of length 2 back to this node!

Figure 462: Planar graph: can be drawn in
2d without intersection of edges.

Figure 463: the same graph redrawn
without crossing edges

Figure 464: A simple graph

Figure 465: The adjacency matrix for the
graph Figure 464

Figure 466: The two non-planar graphs K5
and K3,3

Frank: GIS Theory Draft V15 Feb.05 308

We can define a power function,
A 2 = A * A
An = A * (A n-1);

The fixed point (An = A(n+1)) gives the longest path (length = n)
in the graph. The sum of all connectivity matrices (A + A1+A2 ..
An) gives the total connectivity. The entries of the k-th power Ak

of A(G) count the walks of length k (i.e., with exactly k edges)
between a fixed starting point and the endpoint in G.
The matrix I – A is invertible iff the graph does not contain any
directed cycles. The inverse (I-A)-1 gives the number of directed
path between two nodes (because (I-A)-1 = I + A + A2 + A3 …).
Spectral theory of graphs gives more connections between linear
algebra and graph theory.

5.3 INCIDENCE MATRIX
The incidence matrix B(G) of an undirected graph G with n
nodes and m edges is an n x m-matrix (bij) of zeroes and ones,
where n is again the number of nodes and m is the number of
edges. If the nodes are labeled 1,2,...,n and the edges are labeled
e1, e2, .. , en then entry bij is 1, if edge ej meets node i, and 0, if
not.

In the case of digraphs we have to distinguish between
outgoing and incoming edges in a point and set bij = +1, if edge
ej starts in point i, bij = -1, if edge ej ends in point i, and bij = 0
otherwise.

5.4 REPRESENTATION OF GRAPHS AS LIST
Graphs are relations and can be stored and manipulated as such,
using the methods described in chapter 16. Undirected graphs
give one incidence relation from edge to nodes

incidence:: edge -> {nodes}
from which the adjacency relation can be derived.

adjacent = (incidence . incidence -1)\I
Note: the composition with its inverse includes also the
connection of a node with itself. This is subtracted at the end.

For directed graphs, we start with two functions start and
end. The adjacency is then just the composition of start.end.

start, end:: edge -> node

6. OPERATIONS OF A GRAPH ALGEBRA
The graph algebra consists of constructors to construct an empty
graph and to insert a node or an edge into a graph and observers

Figure 467: The square of the adjacency
matrix from Figure 465

Figure 468: The incidence matrix of the
graph in Figure 464

Graphs 309

to detect incidence and adjacency. Consistency constraints may
be:
• Only nodes that exist in the graph can be connected and the

deletion of a node deletes also all the edges incident with this
node.

• Incidence is split in two relations: start and end of edge, which
means all edges are internally directed.

 Operations to construct the graph are:
emptyGraph:: g
insertNode :: n -> g -> g
insertEdge :: n -> n -> -> g -> g
removeEdge :: e -> g -> g
removeNode :: n -> g -> g

Observers are:
edges :: g -> [e]
nodes :: g -> [n]
incidence :: :: n -> g -> {e}
adjacencey :: n -> n-> g -> Bool
adjacentNodes :: n -> g -> [n]
connectedEdges, connectedEdgesStarting,
 connectedEdgesEnding :: n -> g -> [e]
nodeDeg :: n -> g -> Int

7. OPERATIONS ON GRAPHS
There are transformations of a graph into another graph. Two
cases are relevant for GIS:

7.1 LINE GRAPH
A line graph is the result of replacing every edge in a graph by a
node and connecting nodes if the corresponding edges in the
original graph were incident at one node. Not all graphs are the
line graph of another graph.

Line graphs have applications when nodes have labels, for
example in a transportation network, the nodes may be labeled
with the expected delay.

7.2 COMPLEMENT GRAPH
The complement graph has an edge between any two nodes
where the original graph did not have an edge and no edge
between nodes which were connected in the original graph
(Figure 470). The complement graph has the same nodes than
the original graph, only the set of edges is complemented.

7.3 MINIMAL SPANNING TREE
For each graph the minimum set of edges which retain
connectivity is called the minimal spanning tree. It consists of

Figure 469 The line graph from the graph
in Figure 464

Frank: GIS Theory Draft V15 Feb.05 310

some of the edges of the original connected, undirected graph,
such that all nodes remain connected (Figure 471).

8. SHORTEST PATH ALGORITHM IN A WEIGHTED
GRAPH

Determining an optimal path between two nodes in a weighted
graph is one of the most important operations on a graph. There
are many paths between two nodes, in graphs with cycles even
infinitely many. To select from these the ones which are optimal
for some criterion, is a question that occurs in many applications.
For example, we may ask for the shortest path between two
nodes, or the path which gives minimal travel time.

An application of the 'shortest path' algorithm uses an
optimality criterion, which requires positive labels in the graph
and it minimizes the sum of these label values. The prototypical
shortest path takes the length of the edges as labels and
determines the path with the minimal sum of edge length.

Shortest path is an example of a large set of problems, where
a solution with a minimal sum of some property is searched for.
It is the discrete case of Fermat's principle, which stated that the
path of light in a medium is the path that takes minimal time;
from this follows Snell's law. (Fermat's principle has been
generalized since).

In general, problems that ask for the selection of a set of
elements resulting in some minimum value can be computed by
producing all possible combinations evaluate them and select the
one with the minimal value. For many practical applications,
such an approach is not possible, as the number of possible
combinations is very large—consider all the possible ways to get
from A to B in a city—and to produce all of them to identify the
one that is fastest is not practical. Dijkstra’s algorithm to
determine the shortest path in a graph is an example how we can
produce the candidates in order such that the shortest one is
found initially without exploring all the other possibilities.

8.1 DIJKSTRA’S ALGORITHM
Dijkstra has published an algorithm for the determination of the
shortest path in a graph where the labels are the length of the
edges(Dijkstra 1959). The algorithm requires that all labels are
positive (non-zero), which is automatically fulfilled if the labels
give the length of the edges; this is why it is known as 'shortest

Figure 470 The complement graph to the
graph in Figure 464

Figure 471 Minimal spanning tree

Shortest Path:
minimal sum of edge values (labels)

Edge values must be positive!

Graphs 311

path' algorithms. The location of the nodes is not relevant for the
algorithm.

The algorithm is explained in terms of ‘cost’ to reach a node.
Cost is summing the weight at the labels; it is an abstract concept
of accumulation of the labels and can be seen as utilization of
some resource along the path. The algorithm identifies the path
with the minimal cost.

The algorithm starts from the given start node and a cost for
this node of zero. There starts an expansion step: For all nodes
in the graph, obtain the cost of moving to them—a cost value
maximum indicates that there is no direct connection. The cost of
reaching the current node plus the cost of moving along the edge
gives the cost of reaching the next nodes. The list of nodes with
the cost of getting there and the edge traveled is added to the
current list of reachable nodes. If a node is reached that was
reached before, then only the path with lower cost is retained.
Then the expansion step is repeated for the node which is
currently least expensive to reach: If it is not the desired target
node, then this node is expanded according to the procedure just
explained.

The shortest path search as proposed by Dijkstra searches
from the given node in circles of equal cost around the start node
till it hits the target. The expansion goes in all directions, even
the direction opposed to the target (Figure 472) because
Dijkstra's algorithm works independent of the embedding of the
graph in 2d space and uses no concept of 'direction' or 'direction
to the target'; it considers only the values of the labels.. The next
chapter gives an algorithm which follows the direction to the
target, but it requires an embedding (i.e. coordinate values for
the nodes).

Frank: GIS Theory Draft V15 Feb.05 312

8.2 DESCRIPTION (FOLLOWING
KIRSCHENHOFER(KIRSCHENHOFER 1995))
The following algorithm determines for a fixed node
the distances d(x,y) to all other nodes y, i.e., the lengths of the
shortest paths between x and y. Furthermore it constructs a
function p in such a manner that starting from any node y the
sequence p(y), p(p(y)), p(p(p(y))),... of nodes determines a
shortest path connecting y with x.

In the algorithm the cost for connections between two nodes
which are not connected are set to infinity; when later selecting
the node with minimal cost so far (step (2)) and when a new cost
to a node is computed, a cost value of infinity excludes these
non-connections. In an implementation, these connections are
not considered, but this leads to more complications in the
description.

The algorithm is in 4 steps:
"(1) Initialize: Set

 ,: ,: VUemptysetW ==
Vyypxyylxl UU ∈∗=≠∞== allfor :)(, allfor :)(,0:)(

(2) Determine the minimum of lU(y) over all y ∈ U
Choose a node such that lU(z) equals the above minimum.
Set d(x,z) := lU(z)
 (3) Set W1 = W ∪ {z}, U1 := U \ {z},
as well as for all y ∈ U1

)).,()(),((min :)(

1
yzwzlylyl UUU +=

If in this last expression lU(y) > lU(z) + w(z,y)
 then set .
(4) If , the algorithm terminates.
If for all , then the graph is not connected, and
there exists no path from x to the nodes in U.
Otherwise set and return to step
(2)."(Kirschenhofer 1992, 159)
Let us consider the following network with cost function defined
on its edges (Figure 474):
After initializing we have

.

After having passed steps 2,3 for the first time we have

as well as the following new values of the l- and p-functions

Figure 472: order of expansion

Graphs 313

If we attach to each node y the array (l(y),p(y)) we get Figure
473.
After the second run through steps 2 and 3 we have

and the new values

(Figure 475).
After the third time

as well as

(Figure 476).
The fourth time yields

and

(Figure 477).
After the fifth time we have

as well as
(Figure 478).
Finally the sixth time yields

and the algorithm terminates.
All shortest paths between f and x have length 7, and the

walk

is a shortest path of this kind.

8.3 SHORTEST PATH IN A STREET NETWORK WITH ONE WAY
STREETS
Street networks have one way streets, but not all streets are one
way (Figure 480). We could either represent the network with all
directional edges and have two one directional edges for every
two-way street or two have an oriented graph with two kinds of
edges: two-way edges and one-way edges.

The difference when computing a shortest path in a street
network with one way streets is only in the operation to
determine the nodes which are connected to a given node

Figure 473: After the first expansion

Figure 474: The initial graph

Figure 475: After the second expansion

Figure 476: After the third expansion

Figure 477: After the fouth expansion

Figure 478: After the fifth expansion

Figure 479: Example direct graph

Frank: GIS Theory Draft V15 Feb.05 314

(function connectedNodes). In Figure 479only the nodes B and C
are connected to A, D is not connected to A.

8.4 TURNING RESTRICTIONS
Police regulations in cities often limits the turns possible at an
intersection. Street networks representing driving operation in
the real world must also represent these turn restrictions,
modeling situations where signs ‘no left turn’ or ‘no right turn’
are posted. Turn restrictions require that the internals of a node
are again a small network, describing which connections are
possible. Figure 483 gives an intersecting where all turns are
possible; the small edges in the turning graph can be given waits,
to indicate how much time is lost in waiting and turning. In
many real situations, only few turns are possible (Figure 481)!
Alternative to turn graphs one can transform the street graph to a
line graph, which represents the connection between edges in the
original graph and compute the shortest path in the line graph.

9. HIERARCHICAL ANALYSIS OF A NETWORK
Space displays a hierarchical structure; best known is the
political subdivision of a country in states, and the states in
counties, which in turn are subdivided in towns (Figure 457).
Christaller has pointed out that such a structure develops some
regularity due to human behavior(Christaller 1966).Each level of
central services - from providing daily supplies to services
which are used once a month, once a year or once a lifetime –
requires larger service areas to collect enough business to
survive; therefore centers of different level occur in different
distances. Christaller investigated the relatively flat area between
Vienna, Munich, and Frankfurt and found a surprising regularity
(Figure 484).

How to detect the dominant connections in a network of
nodes? How to form the hierarchy? Given a network structure of
relations between towns, where each town is connected to each
other to some degree. Assume that we have a matrix that gives
the strength of the connection between any two towns in an area,
for example the number of phone calls exchanged between the
two nodes. Following a suggestion by Nystuen and
Dacey(Tinkler 1988, 265), we identify for each node the total
strength (i.e., the total of calls connecting this town) and the
strongest link. The total strength orders the town by strength. A
node is independent, if it's largest flow goes to a smaller node, a

Figure 480: City streets—mostly one-way
with some turn restrictions (the streets
around TU Vienna!)

Figure 481: A detail from the above street
network with turn restrictions shown

Figure 482: The directed line graph
corresponding to a part of Figure 482

Figure 483: A full turning graph

Figure 484: Central places of three
different levels

Graphs 315

node is subordinate (or a satellite city) if its largest flow goes to
a larger city(Tinkler 1988, 266). This gives a graph that reveals
the structure of relations between the centers in the area.

10. SUMMARY
The concept of transitivity that is motivated by the connection in
a path network and is experienced in many contexts is the core of
graph theory. Equivalence classes, transitive closure and fixed-
point operations have become fundamental and most powerful
ideas for the definition of semantics of functions; they are
motivated by graphs.

a < b && b < c => a < c Transitivity
f (n) = f (f (n)) fixed point

Transitivity in connection leads to the concept of a path, as a
sequence of connected edges and—given different paths between
two nodes—to the request for the shortest path between two
nodes; the computation of a shortest path in a graph is a discrete
form of the calculus of variation. Dijkstra’s algorithm shows
how this problem can be solved efficiently.

REVIEW QUESTIONS
• How can you compute the outdegrees resp., the indegrees of

the nodes from the entries of the adjacency matrix?
• Explain the purpose of the shortest path determination and list

several applications (other than in a street network).
• Explain the concept of Dijkstra's algorithm. How is the search

progressing?
• Why is Dijkstra’s method not effective to find a shortest path

in a regular grid?
• Does Dijkstra’s algorithm work for graphs with negative

weights? Why not?
• Why does the minPath operation not find the best solution if

trains on an edge can overtake each other? How can it be
improved?

 Graphs Are about Transitivity

Chapter 27 LOCALIZED NETWORKS

Graphs for which the location of the nodes in space is known
have many applications in geography. Street and river networks
are perhaps the most visible, but also the airline and the railway
networks are localized. Transportation in general follows
networks and the cost is—in first approximation—proportional
to the distance traveled. To determine the shortest path in an
embedded network can be answered more effectively than with
the shortest path algorithm of Dijkstra, which was shown in the
previous chapter.

The embedding of a graph in space by assigning a coordinate
pair to each node leads not only to improved efficiency when
computing the shortest path, but embedded networks show
specific forms, which we perceive as gestalt. This is the result of
the processes shaping the network. Spatial analysis methods can
differentiate the processes which were at work!

Graphs are invariant under a class of transformations larger
than topological transformations: two graphs are equivalent if
they have the same connectivity between nodes. Planar graphs
are graphs which can be embedded in 2d space such that no two
edges cross. Topological transformations leave planarity of a
graph invariant.

1. OPERATIONS FOR EMBEDDED GRAPHS
Networks in the real world are embedded in 2 or 3d-space. The
cost function we optimize in shortest path algorithm is real world
distance along the edges. To construct an embedded graph,
position information must be associated with each node, i.e., we
have a function

nodePos :: n -> Coord
which returns for each node its position in space. Metric
operations between points translate to functions with the node
identifiers as inputs: distance between nodes, bearing between
nodes, etc.

distanceInGraph :: graph -> nodeId -> nodeId -> float
bearingInGraph :: graph -> nodeId -> nodeId -> angle

These functions are the combination of a function to find the
coordinates for a given node identifier and the function to
compute distance or bearing from coordinates (distance resp.,

Localized networks 317

bearing above). Edges can only be inserted when the two nodes
were stored before and the distance between the nodes is
automatically computed and need not be stored.

2. ORDER OF EDGES AROUND A NODE
For a planar graph, the order of edges around a node is fixed and
remains the same under topological transformations. In an
embedded planar graph, it is often necessary to find the next
edge to a given edge (Figure 485). We have already used this
function to determine for a point in which triangle it falls.
Triangulations are just a special case of a planar graph (chapter
25xx).

The computation to determine for a given edge which is the
next edge incident with this edge in positive turning direction,
requires several steps, requiring retrieving all incident edges with
the node, determine their bearing and sort the edges:

Find next edge at node (e, n):
1. retrieve all edges starting or ending at a given
node
2. compute bearings for each of them
3. sort edges by bearing
4. find the given edge
5. return the next edge from sorted list

This operation is time consuming and if used often, it is
advantageous to store the order of edges around the node as a
function, such that the next edge to a given one can be retrieved
quickly (Figure 487). Care is necessary, as this introduces
redundancy in a subtle way and opens a door to possible
inconsistencies; the next sections show how these

3. AN ALGEBRA TO STORE CYCLIC SEQUENCES: THE
ORBIT ALGEBRA WITH THE OPERATION SPLICE

Cyclic sequences in which a function f produces after some
repetitions the initial value again (fn (a) = a) are called orbits.
The function next which gives for an edge the next edge around
this node is going through a cycle (next4 = id for the node in
Figure 486). Guibas and Stolfi have shown an algebra for orbits
that is useful to maintain the orbits of edges around a
node(Guibas and Stolfi 1987).

Orbits are graphically represented as chains of links, as in
Figure 487.

Figure 485: e2 is the next edge around n
after e1

Figure 486:Orbit around node

Frank: GIS Theory Draft V15 Feb.05 318

One might expect for orbits operations to insert an element,
to remove an element, to merge orbits, etc.—similar to the
semantics of sets. This is a possible, but not elegant, approach,
because only one essential operation needed, called splice
together with the trivial operation new to make an orbit with a
single element. Inserting a new edge e5 to n explains the
operations (Figure 491):

The operations splice has two arguments m and n and switches
the value of next for them. Splice is a parallel assignment, a
switch (Figure 494) of two pointers {Knuth, 1973 #2467}.

Before: next m = o; next n = p
splice m n
After: next m= p; next = o

This "merges in" an orbit after the indicated position, with the
starting element the next of the second argument. Despite this
‘asymmetric explanation’ is the operation commutative, splice a
b = splice b a. Splice is its own inverse: splice a b. splice a b =
id, as shown in Figure 493.

Orbits represented in this form are called linked lists in
computer science. Figure 490 gives an example for splicing two
larger lists; the result is shown in Figure 495.

4. REPRESENTATION OF EDGE AS HALF-EDGE
Edges are incident with two nodes; we have used so far a
representation of pairs e = (n,m) and stated that the order of the
nodes is not relevant and (n,m)=(m,n). In a computer
implementation, the two representations are differentiated and
we will need to keep track which end of the edge we are
interested in. For example in Dijkstra's shortest path algorithm
one needs to obtain all the edges emanating from a given node
and then the nodes these edges lead to with the cost of traveling
along the edge, but the edges are stored arbitrarily (Figure 496)
and need be organized to have the node we are interested in the
first place. This is inconvenient and a better solution is to split an
edge in two half edges.
A half edge originates at one node and is linked by the function
sym to the other half edge; half-edges around a node are linked
by next (Figure 497, Figure 500). These 3 functions origin, sym
and next can be stored as relations in a database and give, for
example the adjacent node from a half edge by composition
sym.origin. Starting with a node n and using the converse

Figure 487: An orbit

Figure 488: The operation splice (e4, e5)

 Figure 489: The result of splice (e4, e5)

Figure 490: Merging two orbits: splice (a2,
b2)

Figure 491: Orbit around n with additional
edge e5

Figure 492: A new orbit with a single
element

Figure 493Splice (a2,b2) applied again
produces Figure 490

Figure 494: The operation switch

Figure 495: The result of splice (a2, b2)

Localized networks 319

relation origin', we obtain all adjacent nodes by map (origin.
sym) . origin' ; the result is a list of nodes because origin' returns
a list of half-edges. An operation newEdge produces the two
half-edges with orbits around their ends and the sym functions
(Figure 499).

5. OPERATIONS TO MAINTAIN GRAPH
To maintain a graph with orbits around the nodes requires that
all operations that change the graph not only add nodes or edges
but also update the orbits around the nodes. One operations to
insert a half-edge into an orbit would be sufficient, because it
could also be used to remove a half-edge from the orbit
(remember: switch is its own inverse). An operation to insert a
node into an edge is added for symmetry.

5.1 INSERT EDGE IN ORBIT AROUND NODE
Given a node n with an orbit f,g,h and a new edge e (Figure 498).
The new edge should be inserted between f and g into the node n.
This is achieved with the operation splice (e,f) (Figure 502) and
the result is as desired an orbit f, e, g, h around n (Figure 502).
Observe that the arguments to the splice operation are the two
half edges, such that each is inserted after the other in their
respective orbits. Applying splice (e,f) again removes the edge e
from the orbit. The same operation is used to connect the other
end of the edge to the adjacent node.

5.2 INSERT NODE TO SPLIT EDGE
Inserting a node in an edge produces also a new edge. This can
be achieved with one newEdge and 3 splice operations. The first
splice removes the edge from the node (Figure 503, Figure 504)
and then two splice operations close the orbits around the old
and the new node (Figure 505). It is possible, to achieve the
same effect with only two splice operations, if the splice is
applied to the sym functions (the result are then two edges e1,d1
and d2,e2).

5.3 FOLLOW A CYCLE
The functions introduced can be used to follow in a graph around
a minimal cycle (Figure 506). Start with a half-edge, say e1 at m.
i2 = next (e1), which means we follow the cycle clock-wise. To
get the other half edge is i1 = sym(i2), then again the next edge

Figure 496: List of edges around n in
Figure 491

Figure 497: Two half edges with pointers
to next edge around node and to other half
edge

Figure 498: Node n with edges f g h and
new edge e

Figure 499: A new edge

Figure 500: Alternative visualization of
half-edges

Figure 501 Splice (e,f)

Figure 502: Result is node n with orbit f, e,
g, h

Frank: GIS Theory Draft V15 Feb.05 320

around the node h2 = next (i1) etc. an alternative chain of sym
and next operations get us back to e1.

6. SHORTEST PATH IN AN EMBEDDED GRAPH
In an embedded graph, no labels for the length of an edge are
necessary, because the distance can be computed from the
coordinates of the points. Dijkstra's algorithm shown in the last
chapter works for embedded graphs, but is not the fastest
method. In an embedded graph, directions are fixed by the
location of the nodes and a shortest path algorithm should
progress primarily into the direction from the source to the
target. The A* algorithm uses this additional information from
the embedding of the graph and is therefore more efficient. In
Figure 507 the order in which nodes are expanded are marked
and in this example only one 'unnecessary' node not on the
shortest path is expanded; in Dijkstra's algorithm, the target
would have been only found after 20 expansions (figure previous
chapter xx). Geometrically, an A* algorithm searches similarly
than the Dijkstra algorithm, but it adds to the cost of each node
the cost to reach from there the target—this gives some
directionality to the search.

After an expansion step we know for each node the cost to
arrive there from the start; Dijkstra's algorithm expands then the
node with minimal cost. In an embedded graph we can also
compute the Euclidean distance to the target, which gives the
least cost to reach the target from there—any path in the graph
will be longer. When selecting the next node to expand, we do
not select the one with the least cost to arrive to, but add to each
node the cost from there to the target and expand the one with
the smallest total for cost to arrive here plus minimal cost to the
target.

Figure 509 shows the graph from the previous chapter
(figure xx) with a few nodes and edges added. In this graph,
Dijkstra's algorithm needs to expand 8 nodes (roman numerals).
The A*-algorithm shown in Figure 508 expands only 5 nodes.
The estimates of distance to target which are added to the cost
'so far' keep the expansion clearly in the right direction!
If we minimize some other values then additional information
for the edges may be necessary; for example, one might want to
minimize travel time. The time necessary to drive along an edge

Figure 503 Insert new edge d after e

Figure 504 Splice (k,e2) opens the orbit

Figure 505 Splice(d1,e2) and splice (k, d2)
inserts edge

Figure 506: A graph with a cycle m,n,o,p,q

Figure 507: The order in which nodes are
expanded from start to target

Localized networks 321

depends on the length of the edge, i.e., the distance between the
nodes, divided by the speed; the average speed for an edge
depends on the width of the road, the radius of the curves, etc.
To store the design speed, width of the roadway, etc. may be
stored as a label with the edge and then compute for each edge
the time it takes to travel along it.

The A* algorithm can be used whenever we look for a
minimal path in a network and have a method to estimate the
minimal cost to reach the target from a given node. If the actual
cost later is larger, we still find the optimal path (but not, if the
actual cost would be less than the estimate!). For example,
fastest path is often desired, where each edge has a label with
length and an expected speed. To estimate the travel time from a
node to the target we calculate the Euclidean distance divided by
maximum speed; this is a minimum and the actual time will be
larger, therefore it is an acceptable estimate for the A*-
algorithm.

The change in the code from Dijkstra's algorithm to A* is
minimal: when selecting the next node for expansion, one has
first to add to the cost to reach the node the (minimal estimated)
cost to reach the target; then the node with least total cost is
selected for expansion.

7. LINEAR REFERENCE SYSTEMS
An embedded graph provides a reference system for points.
Points along the edge can be identified by their distance from the
start point of the edge (Figure 510). This is a natural
parameterization of the edge. Functions to calculate the
coordinates of a point along a line have been introduced (see
parameterization of 1-simp, chapter 23xx).

A linear reference is composed of an oriented edge (or an
identifier for it), and a distance s from its origin; this determines
a point on the edge (Figure 510). It is possible to add a lateral
position l and a height h to identify a point in 3d related to the
edge (Figure 511).

7.1 MILEPOSTS
Mileposts along a highway (photo xx) use this kind of reference
system, but they measure the distance along a path consisting of
many segments. This method is convenient and widely used, by
road administration, waterways and railways. Mileposts are

Figure 508 The A* algorithm expands only
the 5 nodes on the shortest path!

Figure 509: The graph from the previous
chapter embedded in Euclidean space and
with some additional edges.

Figure 510: A linear reference

Figure 511: A reference to a 3d point

Frank: GIS Theory Draft V15 Feb.05 322

different from linear reference systems along an edge in a graph.
They use not a single edge but a longer ‘route’ as the unit along
which the reference length is measured. This introduces a
number of problems:
• Sometimes a single road segment is part of more than one

route (Figure 512); the same point has then 2 different
mileposts!

• Routes become shorter or longer by construction of by-pass or
short-cuts.

Consider the original road mileposting in Figure 513. There
are about 11.5 km from A to B and mileposts are set along the
road. Later, the road is improved to avoid the town C with the
narrow passage and the town D on the hill. Avoiding C creates a
longer (but hopefully less congested) road that reaches the
previous road at milepost 4.3 (but with its own milepost 5)—the
same mileposts are now used twice! Shortening the road at D
makes the mileposts between 8 and 9.6 to disappear. The clean
solution to redo the mile posting from A to B is avoided because
it would require to physically relocate the existing mile posts
along the road, but it would also invalidate all references to
locations along the road using mile posts—for example in all the
legal documents that pertain to the posting of street signs, traffic
restrictions and also accident reporting. In practice, the doubly
counted new miles at C are marked and it is hoped that not too
much confusion emerges!

7.2 STREET ADDRESSES AS LINEAR REFERENCE SYSTEM
A street address, with street name and number, is a form of linear
reference systems – provided the building numbers are
distributed along the street in increasing order. In Europe, many
cities number buildings from the city center outwards
alternatively on both sides of the street, such that odd numbers
are on the left side and even numbers on the right side. If the
building numbers on street corners are known, then other
building numbers can be interpolated. This gives an approximate
reference system. In America, each block starts on an even 100,
with many numbers missing. This allows even more precise
localization with very little precise data (Figure 515); it was used
for DIME (dual independent map encoding (Fagan and
Soehngen 1987) and carried over to the TIGER files of the
U.S.G.S. For each street segment, the address range on each side

Figure 512: One street segment is part of 2
numbered interstate highways.

Figure 513: Original road and a new
detour at C and a shortcut at D

Localized networks 323

of the street is given; they were established to support the
decennial census operations
(http://www.census.gov/geo/www/tiger/chapter5.asc).

8. SHORTEST PATH BETWEEN POINTS ON EDGES
 Real world of navigation is not restricted to operations between
nodes in a graph; when we search for a shortest path between
two buildings, we start on an edge between two nodes and the
destination is again on an edge between two nodes (Figure 516).
A translation of a building street address to a linear reference on
the edge can use the interpolation method suggested in the
previous section. In order to use one of the shortest path
algorithms discussed, the start and the destination must be
inserted into the graph as nodes with the function to split an edge
shown before (section 6xx).

8.1 MILEPOSTING

8.2 MILEPOSTING AS LINEAR REFERENCE SYSTEM
The mileposting method can be seen as a coordinate system,
namely the coordinate system for a line with a single coordinate
(one degree of freedom). This is used practically: everybody
knows the milepost along a highway (photo).

Figure 517: Southern Austria: (a) highway network, (b) railway network

9. OVERLAY OPERATIONS ON GRAPHS
Two graphs embedded in the same coordinate system (Figure
517) can be combined. For example the highway network and
the rail network can be combined in a single graph. (Figure 518).
The integration uses the same operations as used to integrate two
simplicial complexes (remember, graphs are 1-complexes!).

The resulting combined graph maintains labels for each edge
with its origin—is it a rail or a road edge. Assume that the edges
are labeled with travel time, one can now ask what is the fastest
way between two points, allowing driving or using the railway,
or even mixing the two; so-called mixed mode transportation. An

Figure 514: Typical street numbering
pattern

Figure 515: Regular numbering allowing
100 numbers for each block

Many countries use regular
distribution of street numbers along a
street, but one must not assume that
this is universal!

Figure 516

Figure 518: Combination of highway and
railway network

Frank: GIS Theory Draft V15 Feb.05 324

application is a trip from the countryside to a major city, where
we use multiple modes of transportation: first with the car to the
railway station, then with the rail, then metro, and ultimately
streetcar to our destination. This requires combining 4 different
graphs, for the road, rail, metro, and streetcar network. In the
combined graph the shortest (fastest) path can be determined.

10. PLANAR EMBEDDED GRAPH
Not every real world network is represented by a planar graph:
streets may overpass each other. This is sometimes described as
'grade separated crossings'. If the graph is stored as a planar
graph, then 'grade separated crossings' must be marked, because
they do not allow turning. As an example, look at the standard
highway exit: it is certainly not a planar graph (Figure 519).
Alternatively, the network could be maintained as a non-planar
graph with intersection of edges that are not nodes, but this is not
the current preference of standards, which usually assume an
underlying structure of a (simplicial) complex.

11. OPTIMIZATION OF A NETWORK
In many cases a given set of nodes must be connected to
optimize some criterion. Connecting two nodes with the shortest
path has been discussed extensively, but other situation with
other optimization goals are common and they often lead to
specific gestalt of a network. Given a graph, it is often possible
to identify the kind of network represented; a street network in a
city or overland looks different and a stream network is easily
recognized.

11.1 SHORTEST PATH NETWORK
Assume that a number of buildings must be connected to a water
distribution system (Figure 520). In the abstract the problem is to
connect a number of service points with a mimimal length
network. The network with the shortest path is characterized by
interior angles of 120 degrees. Consider the three prototypical
situations: three collinear nodes, three nodes with an angle of
less than 120 degrees and 3 nodes in general situation (Figure
521). For a larger set of nodes, the edges all meet at internal
(additional nodes) under 120 degree angles (Figure 522, Figure
523), but practicality may dictate other choices: distribution
networks in cities are typically buried in the street and
connections to buildings are then at right angles.

Figure 519: A typical highway intersection

Figure 520: Minimal length connection of
6 buildings to a water source

Localized networks 325

11.2 MAXIMAL INCOME
Consider constructing a railway or a highway, where the cost to
link to a node must be compared to the revenue obtained from
linking to this node. Connecting all the nodes is not the solution
that maximizes the income, as the following example (from
Abler, Adams et al. 1971, 275) shows (Figure 524).

11.3 TRAVELING SALESMAN PROBLEM
This is a "famous" problem in computer science, not for its
practical relevance but for its computational complexity. A
salesman has to make a number of calls to clients, located at
different points, and return at the end; what is the shortest path
he can take? In which order should he visit the clients?

In the abstract: determine the shortest path connecting a set
of nodes. This problem has been extensively studied and it has
been proven that no fast algorithm to certainly identify the
shortest path is feasible. Several reasonable methods to find a
close to optimal solution are known (Figure 525).
A variant of the traveling salesman problem is the "Car pool"
(Paul Revere) path. Find a path from a start to a destination,
linking all intermediate nodes in any order to obtain the shortest
path (Tinkler 1988) (Figure 526).

11.4 THE FORM OF THE NETWORK REVEALS WHAT WAS
OPTIMIZED
Studying the form of a network allows us to identify which
function was optimized. Internal angles of 120 degree indicate
that the cost of construction was minimized, generally, a shortest
set of edges was identified (Figure 523). If the graph is
completely connected, then convenience for use was optimized
(Figure 526). A hierarchical arrangement shows connections
from one point out. A close path (cycle) reveals an attempt to
serve several points and return back (Figure 525).

REVIEW QUESTIONS
• What are orbits?
• Why is splice its own inverse? What does this mean? Do you

know other operations with this property?
• What is the difference between A* and Dijkstra’s algorithm?

Figure 521: Minimal pipe length for 3
nodes

Figure 522: Typical connection of 3 nodes
in general position

Figure 523: Network with minimal length

Figure 524: A network which optimizes net
income (construction cost-income). The
figures for the nodes give their potential
income

Figure 525: Traveling salesman

Frank: GIS Theory Draft V15 Feb.05 326

• When can A* be used?
• What is the effect if the estimate of remaining effort in A* is

wrong?
• How do we determine the shortest path between two points

located on a segment (not a node)?
• When do we need Identifiers? Why?
• Exercise: find algorithmic solutions for all the optimal

network problems.
• Apply splice (e,f) to Figure 502. What is the result?

Figure 526: Optimal path for a car pool

PART TEN CELLS

Maps show the world described by curved lines and areas
(Figure 527). Land is divided in parcels, each owned by one
person (Figure 528). In this part the representation of curved
lines and arbitrary subdivisions of space created by them are
discussed. It is shown how they are related to general
representation of geometry in a simplicial complex (part 8).

The first chapter discusses lines as they are, for example,
used to draw geographic situations on maps; collections of points
are versatile and can be interpreted as linear features or bound
areal features. The different interpretations of collections of
points as lines or areas are related to the operations applicable to
them.

The second chapter discusses subdivisions. We want a
subdivision in parcels to remain such that every piece of land is
assigned to one parcel and that the parcels do not overlap. Such
divisions occur in spatial and non-spatial situations and are
called partition; we will use the term subdivision for partitions of
space.

Not only ownership of land produces subdivisions, but also
the subdivision of a continent in countries, countries in
provinces, etc. are subdivisions—and other examples from
administration abound (school districts, church parish, etc. see
figure before xx). Natural processes can lead to subdivisions: the
world is divided in land and sea (Genesis xx), land is divided in
watersheds. Much data is collected with respect to subdivisions
and combining this data requires effective processing of
subdivisions.

Assigning area to a service point is a crucial link between
space and points: a hospital (point resource) serves a region
(area), a grocery store is visited by clients from a block in a city.
Voronoï diagrams show service areas such that every point is
served by the nearest service Voronoï diagrams are the dual of
the Delaunay triangulation. In the last chapter the general

Figure 527: Example map

Figure 528: Parcels as an example of a
subdivision

Frank: GIS Theory Draft V15 Feb.05 328

approach of subdivision of space in cells is connected with
simplicial complexes.

Cells 329

Chapter 28 CELLS: COLLECTIONS OF SIMPLEXES TO
REPRESENT CARTOGRAPHIC LINES

In this chapter we deal with methods to represent maps (Figure
529). The discussion is considering the map here as a collection
of points and lines, and ignores the complex, multi-layered
structure that is communicated to a human map reader and the
use of the line network as a graph to find a route, as discussed in
the previous chapters (26 and 27). The chapter does also not
address placement or content of labels, characters, numbers and
symbols, which describe objects on a map.

This chapter generalizes simplexes to cells. The geometry of
a cell can be represented by a list of coordinated points, and this
list can have different interpretations: it can represent a
collection of points, a line, or even an area (0-, 1- and 2-cells).
These different interpretations correspond to different algebras
applicable to the same representation and will be defined as
transformations between different complexes.

1. INTRODUCTION
In the example map without symbols and text (Figure 529), we
find
• points that indicate the location of points in reality (for

example, points with measured height);
• lines that stand for a path between two locations, or a brook

running in a valley;
• areas, which stand for a pond, a forest, or a building.
These points, freeform lines and areas are cells. This chapter
shows how the geometric values of simplexes (points, line
segments, triangles) can be combined to produce the less
restricted cells.

Figure 529: The points, lines, and areas of
a map

Frank: GIS Theory Draft V15 Feb.05 330

The curved lines on maps representing irregular forms in the
terrain are approximation to the real situation. Cells can be
approximated by simplices and the operations on cells
implemented in terms of these approximations (Figure 530).
Map graphics are representations of ideal geometric figures. The
graphical representation must have an extension: a line has a
width; a point is really a small area, etc. In the discussion in this
chapter, we stress the ideal properties of the geometric figures
and the non-ideal, realistic consideration of graphical elements is
left for a discussion of visual communication and cartography.
We exclude equally the labels, symbols, etc. that are for real
maps.

This chapter does not address the cartographic
transformation from world coordinates to map coordinates, the
selection of symbols. It excludes also the simplification of lines,
for example the so-called Douglas-Peucker algorithm. This is
left for a comprehensive discussion of approximations.

The focus of the chapter is on operations with lines. These
operations depend on the interpretation, especially of the
dimension of the objects manipulated. Collections of points can
be just that, collections of points, but they can also be lines,
closed lines or even areas. Different operations apply to these
different interpretations, other operations transform between
interpretations. For example, the convex hull transforms a
collection of points in a single cell. Triangulation transforms a
collection of points in a collection of 2-simplices.

2. CELLS
The simplices are the simplest geometric figure in each
dimension; they are restricted to straight connections between
the points. The restriction to straight connections can be removed
to give the generalized concept of cell. Cells, like simplices,
exist in each dimension; there are 0-cells, 1-cells, 2-cells, etc.,
each topologically equivalent to the corresponding unit sphere
(Figure 531).

Figure 530: The different points, lines, and
areas

Figure 531: Cells

Cells 331

0-cells are simple points and coincide with 0-simplex.
1-cells are curves between two 0-cells.
2 cells consist of an undetermined number of 1-cells as

boundary.
Operations on cells are (mostly) the same as for simplices. The
cells can be approximated by collections of the simplices of the
corresponding dimension and operations on cells are defined by
operations on the simplicial complex used to approximate them;
the result of applying the operation to the individual simplices
are then summed or otherwise appropriately integrated. The
operations carried forward from simplices are:
• Rank, dimension, and codimension are defined for cells as for

simplices
• Orientation: All the simplices forming a cell must have the

same orientation. This orientation is the orientation of the cell.
A cell can be reversed by reversing all simplices in it. (This is
implemented as operations on chains).

• The boundary of a cell is the boundary of the chain of
simplices of the desired dimension.

• Intersection of two cells represented as 1-chains in a complex:
determine the degree of the nodes. If the degree for any node
is higher than 2 the chains are intersecting and these points are
the intersection points.

• Length of a 1-cell, area of a 2-cell: the size of an n-cell is the
sum of the size of the n-simplices it consists of.

• Point in cell test (the ordinary point in polygon test): the point
is in the cell if it is in one of the 1-simplices or in the 1- or 2-
skeleton of the cell. Alternatively, determine the boundary:
the point is inside the 2-cell if it is left of the boundary (ccw
predicate).

• Non-branching 1-cells are linear and can be parameterized.
Determine the length of the line as a running sum from start to
end.

• Join and meet are computed by converting the two cells to
two complexes and then computing the join or meet of these.

• Equality: if the 0-skeleton of two cells are not equal, the cells
are not equal. Two 1-cells are equal if they consist of the same
1-simplices; two 2-cells are equal if their 2-complexes have
the same boundary (but not necessarily the same 2-simplices).

• Incidence and adjacency relations: convert both cells into
complexes and determine incidence or adjacency there.

Figure 532: Approximation of 1-cell by 1-
simplices (at two different quality levels)

Figure 533 Approximation of 2-cell by 2-
simplices

Frank: GIS Theory Draft V15 Feb.05 332

• Length, area, volume, generalized to size, moments. Metric
properties are in general determined by converting to a
complex and then sum the metric properties of the
corresponding simplices.

• Point in cell test is computed as a point in simplex test after
conversion of the cell to a complex.

• Parameterization follows the same logic than
parameterization of 1-simplices: Assume a function p (s, v)
which for a simplex and a parameter value [0..1] returns the
coordinate pair of the point. Then compute the successions of
length li of simplices up to point i (for the last point n this is
the length of the 1-cell). Then the coordinates is obtained with
a call of the function c (v, n), where v is the ordered list of 1-
cells and n the number of points in the line:

• count the number of components in a cell (operation

cardinality).
Novel operations, which were not meaningful for a simplex, are
• Convex hull
• Triangulation
These are transformations between geometric objects of different
dimension and implementable as operations on complexes.

3. REPRESENTATION AND INTERPRETATION OF CELLS
A cell is represented as a chain in a complex. A 0-cell is a 0-
simplex, 1-cells are lines, approximated by a 1-chain from a 1-
complex, and 2-cells are regions, approximated by a 2-chain in a
simplicial 2-complex.

A collection of points can represent just this, a collection of
points, or a collection of lines, a line, a closed line or even an
area (Figure 535). In each case, the complex is replaced by its 0-
skeleton, i.e. the collection of 0-simplices it contains; for the
cases considered here, the mapping from 0-skeleton to the 1- or
2-complex is an isomorphism. This can be generalized beyond 2
dimensions: Any n points define an n-simplex, thus a collection
of n points define sets of simplices up to dimension n. The
interpretation adds rules, which one of the many sets of
simplices is intended. The use of order among the points is
important to select a line (collection of 1-simplices)
interpretation. Convex-hull and Delaunay triangulations are

Figure 534: A line approximated by points

Cells 333

methods to select a definite area (collection of 2-simplices)
interpretation.

An ordered sequence of points is used to represent a line or
even a region (Figure 535). The operations that follow from
these interpretations are geometric and must be separated from
the operations to manipulate the data structure used for the
representation. The uniform representation of cells and cell
complexes as simplicial complex removes this ambiguity, which
is otherwise visible at the user interface.
If a collection of n-simplexes is interpreted as an m-cell, then the
operations of m-cells are applicable. This is the meaning of the
phrase ‘is interpreted as’. The Figure 536 shows the differences
between representation and interpretation (i.e., operations
applicable). If data representations are directly visible to the user
or programmer, then it is left to him to select the operation
applicable understanding the assumed interpretation and the
required constraints. This leads to errors because it contradicts
the object-oriented principle of encapsulation of behavior in a
class.

We will use differentiated representations for the different
interpretations and define operations for the transfer between
these representations (Figure 537), even if the underlying
representation is the same, namely 0-simplices. They are
internally treated as 0-complex, 1-complex, and 2-complex and
eventually mapped to the same method to deal with chains, but
typed differently to assure consistent use of operations. Between
these different interpretations are transformations which have the
general form of transforming a set of k-complex to an n-
complex, with k < n.

4. CONVERSIONS BETWEEN DIMENSIONS
Figure 536 gives a hint to what conversions are possible. They
are systematically discussed here and defined as operations on
simplicial complexes.

4.1 CONVERSION FROM ORDERED LIST OF POINTS:

4.1.1 To a 0-complex:
Convert the list of 0-simp to a 0-complex, represented as a 0-
chain. Each point is a 0-simp.

 Figure 535: Different interpretations of a
sequence of point as points, line segments,
open line, closed line and area

Figure 536: Representations and
interpretation

Figure 537: Different path to construct a 2-
cell from a sequence of points

Frank: GIS Theory Draft V15 Feb.05 334

4.1.2 To a 1-complex:
Three interpretations of the ordered list of points:
(1) Each pair of points is a separate piece of line,
(2) A line from first point through the intermediate points to the
last point or
(3) A closed line connecting the last point to the first point.
Adding the first point to the end of the list converts case (3) into
case (2).

In each case, a pair of points is converted to a 1-simp and
then a list is formed. Complexes do not allow crossings of edges
which are not nodes; if the given line is self-intersecting, then
additional point may be necessary and must be marked.

4.1.3 To a 2-complex:
Insert the points into an empty 2-complex. This forms triangle,
because every point must be a boundary of a 1-simp, which must
be a face of a 2-simp. Note: this conversion is not unique and
many equivalent results are acceptable (see next chapter for a
unique solution).

4.2 CONVERSION FROM 1-COMPLEX TO LIST OF POINTS
The conversion from the 1-complex to a list of points is the
skeleton operation (exactly the 0-skeleton).

4.3 CONVERSION FROM 1-COMPLEX TO 2-COMPLEX
Insert the 0-simp from the 1-complex to the (empty) 2-complex.
This forms triangles (2-complexes). Then insert the 1-simps into
the resulting complex; most of them will already exist, but in
some cases it will be necessary to swap an edge in a quadrilateral
to insert the desired 1-simp (Figure 538)

4.4 CONVERSIONS FROM 2-COMPLEX
A 2-complex without the 2-cells is a 1-complex. The operation
skeleton gives this conversion (1-skeleton and 0-skeleton, or just
the 0-skeleton). Applications often request not the skeleton, but
the boundary, which is a closed line and obtained by applying
boundary to the 2-complex.

5. IMPLEMENTATION OF GENERAL GEOMETRIC
OPERATIONS

6. SPECIAL OPERATIONS FOR 0-COMPLEXES
Three operations are interesting to warrant a special discussion:

Conversion may introduce additional
points if the line is self-intersecting.

Figure 538: Example of conversion of list
of points to 1-comples where swapping an
edge is necessary: the edge 3-6 is replaced
by 1-2

Cells 335

• Find the nearest neighbor to a given point,
• the convex hull, and
• the construction of a triangulation between the points.

6.1 NEAREST NEIGHBOR
The operation determines for a given point x the point pn from a
collection of points that is closest to x (Figure 539). A
straightforward method to find the nearest neighbor is
• determine the distance from each point in the collection to x;

by applying distance to x to each point;
• sort the points according to their distance to x;
• select the first.
Special data structures were invented to avoid searching through
all points. These improved algorithms are necessary for large
data collection as a GIS; but are not discussed here, because they
only affect performance, but not the result produced(Samet
1990; Samet 1990).

6.2 TRIANGULATION
The conversion of a list of points (or a 0-complex) into a 2-
complex produces a triangulation. There are many different
triangulations between a set of points possible (Figure 540). The
insertion of points and incrementally producing the triangulation
gives different results depending on the order of insertion. Two
questions arise: is there always a triangulation for the given cell
and is there a single (canonical) triangulation for a given set of
points? Any 2-cell can be triangulated, but the triangulation of a
3-cell may require so-called Steiner points, i.e. additional points
inserted inside the volume. A unique triangulation exists and will
be shown in the next chapter.

6.3 CONVEX HULL
The convex hull of a set of points is the set of points, which are
the ‘extreme’ points of the collection, such that all points in the
collection are included between the connections of these extreme
points (Figure 541).

Figure 539: p2 is the nearest point to x

Figure 540: Two different triangulations of
the same points

The convex hull for a set of points is
the smallest convex set that contains
all points

Frank: GIS Theory Draft V15 Feb.05 336

Many algorithms are known(Knuth 1992; Edelsbrunner 2001). A
simple, incremental algorithm starts with three points, which are
always convex set. Add point by point: if point is inside, then
return previous hull, if point is outside, add the new point and
determine which of the previous points is now inside.
Algorithms should avoid testing the same configurations
repeatedly ("do not ask dumb questions").

Observe that the conversion of a point set to a 2-complex
and then determining its boundary is also producing the convex
hull.

The computation of the complex hull has a dual problem:
given a set of half-planes limited by some flats, determine the
corners of the convex area delimited (Figure 542). This operation
is useful for finding an area where a number of conditions,
expressed as inequalities, obtain. The problem is solved by using
translating the given flats into points (see duality chapter 19) and
then computes the convex hull, which gives a set of simplexes.
The dual of these simplices are the boundary points of the
solution. This is the often used simplex algorithm to find an
optimum for a set of linear constraints [ref].

7. SPECIAL OPERATIONS FOR 1-COMPLEX
A 1-complex is a set of 1-simplices. It can represent a single line,
a set of lines, a complex line or a closed line (Figure 535). A
number of tests are used to differentiate these forms.

7.1 TEST FOR CONTINUOUS AND CLOSED
A 1-complex is continuous if the degree of each node is 2,
except for the start and endnode. A 1-complex is closed if the
degree of each node is 2.

The operation completion, adds 1-simplices to make the 1-
cell continuous. The operation closure ads a 1-simp from the
start of the 1-cell to the end of the 1-cell and converts the 1-cell
to a close 1-cell, which can be interpreted as a 2-cell.

A test for self intersecting for a 1-cell translates to a test in
the 1-complexs on the degrees of the node: A 1-cell is self
intersecting if any node has a degree higher than 2 (Figure 543).

7.2 INSERTION OPERATIONS ON 1-COMPLEXES
GIS software which provides operations to manage lines as
ordered sequences of points need special operations (Figure

Figure 541 Convex Hull

Figure 542: Area where 5 conditions are
fulfilled

Figure 543: Self intersecting 1-cell
approximated by 1-simplice. The marked
node n has degree 4!

Cells 337

544). We show here, how they translate to operations on the
simplicial complex:
• Extend line by one point:

Extending a line means adding a point at the beginning or at
the end – usually provided as two operations. In both cases,
the new 1-simp is added to the chain, because a 1-chain does
not depend on the sequence in which the 1-simplices are
listed.

• Delete a line segment from a 1-cell: Add the negative 1-simp.
• Insert an element at a position (first, last, after another one).

If a line should be changed to insert a point in the middle to
split a line segment then the line segment that should be
changed is subtracted (added negatively) to the complex and
then the 2 new segments are added. To delete a point from the
line, just reverse the above operation: delete the 2 adjoining 1-
simplices and replace them by one.

• For directed 1-complex: Reverse the order, find first or last
element :
reverse the simplexes one by one (i.e., multiply with -1)

8. CONCLUSION
In this chapter, operations with collections of points, line
segments, where introduced. In all cases, we were able to relate
the operations on cells to operations on simplicial complexes
(chains) that are used to approximate the cells.

The similarity of the representation – graphically and in a
computer – for different interpretation leads potentially to
confusion: a user may not be clear what he intends to
manipulate: the graphical line or the represented area? Confusion
may arise equally from the implementation, if the program
confronts the user with differences in the operations which
related to the internal representation, but not to different user
concepts.

REVIEW QUESTIONS
• What is the difference between a collection of points

interpreted as 1-cell or as 2-cells? What are the structural and
what the behavioral differences?

• What is Jordan’s curve theorem stating?
• Explain an algorithm to produce a collection of line segments

that are not intersecting each other.

Figure 544: Operations with lines: extend
at begin, at end, add point, and delete point

Frank: GIS Theory Draft V15 Feb.05 338

• What is the convex hull? To what operation is the complex
hull dual?

Chapter 29 SUBDIVISIONS ARE PARTITIONS OF SPACE

Representation of areas is in a GIS; isolated regions are
sometimes of interest, but in general, geography is interested in
the subdivision of space in regions, not only the buildings and
the streets are, but also the 'free space' between them. This part
will discuss such subdivisions of space, for which a prime
example are cadastral parcels. They are spatial partitions, where
every piece of land belongs to exactly one cell.

1. INTRODUCTION
Subdivisions of space that are constructed such that all the pieces
exhaust (cover) all of the area and the pieces are not overlapping
are common: political subdivisions are, for example, constructed
this way and any political map showing the countries of Europe
or the communes in a Bundesland has this structure (Figure 546).

Different approaches are possible to treat and represent
subdivisions:
• to represent the partition by the lines that form it.
• as a graph, where we interpret the cycles in the graph as areas,

called faces, or
• as a cell complex using the methodology of combinatorial

topology.
In a GIS, the faces in the subdivision are associated with

some thematic value, for example the cadastral identifier of the
parcel, the owner, etc, or the soil type, the amount of rainfall
annually, etc.

2. DEFINITION OF PARTITION
Let PI = {Ai | i ∈ I} be a set of non-empty subsets of A. The set PI
is called a partition of A if every element of A is in exactly one of
the Ai(Gill 1976, 15):

∪ over i, Ai = A exhaustive
Ai intersection Aj = 0 whenever i≠ j pairwise disjoint

We call this property 'jointly exhaustive and pairwise disjoint'
and abbreviate it to JEPD.

Figure 545: Buildings, streets and 'free'
space

Figure 546: Austrian Länder

Figure 547: Example for subdivision and a
graph which is not a subdivision

JEPD:
Jointly exhaustive and
pairwise disjoint.

Frank: GIS Theory Draft V15 Feb.05 340

Partitions are partially ordered by a relation≤. A partition PI is
finer than PJ if every Ai ∈ PI is a subset of some Aj ∈ PJ. We
say PI is a refinement of PJ and write PI ≤ PJ. Partitions form a
lattice with this ordering. The operations meet and join are
intuitively understood spatially: the meet is the partition with all
the boundary lines and the join is the partition that retains only
the common boundary lines (Figure 549).

3. POLYGONAL GRAPH
The set of boundaries in a subdivision (spatial partition) form a
graph, which is called a polygonal graph. This graph has some
properties, which we will describe recursively (followingGill
1976, 391)

Figure 580-11:—recursive definition of boundary graph
A polygonal graph is a connected, planar graph (condition that
no edges are not crossing in G). It subdivides the a 2d plane (or
the sphere, the projective plane) into regions (called faces).

A polygonal cycle is a closed, minimal path (see xx).
A graph consisting of a single polygonal cycle is a
polygon.

(Basis of recursion): A polygon is a polygonal graph.
(Induction step): Let G = (V, E) be a polygonal graph.
 Let a = vi, vm, vm+1, … vn, vj

be a proper path of length l > 1 which does not cross over G and
where vi and vj in V and vm…. vn not in V. Then the graph G’ =
(V’, E’) with

 V’ = V ∪ { vm… vn }
 E’ = E ∪ a

is a polygonal graph. This recursive construction does not allow
holes in a face, but allows cycles of length 2 (zweieck) or even
length 1 (loops).

Each face is bounded by a minimal cycle. The maximal
polygonal cycle of the polygonal graph is its outside boundary. It
is convenient to consider this outside as an additional face;
infinite face, outer void or similar names are customary. This
completes the Euclidean plane to the projective plane (Figure
551). This outer face has the opposite orientation of the other
faces, because the projective plane cannot be oriented
consistently; all operations must avoid touching this 'outer face'.

Figure 548: Two partitions

Figure 549 Their meet and their join

Figure 550: A polygonal graph and

a

Figure 551: A polygonal graph and its
completion. Note that face F2 has negative
orientation

Subdivisions 341

Faces are the same as 2-cells in a complex; two faces are
adjacent if they have a common boundary (in Figure 552: f1 and
f2 are adjacent). A face is incident with the edge that is its
boundary (in Figure 552 f1 is incident with e). We may say an
edge bounds a face or a face is bounded by edges.

3.1 BOUNDARY GRAPH MUST BE CONNECTED
The recursive definition of the subdivision enforces that the
polygonal graph remains connected. This does not allow isolated
holes (Figure 553).

3.2 RESTRICTIONS ON SUBDIVISIONS
What restrictions should be enforced? What assumptions can be
built into the representation? Restrictions built into the
representation makes it impossible for an application to construct
objects that violate the rules, even if the restriction is not
justified by the application. For example, spatial subdivisions
have holes (Figure 546). Much of the discussion about optimal
data structures for GIS center around questions what
assumptions are built into a data structure, what application
situations are excluded by these restrictions and how to
circumvent them.

I have not seen a simple algebra for the maintenance of a
polygonal graph allowing holes, i.e., a graph which is not
connected. This makes polygonal graphs and 2-cells not
attractive as a method to implement directly subdivisions. The
alternative is to subdivide the faces into 2-cells (which are
topologically equivalent to a sphere and have no holes) or into 2-
simplices (Figure 554). In either case, the operations on the
subdivisions are translated into operations on aggregates.

4. EULER OPERATIONS ON SUBDIVION
The Euler polyhedron formula is invariant for a subdivision.
Operations changing the subdivision must preserve this
invariant; the elementary operations to change the polygonal
graph are therefore called Euler operations.

4.1 EULER'S POLYHEDRON FORMULA
For polygonal graphs a relation between the number of nodes
(n), edges (e) and faces (f) for a simply connected graph
topologically equivalent to a cell is:

N – E + F = 1 Euler’s formula for a disk

Figure 552: A polygonal graph with two
faces

Figure 553: Isolated hole - not a
subdivision!

Figure 554: Two subdivisions constructed
from cells

Frank: GIS Theory Draft V15 Feb.05 342

This formula is valid for simple connected graphs in 2d (not
counting the outer face). For example, the Figure 552 has 5
nodes, 6 edges, and 2 faces: 5 – 6 + 2 = 1. The formula is proven
by induction along the lines of the recursive construction of the
polygonal graph above. The Euler polyhedral formula is most
used for subdivision of the surface of a sphere or the projective
plane, where the formula is

N – E + F = 2 Euler’s formula for a sphere
because, the outer (remainder) face counts as well.

4.2 GLUE AND CUT
Operations to change a polygonal graph into another polygonal
graph must leave the Euler formula invariant. Inserting edges
must divide faces; removing edges must merge faces.
Traditionally the operations are called merge or glue (Figure
555), divide, split, or cut (Figure 556). Euler operations are the
minimal steps that differentiate two partitions and all partitions
can be constructed by a finite number of splits; any two
partitions can be transformed in any other by a finite number of
glues and splits.

4.3 ORDER RELATION OF SUBDIVISION
A single cut operation makes a subdivision an elementary step
finer than the original one; a single glue operation makes it an
elementary step coarser.
There is a connection between a partition of a thematic space and
the induced spatial subdivision. Consider the political subdivsion
of space in countries, states, districts etc. (figure earlier).
Different levels of this partitions lead to different levels of
spatial subdivisions: the map of Europe as countries, the map of
Austria with their Länder (states) (figure earlier xx), etc. It is
possible, to subdivide one entry in the thematic partition further
(e.g. Austria) but leave the other countries in the map of Europe
the same (Figure 557). In general, any partition of thematic space
produces a partition of geographic space. This mapping between
thematic space and geographic space is order preserving: The
partition of attribute space can be finer or coarser, and
correspondingly is the subdivision of space finer or
coarser(Frank, Volta et al. 1997).

Figure 555: Glue

Figure 556: Split

Any partition can be constructed by
splits.
Any partition can be transformed in
any other by glue and split
operations.

Figure 557Subdivision of Europe with
Countries and sates for Austria

Subdivisions 343

5. INVARIANTS USED FOR TESTING PARTITIONS
The U.S. Bureau of the Census used in the early 1960s
computers to prepare the maps for all the enumeration districts.
These 50’000 xx maps were produced for the investigators who
visited all dwellings in the assigned area and counted the persons
living there; to assure that the whole population is counted only
once, these maps must be JEPD and it was necessary to check
the graphs which resulted from digitizing the street network for
correctness. Corbett in a classical contribution—perhaps the first
application of topology to GIS—proposed two tests which check
a graph to see if it forms a proper partition(Corbett 1975).

1. Closed path around an area: The cycle around an area
must be closed, this relates to Kirchhofer's law, which says that
the sum of the potential differences around a mesh in an
electrical network is zero. This excludes isolated edges, missing
edges, etc. but primarily inconsistencies in the polygonal graph
structure (Figure 559).

2. Area closes around a point: The succession of face—
lines—face must be closed around a point. This relates to the
other law of Kirchhofer, that the sum of the inflow and outflow
of a node must be zero (Figure 560).

6. CONSTRUCTION OF PARTITION FROM COLLECTION
OF LINES—SPAGHETTI AND MEATBALLS

Manual digitizing of a boundary map resulted in a collection of
lines, with arbitrary starting and ending points; instructions to the
operator may result in some additional structure in the order with
which the digitizing proceeded, but such hints were found to be
unreliable. To collect information about the region, the operator
digitized an arbitrary point inside a region and attaches the
attribute information to this point (Figure 561). This follows the
cartographic tradition of regions with labels (name of land, value
of land, parcel number, etc.).

The result of digitizing boundary lines and labels for the
regions without any particular order is in the jargon called
‘spaghetti and meatballs’ (after a popular dish in the USA). How
to construct an algorithm to convert automatically such data into
a subdivision? The code seems straightforward: compute all the
line intersections and then construct the cells, following the
edges around a node and around a face (invariants listed above).

Figure 558: Refinement of subdivisions by
cut

Figure 559: Closed path around face

Figure 560: Close path around node

Figure 561: Spaghetti and meatballs
resulting from digitizing

Frank: GIS Theory Draft V15 Feb.05 344

At the end, identify the faces with a 'point in polygon' test for
each 'meatball'.

This does not work, if the inputs contains ‘holes’—which are
frequent in choropleth maps, but also soils map, political
subdivisions, etc., contain them. Closing such polygons does not
work with a method following a polygon around a node or face.
Identifying the inner face later with a point in polygon test
results in two polygons. Digitizing instructions often request that
the 'island polygon' is connected by an arbitrary link to the outer
boundary of the enclosing polygon (Figure 554).

7. CONCLUSIONS
A subdivision has the properties of a partition, it is JEPD. The
operations on subdivision are restricted to operations that
maintain the invariants of the partition. The invariant is
succinctly expressed in Euler's polyeder formula, which is
maintained by the Euler operations glue and split. It is
sometimes necessary to combine several steps from a consistent
partition to a new consistent partition.

To maintain a subdivision, the Euler operations are sufficient
(Figure 562). The operation that produces a finer partition are
implemented as integration of a point or a line (0-cell or 1-cell)
with a 2-complex (see chapter 25). This cuts the edge or the face
in two. The split and glue operations require only the creation of
a new aggregate and a note that this aggregate contains the two
cells.

For practical purposes, an interface at a lower level
manipulating directly the polygonal graph seems desirable.
Operation could include:
• Add Node with Coord—to create a node with given

coordinates and no connections;
• Delete node (with all connected edges);
• Connect nodes—creates a new edge between to existing

nodes;
• Delete edge;
• Split edge with a node—insert a node into an edge;
• Delete node from two connecting edges.
These operations would not maintain the invariants of a
polygonal graph and the user has to check at the end of a
transaction consisting of several changes that the result is
consistent.

Point p is inside of face 17 and 21—not a
proper subdivision

Figure 562: The two Euler operations on
faces and the operations on edges

Subdivisions 345

REVIEW QUESTIONS
• Why a subdivision is called topological data structure?
• What is a ‘winged edge’ structure; why this name?
• Manual digitizing of partitions produces ‘spaghetti and

meatballs’—what is meant with this jargon expression?
• What does JEPD mean?
• What are the Euler operations?
• Why does glue and split leave the Euler formula invariant?
• What are the tests to check the consistency of partition?
• Why does the recursive construction of the subdivision not

permit the inclusion of isolated holes?
• What is the dual graph to a given graph?
• What is a complex? What is included, excluded?

Chapter 30 GRAPH DUALITY FOR TOPOLOGICAL DATA
STRUCTURES

The interpretation of a graph as delimiting faces creates a need to
be able to navigate around faces and nodes (Figure 563). This
operation is used to ascertain that the graph remains planar and
describes a subdivision (chapter 25 and 27). The same operation
to visit all nodes around a face is necessary to compute the area
of the face, to test if a point is inside a face, etc. The similarity of
these two operations, shown in the previous chapter, is here
explained by graph duality.

To a given primal graph a dual graph can be constructed,
such that every face in the primal graph corresponds to a node in
the dual graph and vice versa. Edges are mapped to edges that
are crossing the primal edges (Figure 564). The dual graph gives
the neighborhood relations between the faces (Figure 565, Figure
566).

Duality helps in GIS to determine areas of influence around
point objects. For example: what is the area served by a hospital
(Figure 567)? The assumption is that a service point (e.g. a hotel)
services all points which are closer to this service point than to
any other. It is given by the Voronoï diagram (also called
Thiessen polygon) around the given points. The construction of
the Voronoï diagram can be done directly but it is more
convenient to use duality and construct first the dual of the
Voronoï diagram that is the Delaunay triangulation.

The Delaunay triangulation is optimal in the sense that all
the triangles are as similar as possible to isocycle triangles.
There are many possible triangulations for a given set of points,
but only one Delaunay triangulation. It is unique and this alone is
sometimes useful.

1. GRAPH DUALITY
We have used duality before, most productive in projective
geometry where we had a duality between points and
hyperplanes (chapter 19). In subdivisions, there is a duality
between the faces and the nodes. An edge has two adjacent
nodes and two adjacent faces, which hints to graph duality.

Figure 563: Operations to find the next
edge around a node and the next node
around a face

Figure 564: Strict duality

Figure 565: Austrian Länder

Figure 566: Dual of Figure 565

Figure 567: The areas of influence for a
number of places

Graph Duality 347

The primal graph shows as edges the node adjacency
relation; the dual graph shows face adjacency relation. This can
be interpreted in applications: For example, in Figure 566 we can
see which regions of Austria are neighbors and which ones are
not (the connections to the outer face are left out).

The dual graph of a graph is constructed as follows:
Represent each face as a node in the dual graph (including the
infinite face). Replace each edge with an edge crossing. Figure
568 and Figure 569 give two simple graphs and their duals.

The dual of a planar graph is always planar. Duality for
connected graphs is its own inverse:

dual . dual = id.
The dual of a cell is different from the element; duality separates
the two graphs in two sets of elements, each consisting of
edges, nodes, and faces, where duality maps between faces and
nodes and maps edges to edges. There are graphs that are self-
dual, i.e., the graph and its dual are identical (Figure 571), but
real-world regions with this property are seldom (Figure 572).

The degree of each dual node representing a face is equal to
the number of edges bounding this face, and, by duality: the
number of edges of a dual face is equal to the degree of the
node. The dual of a triangulation (all faces have three edges)

results in a graph where all nodes have degree 3, but not in a
triangulation (Figure 582)! The two consistency tests (in chapter
29) are in fact only a single test, duplicated by duality (Figure
570, Figure 563, Figure 573).

If we represent the graph as relations between nodes, edges
and faces, we can see immediately that the dual graph is
available when we interpret the node-edge relation as the face-
edge relation and vice versa. The only difference between nodes
and faces is that the faces have no coordinates; it is useful to
select for the faces the mean of the coordinates of the 0-skeleton
(corners of the triangle). This point is inside the triangle and is
the center of gravity. No such simple rule exists for arbitrary
cells.

1.1 WHY NO HOLES? WHY NO ISOLATED NODES?
Duality helps to understand the difficulty with isolated holes
(previous chapter) and see that isolated nodes create similar

Graph Duality:
Node Face
Edge Edge (crossing)

Figure 568: A graph with one edge and its
dual

Figure 569: A graph with two faces and its
dual

Duality for graphs: every correct
sentence about a graph is correct if
node and face are systematically
interchanged.

Figure 570: Cycle around a node

Figure 571: A self dual graph

Figure 572: A geographically interesting
example for self dual graph: Switzerland
and the three language regions (French,
German and Italian speaking)

Figure 573: Dual: cycle around a face

Frank: GIS Theory Draft V15 Feb.05 348

difficulties. The dual of the dual of a graph, which is not
connected, is not the same graph.

There is an asymmetry between primal and dual graph. A
graph with a hole has a dual with an isolated edge, but the dual
of the graph with the isolated edge does not give a hole. Figure
576 shows two applications of the operation dual: the first graph
has a whole and its dual is shown. The dual of this figure is a
connected graph with three faces (2 inner ones, one exterior),
which are not inside each other (Figure 577). The next figure
shows that the dual of this graph is again the second graph
(Figure 578). Duality works only for connected graphs!
A similar argument excludes isolated nodes. They do not show
in the dual graph and dual would not be a self-inverse (Figure
574, Figure 575).

1.2 DUALITY AND ORIENTATION
The figures above show nodes and edges, but do not consider
orientation. Unfortunately, orientation is reversed by duality.
In Figure 579 the dual of edge g is g'. It is the result of turning
the edge g by a function d turning one quarter in positive
direction. Applying the same operation q to g' gives not g, but
the reverse g. Applying dual to g' must give g (dual. dual = id),
but left applied to e' gives (reverse e).

Duality is only achievable with a trick: look at dual part of
Figure 579 from the back of the page. Then turning e'
anticlockwise (positive) gives e, as desired. The strict dual graph
is the graph constructed by replacing faces with nodes and vice
versa and turning edges, but looked at from the 'other side', the
flipped side (alternatively, one can define positive orientation
differently for primal and dual graph). A hint to this asymmetry
in duality was seen, when following the next edge around a node
(in anticlockwise direction) and uses the same pointers to circle
around a face clockwise (chapter xx).

To achieve operations which use duality extensively, we
have to separate direction and orientation of an edge. The
orientation of an edge determines what is left and what is the
right face bounded by this edge (above, orientation was fixed
given the direction). Orientation and direction are two properties
and independent from each other; one can “picture the
orientation and direction of an edge as a small bug sitting on the
surface over the midpoint the edge e and facing along it. The

Figure 574: Graph with isolated node and
dual

Figure 575: Dual of the dual of Figure 574

No holes, no isolated edges
guarantee that
dual.dual = id

Figure 576: A graph with a hole

Figure 577: The dual graph to the dual of
Figure 576

Figure 578: The dual of the dual

Figure 579: Edge and dual edge

Figure 580: The bug giving direction and
orientation

Graph Duality 349

operation reverse e corresponds to the bug making a half turn on
the same spot, and flip e corresponds to the bug hanging upside
down from the other side of the surface, but still at the same
point of the edge and facing the same way” (Guibas and Stolfi
1982, 80)(Figure 580).

2. VORONOÏ DIAGRAMS GIVE 'AREA OF INTEREST'
Consider a number of service points—for example shopping
centers or hospitals—and delimit the area served by each point.
This concept of 'service area' is an often used concept, useful in
many applications.

The application concept of 'area of interest' 'area of
influence' or 'service area' must be translated into a formal
definition that captures the relevant aspects of the concept. Start
with a set of service points, which we will call nodes. Assuming
that the space is isotropic and any point will prefer service by the
node that is closest. This gives a definition of service area, as the
region of all points that are closer to one service point than to
any other service point. Each point of space is serviced by the
service point closest, or, every service point provides service to
all points that are nearer to this point than to any other point.
This gives areas around each point as shown in Figure 581.

The construction of a Voronoï diagram starts with the middle
points between any two points (M, M', M'' in Figure). These
points must be on the boundary between two regions. All points
on the bisectors between the two points are potentially also part
of the boundary between two service areas. Bisectors of three
service points close have a single intersection point. This gives
the boundaries of the Voronoï regions. If many service points are
given, then the manual determination of which intersection
points are meaningful may be confusing, but is not a principal
problem.

Combining such a Voronoï diagram with population density
gives us an idea how many persons are serviced by each point—
the assumption that people go to the next service point is a best
first guess. This overlay operation of population density (or a
modified value, population in a certain age group) with Voronoï
regions is one of the basic operations in "business geography"
which supports spatial marketing decisions [ref].

It is to understand this limitation of
dual graphs in order not to expect
from them properties that they cannot
have.

Figure 581: Service points and distance to
them

Figure 582: A Voronoï Diagram and the
dual Delaunay triangulation

Frank: GIS Theory Draft V15 Feb.05 350

3. VORONOÏ DIAGRAMS STRUCTURE EMPTY SPACE
The Voronoï diagram is not only useful for the determination of
service areas, but is also used to structure the empty space
between the observed features. Maps show salient features, but
most of the space is left in the background color. Jones has
suggested that the Voronoï diagram for the features shown
assign to each feature some of the open space(Jones, Bundy et
al. 1995). This is then later useful to determine if two objects are
neighbors, for example two buildings, which are not touching
are considered neighbors if their Voronoï area of influence are
touching (Figure 583).

In the figure, some buildings along two streets are shown.
The neighborhood relation defined through the Voronoï diagram
makes 2 a neighbor or 27, but not 25 a neighbor of 29, because
their distance is, compared to the distances to other buildings too
large. The dual of this graph gives the neighborhood relation
(Figure 584).

4. BARRIERS AND NON-POINT SOURCES
A service point may not reach all the location just based on
proximity—hard boundaries in the terrain may make this
impossible. For example a river may make it impossible to reach
the nearest distance service point. Space is not isotropic in this
case and the Voronoï diagram must include these boundaries.
A different complication is introduced by services that are not
points but lines or regions. For services given as lines—e.g., a
road that can be accessed any place—the boundaries of the
Voronoï diagram are parabola. They are the geometric locus of
all points having the same distance to a point and a line!

5. DELAUNAY TRIANGULATION IS THE DUAL OF A
VORONOÏ DIAGRAM

The primal nodes are the given service points. The Voronoï
diagram has the special property that three boundary segments
meet in a single point (Figure 581). These intersection points of
the boundaries will be the dual nodes forming the graph of the
Voronoï diagram. There are three primary edges connecting
three service points around each of the dual nodes. The dual is a
triangulation and the primal and dual edges cross at right angles
(Figure 585).

Figure 583: Which buildings are
neighbors?

Figure 584: The dual graph to the Voronoï
diagram in Figure 583

Graph Duality 351

We have assumed here that the service points are in general
position and not any 4 of them lie on a circle. Only then all the
nodes in the Voronoï diagram have degree 3 and the dual—
which is called Delaunay triangulation—is a triangulation
(Figure 582). This triangulation is well-determined for this non-
degenerated case: for any set of points there is exactly one
Delaunay triangulation.

5.1 CONSTRUCTION OF VORONOI DIAGRAM AND DELAUNAY
TRIANGULATION
The construction of the Voronoï diagram is somewhat
complicated and it is often easier to find the Delaunay
triangulation and then to construct the dual graph. An
incremental algorithm to construct a Delaunay triangulation
inserts point by point in a triangulation. In addition to the
methods introduced in chapter 25 for the construction of a
simplicial complex (i.e. a triangulation), we check after the
creation of a new triangle, if this triangle has the properties of a
Delaunay triangulation or the switched triangulation of the four
points would be better (Figure 586). To determine whether ABC
and ACD are the better triangulation than ABD and BCD we use
the incircle test (see chapter 9).

The incircle test checks whether a point is inside the circle
defined by the three other points. A triangulation is Delaunay if
all its edges pass the circle test.(Guibas and Stolfi 1982). The test
is for the Figure 586 (upper) incircle (ABCD) > 0 and for the
lower figure incircle (ABDC) > 0 (note that incircle ABCD = -
incircle (ABDC); it is one permutation of the matrix from which
the determinant is taken (Figure 587).

5.2 DETAILS OF INCIRCLE TEST (REVIEW):
Given three points ABC, not collinear, incircle (A,B,C,D) is true,
if A B C defines in clockwise order a triangle and the point D is
inside the circumcircle of this triangle (Figure 587). This is
equivalent to test

Angle ABC + Angle CDA < angle BCD + angle DAB.
The test can be written as a determinant (for details see Guibas
and Stolfi(Guibas and Stolfi 1987):

Figure 585: Construction of the Voronoï
diagram

Figure 586: The originally constructed
triangulation and the switched one

Frank: GIS Theory Draft V15 Feb.05 352

Reversing the order of the points gives the negation of the
predicate (i.e., true becomes false, false becomes true), as does
transposing any adjacent pair.

5.3 USE OF THE TEST
The new edges that are created when inserting a point into a
triangle are Delaunay (see Lemma 10.1(Guibas and Stolfi 1982))
and only the previously drawn edges in the triangle or
quadrilateral are suspect (i.e., the edges AB BC CA, or AB BC
CD DA in Figure 588). These must be tested by the incircle test
and swapped if necessary. If all suspect edges are tested, the
triangulation is Delaunay and the next point can be inserted.

6. ALGEBRA TO MAINTAIN A 2D MANIFOLD
It instructive to study the algebra proposed by Guibas and Stolfi
(1982) to maintain a 2d manifold. The general algebra maintains
2d manifolds. The restricted case for 2d subdivisions can be
deduced. Their algebra does not allow holes or isolated points.

The method proposed by Guibas and Stolfi is treating the
primal and the dual graph at the same time. The two graphs
together give a triangulation of space (Figure 589), known as the
barycentric subdivision(Henle 1994, 130).

Figure 589: Priaml and Dual Graph give triangulation

6.1 MANIFOLD (GERMAN MANNIGFALTIGKEIT)
The algebra constructs and maintains a 2d manifold. This is a
surface which is locally everywhere 2d. A manifold of 2-
dimensions is a topological space, where the neighborhood for
every point is equivalent to a disk. This includes surfaces that are

Figure 587: D is inside the circle defined
by ABC

Figure 588: The point N is just inserted

Graph Duality 353

not planes or not orientable, for example the Moebious strip,
Klein's bottle, etc. The definition for a subdivision of a manifold
is(Guibas and Stolfi 1982, 77):

A subdivision of a manifold M is a partition S of M into three
finite collections of disjoint parts, the vertices, the edges and the
faces, with the following properties:

S1. Every vertex is a point of M
S2. Every edge is a line of M (A line is subspace of M

homeomorphic to the open interval (0,1))
S3. Every face is a disk of M (A disk is a subspace of M

homeomorphic to the open circle with unit radius)
S4. The boundary of every face is a closed path of edges and

vertices.
Two subdivisions S and S’ on two manifolds M and M’ are

equivalent, if a homeomorphism of M onto M’ gives an
isomorphism from S to S’ that maps each element of S onto an
element of S’. The converse is not always true: Not for every
isomorphism between two graphs S and S’ exist a
homeomorphism between the manifolds. A topological property
of a subdivision is a property that is invariant under
equivalence(Guibas and Stolfi 1982, 79).

The difficulty is to define a representation such that it
represents all the valid subdivisions, and not more and not less.
The 2d manifold is broader than what is necessary to represent
subdivisions; our immediate purpose is the maintenance of a
planar, orientable surface. A 2d manifold is not necessarily
planar or orientable. A manifold admits also edges that are not
boundaries, i.e., which have the same surface on both sides
(Figure 590). For the purposes of maintaining a 2d subdivision,
which is a special case, a number of simplifications can be
introduced.

Figure 590: Manifold, but not polygonal
graph

Frank: GIS Theory Draft V15 Feb.05 354

6.2 ALGEBRA WITH QUAD EDGES
An edge and its reverse are represented as half-edges (see
chapter 27xx). If we add the two half-edges from the dual graph
to the half-edges from the primal graph, we get a quad-edge
(Figure 591). The algebra with quad edges represents each edge
by four parts: e1and e2 are the primal quad-edges (e1 is the
reverse of e2) and d1 and d2 are the dual quad-edges. The four
quad-edges are connected by an orbit. The origins of e1 and e2
are the nodes n1 and n2, the origins of the quad-edges are the
faces f1 and f2. Around the nodes and faces are orbits for to find
the next quad edge (i.e., in constant time, following a pointer);
the next function around a node gives the emanating quad-edges;
the next function around a face gives the dual edges for the edges
around the face.

The function rot gives the next quad edge, whereas the
function next gives either the next quad edge around a node or
the next dual quad-edge around the face. Note, that rot is not
dual: rot . rot ≠ id. These operations can be mapped to database
relations (or pointers) and are fast. The advantage of quad-edges
is that no backwards pointers are necessary. For example,
finding the previous edge around a node (next-1) is going from
the half edge (say e8) to the quad edge d4 by rot; then going to d1
by next around f1 and then to e1 by rot. This gives next-1 (e8) =
rot (next (rot (e8)) = e1; generally: next-1 = rot . next . rot)

6.3 ASSESSMENT
The quad-edge algebra was the first provably correct and
efficient set of operations on a subdivision. The approach her is
simplified for orientable surfaces and we must carefully restrict
operations to the orientable part of the projective plane. The
method does not directly deal with holes and should be
combined with simplicial complexes (but then other
simplifications may apply).

7. TOPOLOGICAL DATA STRUCTURES
In the GIS industry the term topological data structure (or short
topology) refers to a representation of subdivisions, where the
relations between node and edge (like a graph) and edge and face
are maintained. This is essentially a graph and its dual, merged
into a single structure.

Figure 591: Combine half-edges for primal
and dual graph gives quad-edge

Figure 592: The quad-edge (g, l, h, m),
where g,h are primal half edges and l,m
are dual half edges

Figure 593: The functions rot and next

Graph Duality 355

Many proposals for data structures to represent the topology
of a subdivision exist. They can be summarized in diagrams that
indicate the elements that are stored, face, edge (or half-edge or
quad-edge) and node. The arrows represent functions that lead
from one to an adjacent element directly in constant time.

 Figure 594: Different representations of subdivisions

Figure 594 shows a comparison of different proposals for data
structures. Relations that are not shown as arrows are in this data
structure combined from other relations—following an orbit
around a face or a node—and take more time. One can see that
the quad edge is one that has not more pointers than the most
efficient other ones, but gives at the same time the dual graph.

Most often used is the 'winged edge structure'. Attractive is
also the representations by arrows, which is essentially half-edge
plus a pointer to the face.

7.1 WINGED EDGE STRUCTURE
The idea that a partition is a graph—to represent the edges and
their adjacency with points—and the dual graph—to represent
the edges and their adjacency with the faces—follows an often
used data structure to represent partitions (Figure 595):

This data structure has the advantage that each element has a
fixed number of components. An alternative, where areas are
represented by a list of the edges or a list of the boundary points
would be much less convenient to deal with. The partition is
represented by four functions

startNode, endNode :: e -> n
leftFace, rigthFace :: e -> f,

which are all proper functions with a single result (accepting the
infinite face as a proper face). The disadvantage is that following
the edges around a node or around a face is difficult and requires
searching in the list of edges and requires the computation of
angles and sorting the edges leaving in a node (Figure 596).

Figure 595: The edge AB is linked to A and
B and to the two faces f1 and f2

Frank: GIS Theory Draft V15 Feb.05 356

7.2 AN ALTERNATIVE TO QUAD EDGES: HALF-EDGES—ARROWS
In this representation, the edges are split in two ‘half-edges’ or
arrows that emanate from an origin (the start node) and have a
twin, which has as an origin the end node of the boundary edge.
There are links leading from one half-edge starting at a node to
the next around the node. These links together with the links
between the twin half-edges make it easy to follow around a face
(Figure 597).

 Figure 598: An example data structure

Figure 596: An example of a winged edge
representation as tables

Figure 597: The half edges with additional
pointer from face to an edge and from node
to an edge

Graph Duality 357

This data structure represents the functions:
firstEdge:: n -> e
origin :: e -> n
twin :: e -> e
face :: e -> f
next :: e -> e
prev :: e -> e
outerBoundary:: f -> Maybe e
innerBoundary :: f -> Maybe e.

This data structure is more voluminous than winged edge.
Some of the relations that were immediate are now indirect. An
example is

startNode = origin, but endNode = origin.twin.
To get all the edges around a face if one follows the next
function. To go around a node, one follows twin.next; in both
cases checking for the end of the loop by comparing with the
element one has started with.

7.3 CRITIQUE:
These two descriptions of data structures lack definitions for the
operations. It is difficult to program operations that guarantee
that they remain consistent. It is also not immediate, what special
cases of subdivisions are included or excluded.

8. SUMMARY
Duality links a graph separating the faces to the graph describing
neighborhoods between faces. The Voronoï diagram and the
Delaunay triangulation are dual to each other. They connect
points, boundaries and areas in a way which is meaningful to
many applications.

The algebra presented by Guibas and Stolfi is a formal
approach to a long-standing problem, namely an algebra with a
representation and operations for spatial subdivisions. The
method maintains a 2d manifold consistent. It has some
disadvantages for GIS applications:
• It can handle non-orientable surfaces (like the sphere or the

projective plane) but at a cost—the operation flip and the
representation of its state.

• If it is restricted to an orientable subspace (for example the
state plane coordinates for a country) then coding must
ascertain that the 'inconsistencies at the boundary' are never
encountered. There is potential for errors during execution.

The algorithm is short and effective, but it does only manage the
orbits around the nodes and faces, it does not maintain the

Frank: GIS Theory Draft V15 Feb.05 358

relations between edges and nodes and faces, because the orbits
are the representation of face and edge and are duplicated with
the origin pointer.

The method is overly general and perhaps too general to treat

the special case we are interested in. The management of
simplicial complexes seems less demanding.

REVIEW QUESTIONS
• What is a Voronoï diagram? What does it show?
• What says dual . dual = id?
• What is the dual of the Voronoï diagram?
• What is special about the Delaunay triangulation compared to

other triangulations?
• Why did we not construct a ‘which face is this point in’

function?
• How do you determine the service area of some service

points?
• Where are the ‘point-in-circle’ routines used? Why did we

define them earlier?
• Why is the edge algebra outlined not easy to use?
• What are the consistency constraints of the insert edge and

insert node operations?
• What are the inverses of insert edge and insert node? Give a

graphical example.
• For what applications will we use the insert edge and insert

node operations?

PART ELEVEN TEMPORAL DATA FOR
OBJECTS

In this last—and short—part, we return to temporal data. The
functor changing, whichwe have used to extend operations from
static and local functions to time series in part 4, is applied to
value describing the properties of objects. A moving object, for
example a car, is nothing else than an object with a changing
location and comparable to a town that has a changing
population. The first chapter treats representation of objects
moving in space, showing in detail how the functor changing is
applied to what appears as single attribute value—here position.
For a moving object, the position is a function of time. It can be
observed and we obtain a time series not different from the
observation of temperature in chapter 11 xx.. The application of
this functor gives us the representation of the changing world.

A database reflects not the current world state but our
knowledge of the world state. Our knowledge of what is the case
in the world typically lags behind the changes in reality;
similarly, the facts in the database most often describe what was
the case earlier and may be changed already. The representation
is influenced by limitations of our observations and the methods
we use to classify the observations made; it may also contain
gross errors and other inaccuracies. In administrative and legal
procedures it is necessary to be able to demonstrate what was
known at a given time in contradistinction to what was a fact at
the same time. The database itself is then considered a changing
object – namely our changing knowledge of the world. The same
functor changing constructs the 'database time perspective' from
a single spatio-temporal database.

In effect, applying the functor changing twice to a snapshot
database gives a spatio-temporal database with both time
perspectives: the changing world and the changing knowledge
about the world. One can ask to types of questions: "Where was
object X at time T" and "At time U, where did we believe that
object X was at time T".

Chapter 31 MOVEMENT IN SPACE: CHANGING VECTORS

Movement of objects in space is important for humans and the
representation of movement in GIS an opportunity to make GIS
more useful. This chapter investigates in detail the representation
of changing objects and the operations applicable. We separate
the change of properties of the objects, including the location,
shape, etc. and the creation and destruction of objects.

This chapter shows how the functor changing that was
introduced in chapter 11 and used there to represent time series,
is directly applicable to moving objects, e.g., the location of taxi
cabs in a city or airplanes in the sky.

1. INTRODUCTION
Real object movement is complex and an Information System
can only contain a simplified approximation. This chapter starts
with the approximation of movement as piecewise linear and
with a fixed speed (velocity v). The discussion is mostly treating
uniform movement, but it shows also, how other movements
with changing speed can be modeled with the same approach.

2. MOVING POINTS
Movement can be abstracted to the movement of point objects,
or movement of the center of gravity of extended objects.
Movement is controlled by a vector v indicating the speed of an
object and the position p is the integration of this speed over time
with the initial position p0 (Figure 599). Initial position, velocity,
and momentary position are all expressed as vectors; time is a
scalar, as usual.

p(t) = p0 + v * t

Such a moving point is a point changing its position in time;
this is a 'changing vector' and is the result of applying the functor
'changing' to a vector. The use of the functor changing converts a
simple point (data type vector) in a changing point (exactly
changing vector). Changing points, i.e., moving points, represent
movement. The location of a moving vehicle is described as a
function that yields a point for every moment in time.

If the object O1, e.g., an airplane, is stored in the database
not as an object with a fixed location, but as a moving object,

Figure 599: A moving point

Temporal Objects 361

which is a changing vector, it is possible to ask questions like
"give the location of O1 at T1" or "How far is O1 from the airport
now".

3. FUNCTOR CHANGING APPLIED TO VECTOR
The use of the functor changing applied to vectors gives the
moving point. The ordinary operations addition and subtraction
are lifted to work on changing vector. They can be used to
calculate the distance between a moving object and a fixed
location or to calculate position of an object that is moved
relative to a moving reference frame (Figure 600). If p1(t) is the
location of the object relative to the moving frame (e.g. a wagon)
and the position of the frame is p2(t) then the position of the
moving object relative to the outer reference frame is (p1 + p2)
(t).

4. DISTANCE BETWEEN MOVING OBJECTS
An interesting question is the distance between a moving object
and a location or between two moving objects. Given a function
to calculate the distance between two points p1 and p2; can this
function be used to calculate the distance between two moving
points? Lifting the function dist (p1, p2) with the functor
changing (lift 2) means that all the constant coordinates x and y
of p1 and p2 are replaced by functions x (p1, t), y (p1, t), x (p2, t)
and y (p2, t). The result is a formula to calculate the distance
between moving points as a function of time. This is, of course, a
synchronous application of calculations valid for a single time
point, like the synchronous operations on time series in chapter
11.

If all the standard arithmetic functions are available in a

lifted form to apply to changing values then lifting the distance
function gives the desired function. A subtle conversion is
necessary: a changing vector (of x and y) must be converted in a
vector of two changing coordinate values: a changing vector and
a vector of changing coordinates is semantically the same,
syntactically different.

Figure 600: Object moved inside a moving
object

Figure 601: Distance between moving
points

Frank: GIS Theory Draft V15 Feb.05 362

5. ACCELERATED MOVEMENTS
Point movements with constant acceleration can be described
with the same functor: velocity is changing; a function of time
and position is a function of the (changing) velocity. The
trajectory of an accelerated movement is a straight line only if
the initial velocity and the acceleration are parallel. If the
acceleration is different in different directions and not parallel to
the initial velocity, a curved trajectory results (Figure 602).

Lifting with the functor changing is not sufficient to obtain
all results desired. Second order functions for integration of
function values over time intervals are necessary. Software
packages for treatment of formulae (Wolfram 1988) can do
symbolic differentiation and integration for complex expressions
and the same methods could be applied here. For realistic
complex functions, numerical integration and differentiation is
an option to calculate approximations(Wolfram 2002).

6. EVENTS
Allen—following the philosophic discussion in Hamblin—
defined an event as the minimal interval over which a state
holds. This is the same as a fluent of Boolean values, which is
true within an interval and not outside (Figure 603).

This definition of event is not conforming to common usage
of the word in the English language. Wordnet (Fellbaum 1998)
gives 4 senses for the noun event:

1. event -- (something that happens at a given place and time)
2. event, case -- (a special set of circumstances; "in that event,
the first possibility is excluded"; "it may rain in which case the
picnic will be canceled")
3. event -- (a phenomenon located at a single point in space-
time; the fundamental observational entity in relativity theory)
4. consequence, effect, outcome, result, event, issue, upshot --
(a phenomenon that follows and is caused by some previous
phenomenon; "the magnetic effect was greater when the rod
was lengthwise"; "his decision had depressing consequences for
business"; "he acted very wise after the event")

The definition used by Allen is not the sense ordinary English
gives to the term. It seems, unfortunately, to be the one generally
used in Philosophy, AI and in discussion of temporal GI. Given
that no better terminology is available, I will use it as well.

An event is defined as an interval of time (not a point in
time) in which some property is uniform. This is parallel to the
definition of objects as areas in space, which have uniform

Terminology:
Speed a scalar describing the
magnitude of the velocity vector
Velocity a vector
describing speed and direction of
movement

Figure 602: An accelerated movement

Figure 603: An event as a Boolean fluent

Note: event in this definition is not a
time point, but an interval.

Temporal Objects 363

properties (chapter 14). The property that is uniform and makes
us see an object depends completely on the application; what we
have in mind makes things objects or events—in other
circumstances other events are identified.

A definition of events as closed intervals, where both start
and end point belong to the interval leads to the inappropriate
consequence; for example that at the begin or the end of the
interval the state holds and holds not—is both, true and false. We
have seen this difficulty before when considering open and
closed sets (chapter 21). For events, it is customary to define
them as semi-closed: the start point is part of the event, the
endpoint is not, but is already the start point of the next event.
This is also the solution the ‘commonsense’ world of everyday
life has selected: a lesson from 4 to 5 starts at 4:00 and ends at
4:59 (chapter 8).

7. SPECIAL CASE—BOUNDED, LINEAR EVENTS
Some events are approximated with a linear function for a
limited interval. This is appropriate for the interpolation of
position of objects that move, or the outside temperature, etc. In
this first step, we define the event as a single movement, from
rest at p to rest at q, or a single raise of temperature; continuous
movement from a through b, c, d to eventually z (Figure 604), or
the rise of temperature during a day is a sequence of such
bounded, linear events.
Outside of the interval, the value is not defined, which makes the
function at a partial function. The interpolation for values inside
the interval is a special case of linear interpolation and can be
dealt with the methods described (see xx).

8. MOVEMENT OF EXTENDED SOLID OBJECTS
The movement of an extended object can be combined from a
movement of the center of gravity and a rotation around this
center (Figure 605). Rotations of objects are dealt with the same
concept than translations of points: the angle of rotation is
changing in time. The position and orientation of the object are
two functions of time and the object geometry is transformed
with the combined translation and rotation.

Events and Objects are similar:
temporal or spatial intervals
(respective regions) with uniform
properties.

Figure 604: Movement of an object along a
path

Frank: GIS Theory Draft V15 Feb.05 364

Using homogenous coordinates, the translation and the
rotation can be expressed as matrices and the result of both is the
product of the two matrices. For moving objects, these matrices
are functions of time (compare with chapter 10):

9. MOVEMENT OF REGIONS
Movement of regions does not imply that the form is maintained
as it is the case for solid objects. A region can move and change
form at the same time.

In this section we consider first the change in form caused by
movements of the corners. We assume here that the region can
be approximated before and after the move with a polygon with
the same number of nodes.

The movement of the center of gravity is superimposed to a
movement of the center of gravity and represented as changes
relative to the center of gravity or which may be all what is
represented of the movement of the region (Figure 606). The
movement of corners relative to the center of gravity plus the
movement of the center of gravity gives the total movement of
each corner. This is an application of addition of movement,
Figure 600).

Assume that the region is represented by a polygon. Then the
movement of the region is a movement of the corners. A region
that is moving is thus nothing else than a polygon of moving
points.

If the region changes form and therewith the number of
corners changes, it is still a moving region, but not with a fixed
set of corner points, but a changing set of corner points (Figure
607). The difference is only whether the functor is applied to the
single points or to the polygon as a whole.

10. ASYNCHRONOUS OPERATIONS FOR MOVEMENTS
Movements of point objects are important in life, but not always
do we pay attention to all details. A number of abstractions from
the complexity of the movement in time are used. Many of them
can be seen as projects. For example, we identify the start and
the end, the distance along the path or between start and end, the
trajectory, which is independent of time. Intersections of
trajectories are because they are potential points of interaction—
desirable, when we meet in a restaurant to have lunch together,
or undesirable, when cars collide. These operations with

Figure 605: Object rotating and moving

Figure 606: The movement of the center of
gravity (red) plus the differential movement
of the corners of the region (violet) give the
total movement of each corner (black).

Figure 607: A polygon changing position
and shape

Figure 608: A point movement in x-y-time
space and the corresponding trajectory in
x-y

Temporal Objects 365

trajectories are asynchronous, they combine points the object
passes through from different times.

10.1 PROJECTIONS TO SPACE DROP TEMPORAL ASPECTS
The trajectory of a moving point is the path the point covers; it is
the projection of the 2d + time space to 2d space, ignoring the
temporal behavior. Take as an example the trajectory of
airplanes (Figure 608).

The visualization as a space – time diagram (Figure 609)
helps the intuition: in the 2d plane we show location, in the third
dimension, we show time. Moving points are then inclined lines,
synchronous operations compare and combine points in the same
(time) horizontal plane.

After projection into the space dimension we have the
trajectories. We can see intersection of trajectories and we can
ask questions like, how close did two trajectories ever come.
Intersection of trajectories is not a collision, and the distance
between two trajectories is not the same question as ‘how close
did two moving objects ever come’. The two trajectories in
Figure 610 have an intersection point, but the two objects did
pass at that point at different times, not colliding. The length of a
trajectory is usually the length of the projection. In the projection
we can also determine start and end points of a trajectory.

Questions of whether a moving object did ever enter a
region, or stayed completely within a region or was always
outside of a region are also answered best when considering the
trajectory (Figure 611). If the trajectory is closed, meaning the
projection of start and end point are the same, then we can
calculate the area enclosed.

Only a single operation to project a space-time path to the
space is necessary. Then all the above described operations are
operations with the resulting line, using previously defined
geometric operations.

projectToSpace :: SpaceTimePath -> Line

10.2 OTHER PROJECTIONS
A path has extreme points. For a flight path of an airplane, we
can ask, where is the highest point and what height did the plane
ever reach. Such questions are answered in other projections.

Figure 609 Space - time diagram

Figure 610: Two moving objects and their
trajectories

Terminology
path a space time line
Trajectory the projection of a path

Frank: GIS Theory Draft V15 Feb.05 366

10.2.1 Projection to a surface along the trajectory
A path has a natural parameterization along the path by time or
the length of the path. One can project the path to a surface
perpendicular through the path (Figure 612). In this projection
many question are immediately answerable:

Speed of movement is the derivative of the curve in the
length-time space.

Highest and lowest points are maximum and minimum
(Figure 613).

More complicated questions like: how long was the airplane
between 1000 and 200 m above sea level can be answered. They
are again as the intersection of this projection with regions.

11. SUMMARY
Storing data with type changing object in a database extends the
database beyond the current snapshot database to a (world)
temporal domain. We can not only ask questions like "where is
object O" but also "Where was object O at time T" and a number
of related questions. The functor changing is the methods to deal
with moving objects and other changing aspects of an object.
Projection from a path gives a trajectory. The structural strength
of a functor allows us to use moving objects in complex queries
wherever queries in a snapshot database refer to static objects.

12. REVIEW QUESTIONS
• Explain how the functor changing is applied to vector. What

is the result?
• Why is changing vector of Float different from vector of

changing float? Which one of the two is representing a
movement?

• Demonstrate that the intersection point of two trajectories is
not always the point where the distance between the two
moving object is smallest.

Figure 611: The animal did not enter the
forest A

Figure 612: A path and a projection to the
surface through it

Figure 554-1: Perpendicular surface
through path

Figure 613: Highest point of a path

Chapter 32 SPATIO-TEMPORAL DATABASES CONSTRUCTED
WITH FUNCTORS

The extension of the current snapshot GIS to spatio-temporal
data is a practical demand. The previous chapter has shown how
to extend a database to cope with moving and changing objects.

In this chapter the requirements of administrative and legal
procedures to establish when a fact was known is dealt with. In
legal procedures it is not only when actions were performed and
events occurred ("when did X kill Y, when did A sell property P
to B"), but also, when did others obtain knowledge of a fact –
when did I learn that A has sold his property. If the database
shows only the state of the world at any given time, I cannot
demonstrate later, what was known at the time I made a decision.
Consider the decision of a bank employee to give a loan to A on
March 1; he uses the database to check that A is the owner of
property P that is used as collateral for the loan. Later, A default
on the loan and the bank learns, that the property was sold to B,
and this sale was completed on Feb. 25, which is prior to
granting the loan and therefore the bank has no valid security for
the loan. Has the employee made an error? No, on March 1, the
database did show that A owns parcel P; the sale was recorded
only on March 5 (and the mortgage on property P therefore in
most countries valid). We see that it is not only to know when
something happened, but also, when it was known, or became by
registration 'public knowledge' (principle of giving notice).

A database must answer therefore two types of temporal
questions:
• What was the case at time T (valid time)?
• What was known at time T (transaction time)?

In this short chapter, we show that this step is – with the
preparation achieved now—simple: we apply the functor
'changing' twice to the database, once to obtain a database with
values changing with the time in the world and once to obtain a
database where previous states of the database can be retrieved
to satisfy the 'giving notice' principle of administration.

Frank: GIS Theory Draft V15 Feb.05 368

1. INTRODUCTION
A temporal database must provide two time perspectives:
• Valid time, in which values describing reality are changing

(sometimes called World time(Tansel, Clifford et al.
1993p.623), and

• Transaction time (sometimes called database time), in which
the knowledge in the database is changing.

Temporal extension for data storage seem to face two major
issues: a consistent and realistic calculus for intervals, including
the special, ever changing constant 'now' (see xxx) and concept
of a stable object.

A relational database can easily include a concept of user-
time, which is a time, but without a defined semantics for the
database; user-time is used to represent the time a snapshot was
valid or to report time points like date of birth or date of hiring.

Note: temporal database literature uses the word event often
as synonymous to instant or time point(Tansel, Clifford et al.
1993p.625), which is different from the definition of event as a
interval for which a state obtains (see previous chapter).

The extension of a database which has objects with
identity—relational or using another data model - to support time
points and intervals of time is not difficult, it is mostly to
construct a calculus for time points and time intervals.

The pure relational database cannot provide a stable object
concept. The keys used to identify a tuple can change (Codd
1970) surrogates (Codd 1979) or time-invariant keys must be
added to the model. For temporal relations additional, not well-
understood rules of normalization seem necessary to avoid
complications during updates. Much of the discussion argues for
different types of granularity what changes with time: do we
store changing relations (i.e., the full relation is time-stamped),
changing tuples or changing values (Figure 614.), sometimes
referred to as object versioning versus attribute
versioning(Tansel, Clifford et al. 1993). This is primarily a
question of implementation, which should not become visible at
the user interface. Logically, time intervals for relations, tuples
or single values are equivalent and can be transformed loss-less.

all v15a.doc 369

Figure 614: Different granularity for recording cahnge

2. CONCEPT OF TIME
A temporal database is built around a discrete time where a fixed
granularity of time is assumed. "A chronon is the shortest
duration of time supported"(Tansel, Clifford et al. 1993p.624).
Such time points are isomorphic to integers and relate to Galton's
discrete time (chapter 6). Wuu and Dayal (Tansel, Clifford et al.
1993) point out shortcomings and limitations caused by these
assumptions and propose a concept of time that permits other
specifications, for example non-metric or partial order.

We will use here time points that are isomorphic to integers
and the previously defined algebra over intervals, which assume
total order.

3. WORLD TIME PERSPECTIVE
The world is changing. We can differentiate two types of
changes:
• new objects emerge and previously existing objects disappear,

and
• property values of objects change.
The first type of change affects the lifespan of an object and the
relevant changes are discussed under the heading lifestyle of
objects, the second are changes in properties, including
geometric properties of objects, and is dealt with using the
functor changing (previous chapter).

Note: the term object in this section means the representation
of something that is continuing in time. It is not necessarily a
physical object.

3.1 LIFESPAN
Objects have a lifespan, a time in which they exist. The lifespan
is an interval, in which the object representation is valid (Figure
615). After a record becomes invalid, it still exists in the

Frank: GIS Theory Draft V15 Feb.05 370

database and its value can be accessed; care must be taken, that
such 'old' object representations are not mixed with data that is
maintained. Consider for example a database with employees for
whom the address is stored: after an employee has quit, his last
address is still available, but it is not likely updated. Here special
support by the query languages is required to express a query to
obtain the last known fact, separated from data that is current.

Technically, lifespans are asymmetric: before an object is
created, nothing is known about it, not even that it will later
exist. When the object is not-existing anymore, the data is still
stored and it is possible to detect that the object has existed. This
asymmetry is reflected in the implementation; if object
identifiers are distributed in increasing order, then the test if an
object O1 does exist consists of two tests
• Is O1 less than the highest assigned object identifier – if not,

the object does not yet exist;
• Has O1 been destroyed, which is recorded in a relation? If

not, then the object currently exists.

3.2 LIFESTYLES
The creation and destruction of objects is not the only two
operations that can affect an object in its identity. Al-Taha and
Barrera (Barrera, Frank et al. 1991) (Al-Taha and Barrera 1994)
have identified a total of 11 situations that change the identity of
an object.

Figure 615: Lifespan of an object

all v15a.doc 371

Figure 616: The 11 lifestyles(Al-Taha and Barrera 1994)

Not all these possible changes apply to all objects. Medak
has identified lifestyles that restrict what changes are possible to
certain ontological classes(Medak 1997; Medak 1999; Medak
2001). For example, liquids can be identified (poured together),
but not aggregated, because liquids can be spawned (we can
pour from a pitcher), but it is impossible to disaggregate two
liquids once poured together. Similarly, for living things, it is
ordinary not possible to suspend 'life' and reincarnate a person
again (fairy tales and comic-books exempt), but a machine or car
can be disassembled and does not exist as a whole and can be
reassembled to exist again, which is either the changes killed and
reincarnated, or disaggregated and aggregated (which is also
not acceptable for living things—do you regularly disaggregate
your cat?).

The lifestyle changes can be carried over from physical
objects to geographic objects or objects created by social
construction. Hornsby (Hornsby and Egenhofer 1997) has
discussed lifestyles specifically for geographic objects like
countries.

3.3 CHANGING VALUES
The properties describing the object, including the property
'existing', do change over the life of the object. These are
changing values.

Frank: GIS Theory Draft V15 Feb.05 372

We have so far used the functor changing and applied it to
values that changes continuously, but it is not restricted to this.
Changing values can be of any type, including Boolean (Figure
617). A changing value of Boolean is true for some intervals and
false for others (we have seen that it is an event—previous
chapter); a changing Boolean can be converted in a sequence of
intervals for which the value is true and an interval can be
converted in a changing Boolean.

4. DATABASE OF CHANGING VALUES
Using parameterized types, the relation database used for
snapshots of the world was a 'database of values'. Applying the
functor changing to values (as shown in the previous chapter),
gives 'database of changing values'.

The interpolation of administrative values is different from
values for physical properties: physical properties change most
often smoothly and we can interpolate between two states
(Figure 618). Administrative facts are valid from a data till
further notice (Figure 619).

The query language (see chapter 16) remains the same, but
returns now lists of changing values, from which the value for
the time of interest is retrieved with the operation 'at' (see chapter
11). Selection of objects is now not with a single value, but a
value and the time it is valid; instead of a condition to apply for
the name of a town ("Geras" ==), we have to write
("Geras"==.at now), where the condition 'name equals "Geras"'
is composed with the conversion from a changing value to the
value valid at time now.

5. DATABASE TIME
A database changes with time: new values are added, values are
changed or objects are deleted. It is sometimes necessary to
know in what state a database has been earlier—for example to
determine if a user could have known a fact, or if he could have
known if he had been careful. This is a principle of law and was
introduced earlier as 'giving notice' (see example with bank
granting a loan in the introduction).

The database itself is a changing value, which changes its
value discretely and is valid from the change onwards till the
next change. It behaves like administrative data (Figure 619) and
the current state is valid, is the best knowledge till a new update

Figure 617: Changing Boolean

Figure 618:. Smoothly changing physical
value

Figure 619: Stepwise change of
administrative value

all v15a.doc 373

is received. This does not preclude that for certain smoothly
changing value, an extrapolation in world time is possible (for
example, airplanes moving), but this is the best 'current
knowledge' and the extrapolation may change. At 11:00 we may
ask where do we expect airplane at 12:00, if we receive an
update in the airplane position at 11:15 and then ask at 11:20
again where we expect the airplane to be at 12:00, we get
different information. In database that has a transaction time we
can later ask "what was at 11:00 the expected location for the
airplane at 12:00" and get the original estimate (Figure 620).
Care must be used to separate extrapolated data from 'known'
facts based on observations.

The database is changing with every update. It is a changing
value! The database perspective is achieved by applying the
functor changing to the database as a whole: a temporal database
with the database perspective is a changing database of values, a
database with both time perspectives is a changing database of
changing values (the functor changing applied twice).

Most queries will use the current state, but it must be
possible to access previous states, the state as it was known at a
previous time (our knowledge "as of March 1"). For these cases,
the function 'as of time' applied to the changing database returns
a snapshot database for the indicated time, i.e., the database that
was valid at that time. To this snapshot of the database, which is
in the case of a bi-temporal database a database of changing
values, i.e., a database with only world time perspective. To the
result of the 'as of time' question, a query with the at function
can be applied. One can think of this two step execution of a
query as two projections: first to the transaction time with 'as of
t1' and then a second projection to valid time with 'at t2'.

6. ERRORS AND CORRECTIONS
Databases can contain erroneous data. We have seen that
internally with the use of logic, we can only ascertain that the
database is consistent with respect to the rules fixed (see chapter
18). In a database with a database (transaction) time perspective,
it could be possible to record if a change is inserting a new value
or a change is the result of observing that a previously inserted
value is in error(Tansel, Clifford et al. 1993). This will require
two kinds of transactions, namely those that change values and
those that correct values. I have not seen implementations of this

Figure 620: Observation of airplane at
10:30 and 11:15 with estimates for location
at 12:00

Frank: GIS Theory Draft V15 Feb.05 374

idea in database software, but the concept is included in
instructions and laws, for example for the maintenance of land
registries, where rules establish how new facts are recorded with
reference to time and how special procedures are use to correct
errors (again with a time annotation) (Schönenberger 1976)

PART TWELVE AFTERWARDS

This book has shown an eclectic collection of parts of
mathematics. The inclusion of each piece was motivated by
some function relevant for GIS applications. Many open
problems of GIS research have been excluded, especially
approximation, semantics and user interfaces, including
graphical output. The material shown is the foundation onto
which solutions to these difficult questions can be grafted.

1. FORMALITY LEADS TO CONSISTENCY
The approach I selected was very formal. My experience with
the design of software is that the decisions early in the process
have much effect later and errors in the beginning of a design are
very difficult and very costly to correct later.

The same methods can serve many times in a GIS. In current
commercial products, the same methods are implemented
multiple times—justified (perhaps) with different
optimizations—but with slightly different assumptions. These
pieces are not consistent with each other. Extensive 'fixes' are
later used to join the essentially similar but in detail dissimilar
pieces. Coherences have been advocated, but difficult to achieve.
It is necessary to clarify the foundation and to use systematic
methods to combine modules.

The formal approach made the foundation evident and
documented the decisions. Modules designed later are then
linked to the previous decisions: the pieces are consistent and
work together.

2. IS THAT ALL?
Are these all the parts? Is that all the mathematics necessary for a
GIS? How could one demonstrate this? Can one proof the
completeness?

I have advocated that "the proof is in the pudding" and
started the implementation of the methods shown here. This can
be useful to demonstrate that these methods are sufficient to
solve a set of typical GIS application problems. This will

Frank: GIS Theory Draft V15 Feb.05 376

demonstrate that the core is covering what a GIS does (minus
interface and nice output); it will also demonstrate, that the
pieces are internally complete—what one module assumes
another module provides.

An informal proof that the components shown are sufficient
is using the rational decision mode (chapter 3): Every application
of a GIS is to make a decision. A decision process can be
formalized as a selection of the optimal variant. The following
steps are necessary:
• Create all variants;
• Delete variants that are not acceptable based on properties of

them:
• Evaluate each variant;
• Find variant with optimal value.
The methods to represent objects with spatio-temporal properties
and to retrieve them have been shown in part 5. The construction
of new geometries using vector operations was the topic of part 3
and 6. Properties of objects can be described with the methods in
part 7 and 8, for networks in part 9. The evaluation combines
methods from map algebra (part 4) and overlay computation
(part 10). To sort the variants by evaluation value and pick the
best is trivial.

3. CATEGORIES AND GIS THEORY
In a GIS many different parts of mathematics are combined. I
have used here logic, algebra, set theory, topology, linear algebra
to name but a few. Each comes with its own terminology and
assumptions and the same theorems exist in different
terminology in different part. The integration is difficult. I have
used category theory as the unifying framework, in which all
parts of mathematics of importance here can be integrated. This
uses very little of category theory, but is sufficient to identify
commonalities between some fields of mathematics and express
them in a common language (see part 5).

All computer programs are functions that change the
computer state (mostly the memory of the computer); they are in
the category of Sets, where arrows are functions. This category is
so dominant for implementation that I have assumed this
category whenever no special category is used.

Different parts of mathematics use different categories, as is
shown in the following table. Any implementation in a computer

Afterwards 377

program must translate a mathematical construction in some
field and using some category to the category of sets and
functions, because only these can be implemented. The language
of category theory documents this transformation.
The commonality found in category theory is the key to identify
the same constructions everywhere in a GIS and to establish
consistency in the programs and unification of the seemingly
disjoint mathematical theories applied.

4. REVIEW
It came together nicely. The first parts were heavy, detailed, and
sometimes painful. As compensation, the end was easy and
swift. This justifies the hypothesis that a GIS is built from
components. If the components are well-designed, they combine
easily.

Let us review the components:
• The language and the conceptual framework: Algebra, second

order functions, and category theory. This gave us functors
that cover (nearly) all of spatial and temporal computations.
We have found a generalization of map algebra to the
temporal domain.

• Typed measurements and functions that connect them (like
population density, connecting count of people with area).
These functions were lifted to work with layers in a GIS, but
also with time series—without additional new concepts for
users of the GIS to learn.

• Simplification of data storage beyond the Relational Data
Model, which itself is a considerable reduction in concepts
and rules compared to the earlier Network Data Model. The

Category objects Morphism Part in this book

Set sets functions Chapter 6 Measurements

Top topological spaces continuous functions Part 7

Vect vector spaces linear transformations Part 3: Space time,
Part 6 Proj Space

Grp groups group homomorphism

PO partial ordered sets monotone functions

Graphs edges and nodes graph morphism Part 8

Rel relations join Part 5 DB

Frank: GIS Theory Draft V15 Feb.05 378

use of relations gives access to category theory, which results
in a query language with only 2 essential elements, which are
connected by function composition.

• An algebra of intervals and topological relations between
them. This gives spatial and temporal topological predicates
for a spatial query language but also the methods to express
temporal conditions in the database query language.

• Projective geometry gives geometric computations without
exceptions, which would then produce complication when
combining with other concepts.

• Simplex and complex from combinatorial topology is the
realm in which all geometric operations can be carried out. It
gives a closed algebra for intersection and union of regions; it
includes as a special case graphs and triangulations.
Triangulations are the place where metric computations come
together with combinatorial topology.

• Objects as the entities that continue in time and have changing
attribute values (but not changing attributes).

I also think that I have achieved two steps forward for GIS:
• A bi-temporal GIS is constructed in a principled way by using

the functor 'changing' for values, which gives the valid time
perspective, and for the database as a whole, which gives the
database time perspective.

• Unification of operations to apply for raster and vector
representation alike; there are few areas where a full
unification is not yet achieved and I give not up yet.

I conclude the first complete draft of this book on one of the
last sunny fall days of the year: harvest time, leaves fall, apples
are ripe and walnuts must be collected.

Geras, Oct. 17, 2004

BIBLIOGRAPHY

Abler, R. (1987). "The National Science Foundation - National Center for Geographic
Information and Analysis." IJGIS 1(4): 303-326.

Abler, R. (1987). Review of the Federal Research Agenda. International Geographic
Information Systems (IGIS) Symposium (IGIS'87): The Research Agenda,
Arlington, VA.

Abler, R., J. S. Adams, et al. (1971). Spatial Organization - The Geographer's View of the
World. Englewood Cliffs, N.J., USA, Prentice Hall.

ADA (1983). ADA Reference Manual for the ADA Programming Language. New York, NY,
Springer-Verlag.

Adam, J. (1982). "A Detailed Study of the Duality Relation for the Least Squares Adjustment
in Euclidean Spaces." Bulletin Géodésique 56: 180 - 195.

Adams, D. (2002). The Ultimate Hitchhiker's Guide to the Galaxy, Del Rey.
Adams, J. L. (1979). Conceptual Blockbusting. New York, Norton & Company.
Al-Taha, K. (1992). Temporal Reasoning in Cadastral Systems, University of Maine.
Al-Taha, K. and R. Barrera (1994). Identities through Time. International Workshop on

Requirements for Integrated Geographic Information Systems, New Orleans,
Louisiana.

Alexander, C., S. Ishikawa, et al. (1977). A Pattern Language - Towns, Buildings,
Construction. New York, Oxford University Press.

Alexandroff, P. (1961). Elementary Concepts of Topology. New York, USA, Dover
Publications.

Allen, J. and P. Hayes (1985). "A Common-Sense Theory of Time." IJCAI: 528 - 531.
Allen, J. F. (1981). A General Model of Action and Time. New York, NY, Department of

Computer Science, University of Rochester.
Allen, J. F. (1983). "Maintaining Knowledge about Temporal Intervals." Communications of

the ACM 26(11): 832-843.
Allen, J. F. (1984). "Towards a General Theory of Action and Time." Artificial Intelligence

23.
Allen, J. F. and H. A. Kautz (1985). A Model of Naive Temporal Reasoning. J.R.Hobbs and

R.C.Moore (Eds.)://Formal Theories of the Commonsense World//Ablex Publishing
Company, orig.

ANSI X3/SPARC (1975). "Study Group on Database Management Systems, Interim Report
75-02-08." SIGMOD 7(2).

ANSI X3H2 (1985). American National Standard Database Language SQL, American
National Standards Database Committee.

Asimov, I. (1957). Earth is Room Enough. New York, Doubleday.
Asperti, A. and G. Longo (1991). Categories, Types and Structures - An Introduction to

Category Theory for the Working Computer Scientist. Cambridge, Mass., The MIT
Press.

Atkinson, M., F. Bancilhon, et al. (1989). The Object-Oriented Database System Manifesto.
First International Conference on Deductive and Object-Oriented Databases,
Elsevier.

Bachman, C. W. (1973). "The Programmer as Navigator." Communic of ACM
Communications of the ACM 16.

Backus, J. (1978). "Can Programming Be Liberated from the von Neumann Style? A
Functional Style and Its Algebra of Programs." CACM 21: 613-641.

Baird, D. G., R. H. Gertner, et al. (1994). Game Theory and the Law. Cambridge, Mass.,
Harvard University Press.

Bancilhon, F., C. Delobel, et al. (1992). Building an Object-Oriented Database System - The
Story of O2. San Mateo, CA, Morgan Kaufmann.

Frank: GIS Theory Draft V15 Feb.05 380

Barr, M. and C. Wells (1990). Category Theory for Computing Science. New York, Prentice
Hall.

Barrera, R., A. U. Frank, et al. (1991). "Temporal Relations in Geographic Information
Systems: A Workshop at the University of Maine." SIGMOD Record 20(3): 85-91.

Batty, M. and P. Longley (1994). Fractal Cites: A Geometry of Form and Function. London,
Academic Press Limited.

Beard, K. (1988). Multiple Representations from a Detailed Database: a Scheme for
Automated Generalization, University of Wisconsin - Madison.

Bertalanffy, L. v. (1973). General System Theory: Foundations, Development, Applications
(Penguin University Books), Penguin Books.

Bertin, J. (1977). La Graphique et le Traitement Graphique de l'Information. Paris,
Flammarion.

Bird, R. (1998). Introduction to Functional Programming Using Haskell. Hemel Hempstead,
UK, Prentice Hall Europe.

Bird, R. and O. de Moor (1997). Algebra of Programming. London, Prentice Hall Europe.
Bird, R. and P. Wadler (1988). Introduction to Functional Programming. Hemel Hempstead,

UK, Prentice Hall International.
Birkhoff, G. (1967). Lattice Theory. Providence, RI, American Mathematical Society

(Colloquium Publications).
Bittner, T. (1999). Rough Location. Institute of Geoinformation. Vienna, Austria, Technical

University: 196.
Bittner, T. and A. U. Frank (1997). An Introduction to the Application of Formal Theories to

GIS. Angewandte Geographische Informationsverarbeitung IX (AGIT), Salzburg,
Institut fuer Geographie, Universitaet Salzburg.

Bittner, T. and B. Smith (2003). Directly Depicting Granular Ontologies. IFOMIS, NCGIA.
Leipzig, Buffalo, Univerity of Leipzig, University at Buffalo: 15.

Bittner, T. and B. Smith (2003). Granular Spatio-Temporal Ontologies. 2003 AAAI
Symposium: Foundations and Applications of Spatio-Temporal Reasoning
(FASTR): 6.

Bittner, T. and B. Smith (2003 (draft)). Formal Ontologies for Space and Time. IFOMIS,
Department of Philosophy. Leipzig, Buffalo, University of Leipzig, University at
Buffalo and NCGIA: 17.

Björner, A. (1999). Oriented Matroids. Cambridge, England, Cambridge University Press.
Blumenthal, L. M. (1986). A Modern View of Geometry. New York, Dover Publications, Inc.
Blumenthal, L. M. and K. Menger (1970). Studies in Geometry. San Francisco, W. H.

Freeman and Company.
Booch, G., J. Rumbaugh, et al. (1997). Unified Modeling Language Semantics and Notation

Guide 1.0. San Jose, CA, Rational Software Corporation.
Borges, P. R. (1997). Sequence Implementations in Haskell. Computing Laboratory. Oxford,

Oxford University.
Brodie, M. L., J. Mylopoulos, et al. (1984). On Conceptual Modelling: Perspectives from

Artificial Intelligence, Databases, and Programming Languages, Springer-Verlag.
Buchmann, A., O. Günther, et al., Eds. (1990). Design and Implementation of Large Spatial

Databases - Proceedings of the First Symposium SSD '89, Santa Barbara, CA, July
1989. Lecture Notes in Computer Science. Berlin, Springer-Verlag.

Bugayevskiy, L. M. and J. P. Snyder (1995). Map Projections - A Reference Manual. London,
Taylor & Francis.

Burrough, P. A. and A. U. Frank (1995). "Concepts and Paradigms in Spatial Information:
Are Current Geographic Information Systems Truly Generic?" International Journal
of Geographical Information Systems 9(2): 101-116.

Burrough, P. A. and A. U. Frank, Eds. (1996). Geographic Objects with Indeterminate
Boundaries. GISDATA Series. London, Taylor & Francis.

Buttenfield, B. P. (1984). Line Structures in Graphic and Geographic Space, University of
Washington.

Buttenfield, B. P. (1989). "Scale-Dependence and Self-Similarity of Cartographic Lines."
Cartographica 26(1): 79-100.

Buttenfield, B. P. (1993). Multiple Representations - Closing Report. Buffalo, State
University of New York at Buffalo.

Index 381

Buttenfield, B. P. and J. Delotto (1989). Multiple Representations: Report on the Specialist
Meeting, National Center for Geographic Information and Analysis; Santa Barbara,
CA.

Cardelli, L. (1997). Type Systems. Handbook of Computer Science and Engineering. A. B.
Tucker, CRC Press: 2208-2236.

Carnap, R. (1958). Introduction to Symbolic Logic and its Applications. New York, Dover
Publications.

Caroll, L. (1893). Sylvie and Bruno. London, Macmillan.
Casati, R. and A. C. Varzi (1994). Holes and Other Superficialities. Cambridge, Mass., MIT

Press.
Caschetta, A. R. (2000). First International Conference on Geographic Information Science.

Savannah, Georgia, USA, University of California Regents.
Chang, S.-K., E. Jungert, et al. (1990). The Design of Pictorial Databases Based Upon the

Theory of Symbolic Projection. Design and Implementation of Large Spatial
Databases. A. Buchmann, O. Günther, T. R. Smith and Y.-F. Wang. New York,
NY, Springer-Verlag. 409: 303-324.

Chang, S. K., E. Jungert, et al. (1989). Representation and Retrieval of Symbolic Pictures
Using Generalized 2D Strings. SPIE Visual Communications and Image Processing
Conference.

Chen, P. P.-S. (1976). "The Entity-Relationship Model - Toward a Unified View of Data."
ACM Transactions on Database Systems 1(1): 9 - 36.

Chomsky, N. (1980). Rules and Representations. The Behavioral and Brain Sciences. 3: 1 -
61.

Chrisman, N. (1997). Exploring Geographic Information Systems. New York, John Wiley.
Chrisman, N., J. A. Dougenik, et al. (1992). Lessons for the Design of Polygon Overlay

Processing from the ODYSSEY WHIRLPOOL Algorithm. Proceedings of the 5th
International Symposium on Spatial Data Handling, Charleston, IGU Commission
of GIS.

Chrisman, N. R. (1975). Topological Information Systems for Geographic Representation.
Proc. Auto Carto 2//Reston, VA, 1975, x.

Christaller, W. (1966). Central Places in Southern Germany. Englewood Cliffs, NJ, Prentice
Hall.

Clementini, E. and P. Di Felice (1996). An Algebraic Model for Spatial Objects with
Indeterminate Boundaries. Geographic Objects with Indeterminate Boundaries
European Science Foundation. P. A. Burrough and A. U. Frank, Taylor & Francis.
2: 155-169.

Clocksin, W. F. and C. S. Mellish (1981). Programming in Prolog. Berlin, Springer-Verlag.
CODASYL (1971). Data Base Task Group Report.
CODASYL (1971). Report of the Data Base Task Group.
Codd, E. (1979). "Extending the Database Relational Model to Capture More Meaning."

ACM TODS 4(4): 379-434.
Codd, E. F. (1970). "A Relational Model of Data for Large Shared Data Banks."

Communications of the ACM 13(6): 377 - 387.
Codd, E. F. (1982). "Relational Data Base: A Practical Foundation for Productivity."

Communications of the ACM 25(2): 109-117.
Codd, E. F. (1991). The Relational Model for Database Management. Reading, Mass.,

Addison-Wesley.
Cohn, A. G. (1995). A Hierarchical Representation of Qualitative Shape Based on Connection

and Convexity. Spatial Information Theory - A Theoretical Basis for GIS (Int.
Conference COSIT'95). A. U. Frank and W. Kuhn. Berlin, Springer-Verlag. 988:
311-326.

Cohn, A. G. and N. M. Gotts (1996). The 'Egg-Yolk' Representation of Regions with
Indeterminate Boundaries. Geographic Objects with Indeterminate Boundaries. P.
Burrough and A. U. Frank. London, Taylor & Francis. GISDATA II.

Cohn, A. G. and S. M. Hazarika (2001). "Qualitative Spatial Representation and Reasoning:
An Overview." Fundamenta Informaticae: 2-32.

Colmerauer, A., H. Kanoui, et al. (1983). Prolog, bases théoriques et développements actuels.
Technique et Science Informatiques//vol. 2, No. 4//pp. 271 - 311, copy with Frank.

Frank: GIS Theory Draft V15 Feb.05 382

Corbett, J. (1975). Topological Principles in Cartography. 2nd International Symposium on
Computer-Assisted Cartography, Reston, VA.

Couclelis, H. (1992). People Manipulate Objects (but Cultivate Fields): Beyond the Raster-
Vector Debate in GIS. Theories and Methods of Spatio-Temporal Reasoning in
Geographic Space. A. U. Frank, I. Campari and U. Formentini. Berlin, Springer-
Verlag. 639: 65-77.

Couclelis, H. and N. Gale (1986). "Space and Spaces." Geografiska Annaler 68(1): 1-12.
Date, C. J. (1983). An Introduction to Database Systems. Reading, MA, Addison-Wesley.
Davis, M. D. (1983). Game Theory. Minneola, NY, Dover Publications.
DEC (1974). COGO-10 Reference Manual. Digital Equipment Corporation, KEDV.
Deux, O. (1989). The Story of O2. Fifth Conference on Data and Knowledge Engineering.
Dijkstra, E. W. (1959). "A Note on Two Problems in Connection with Graphs." Numerische

Mathematik(1): 269-271.
Dutton, G., Ed. (1978). First International Advanced Study Symposium on Topological Data

Structures for Geographic Information Systems. Harvard Papers on Geographic
Information Systems. Reading, Mass., Addison-Wesley.

Dutton, G., Ed. (1979). First International Study Symposium on Topological Data Structures
for Geographic Information Systems (1977). Harvard Papers on Geographic
Information Systems. Cambridge, MA, Harvard University.

Eastman, J. R. (1993). IDRISI Technical Reference. Worcester, Mass., Clark University.
Edelsbrunner, H. (2001). Geometry and Topology for Mesh Generation. Cambridge, England,

Cabridge University Press.
Egenhofer, M. (1993). "What's Special about Spatial - Database Requirements for Vehicle

Navigation in Geographic Space." SIGMOD Record 22(2): 398-402.
Egenhofer, M. and A. U. Frank (1992). "Object Oriented Modeling for GIS." Journal of the

Urban and Regional Information Systems URISA 4(2): 3-19.
Egenhofer, M. J. (1989). Spatial Query Languages, University of Maine.
Egenhofer, M. J. and K. K. Al-Taha (1992). Reasoning About Gradual Changes of

Topological Relationships. Theories and Methods of Spatio-Temporal Reasoning in
Geographic Space. A. U. Frank, I. Campari and U. Formentini. Heidelberg-Berlin,
Springer-Verlag. 639: 196-219.

Egenhofer, M. J., E. Clementini, et al. (1994). "Topological Relations between Regions with
Holes." IJGIS 8(2): 129-142.

Egenhofer, M. J. and A. U. Frank (1992). User Interfaces for Spatial Information Systems:
Manipulating the Graphical Representation. Geologisches Jahrbuch. R. Vinken. A
122: 59-69.

Egenhofer, M. J. and R. D. Franzosa (1995). "On the Equivalence of Topological Relations."
International Journal for Geographical Information Systems 9(2): 133-152.

Egenhofer, M. J. and R. G. Golledge (1994). Time in Geographic Space: Report on the
Specialist Meeting of Research Initiative 10. Santa Barbara, CA, National Center
for Geographic Information and Analysis.

Egenhofer, M. J. and J. R. Herring (1991). Categorizing Binary Topological Relationships
Between Regions, Lines, and Points in Geographic Databases, Department of
Surveying Engineering, University of Maine, Orono, ME.

Egenhofer, M. J. and D. M. Mark (1995). "Modelling Conceptual Neighbourhoods of
Topological Line-Region Relations." International Journal for Geographical
Information Systems 9(5): 555-565.

Egenhofer, M. J. and J. Sharma (1992). Topological Consistency. Proceedings of the 5th
International Symposium on Spatial Data Handling, Charleston, IGU Commission
of GIS.

Egenhofer, M. J., J. Sharma, et al. (1993). A Critical Comparison of the 4-Intersection and 9-
Intersection Models for Spatial Relations: Formal Analysis. Autocarto 11,
Minneapolis, ACM/ASPRS.

Ehrich, H.-D. (1981). Specifying Algebraic Data Types by Domain Equations.
Forschungsbericht Nr. 109//Universität Dortmund//Abteilung Informatik,
P714898:109.

Ehrich, H.-D., M. Gogolla, et al. (1989). Algebraische Spezifikation abstrakter Datentypen.
Stuttgart, B.G. Teubner.

Index 383

Ehrig, H. and B. Mahr (1985). Fundamentals of Algebraic Specification. Berlin, Springer-
Verlag.

Eichhorn, G., Ed. (1979). Landinformationssysteme. Schriftenreihe Wissenschaft und
Technik. Darmstadt, Germany, TH Darmstadt.

ESRI (1993). Understanding GIS - The ARC/INFO Method. Harlow, Longman; The Bath
Press.

Everling, W. (1987). "Temporal Logic." Informatik-Spektrum 10(2): 99-100.
Fagan, G. and H. Soehngen (1987). Improvement of GBF/DIME file coordinates in a

geobased information system by various transformation methods and
"rubbersheeting" based on triangulation. Auto-Carto 8, Baltimore, MA, ASPRS &
ACSM.

Faugeras, O. (1993). Three-Dimensional Computer Vision, The MIT Press.
Faugeras, O. and Q.-T. Luong (2001). The Geometry of Multiple Images. Cambridge,

Massachusetts and London, England, The MIT Press.
Fellbaum, C., Ed. (1998). WordNet: An Electronic Lexical Database. Language, Speech, and

Communication. Cambridge, Mass., The MIT Press.
Flewelling, D. M., M. J. Egenhofer, et al. (1992). Constructing Geological Cross Sections

with a Chronology of Geologic Events. 5th International Symposium on Spatal Data
Handling, Charleston, South Carolina, USA, IGU Commision on GIS.

Fonseca, F. T., M. J. Egenhofer, et al. (2002). "Using Ontologies for Integrated Geographic
Information Systems." Transactions in GIS 6(3): 231-57.

Förstner, W. and B. Wrobel (Draft). Digitale Photogrammetrie, Springer.
Foyley, J. D. and A. van Dam (1982). Fundamentals of Interactive Computer Graphics.

Reading MA, Addison-Wesley Publ. Co.
Franck, G. (1998). Ökonomie der Aufmerksamkeit. München Wien, Carl Hanser Verlag.
Frank, A. (1983). Datenstrukturen für Landinformationssysteme - Semantische, Topologische

und Räumliche Beziehungen in Daten der Geo-Wissenschaften. Institut für
Geodäsie und Photogrammetrie, ETH Zürich.

Frank, A. and E. Grum, Eds. (2004). Proceedings of the ISSDQ '04 Vol 1. Geoinfo Series.
Vienna, Austria, Institute for Geoinformation.

Frank, A. and E. Grum, Eds. (2004). Proceedings of the ISSDQ '04 Vol 2. Geoinfo Series.
Vienna, Austria, Institute for Geoinformation.

Frank, A. U. (1981). Application of DBMS to Land Information Systems. Seventh
International Conference on Very Large Data Bases VLDB, Cannes, France.

Frank, A. U. (1982). "MAPQUERY: Database Query Language for Retrieval of Geometric
Data and its Graphical Representation." ACM SIGGRAPH 16(3): 199 - 207.

Frank, A. U. (1984). "Computer Assisted Cartography - Are We Treating Graphics or
Geometry?" Journal of Surveying Engineering 110(2): 159-168.

Frank, A. U. (1985). Computer Assisted Cartography, Lecture Notes, Surveying Engineering
Program, University of Maine at Orono.

Frank, A. U. (1985). "Computer Education for Surveyors." Canadian Surveyor 39(4): 323-
331.

Frank, A. U. (1985). Course Notes for SVE 451, Geographic Information Systems. Orono,
ME, University of Maine.

Frank, A. U. (1988). Requirements for a Database Management System for a GIS. PE & RS.
Frank, A. U. (1988). Requirements for Database Management Systems Used for AM/FM

Data. AM/FM Snowmass Conference, Snowmass, CO, AM/FM International.
Frank, A. U. (1990). Spatial Concepts, Geometric Data Models and Data Structures. GIS

Design Models and Functionality, Leicester, UK, Midlands Regional Research
Laboratory, University of Leicester.

Frank, A. U. (1991). Properties of Geographic Data: Requirements for Spatial Access
Methods. Advances in Spatial Databases - 2nd Symposium on Large Spatial
Databases, SSD'91 (Zurich, Switzerland). O. Guenther and H.-J. Schek. Berlin-
Heidelberg, Springer-Verlag. 525: 225-233.

Frank, A. U. (1994). Qualitative Temporal Reasoning in GIS - Ordered Time Scales. Sixth
International Symposium on Spatial Data Handling, SDH'94, Edinburgh, Scotland,
Sept. 5-9, 1994, IGU Commission on GIS.

Frank: GIS Theory Draft V15 Feb.05 384

Frank, A. U. (1995). History. Geographic Information Systems - Materials for a Post-
Graduate Course; Vol. 3: GIS Organization GeoInfo Series. A. U. Frank. Vienna,
Austria, Dept. of Geoinformation, TU Vienna. 6.

Frank, A. U. (1996). The Prevalence of Objects with Sharp Boundaries in GIS. Geographic
Objects with Indeterminate Boundaries. P. A. Burrough and A. U. Frank. London,
Taylor & Francis. II: 29-40.

Frank, A. U. (1998). Different Types of 'Times' in GIS. Spatial and Temporal Reasoning in
GIS. M. J. Egenhofer and R. G. Golledge. New York, Oxford University Press: 40-
61.

Frank, A. U. (1998). GIS for Politics. GIS Planet '98, Lisbon, Portugal (9 - 11 Sept. 1998),
IMERSIV.

Frank, A. U. (1999). One Step up the Abstraction Ladder: Combining Algebras - From
Functional Pieces to a Whole. Spatial Information Theory - Cognitive and
Computational Foundations of Geographic Information Science (Int. Conference
COSIT'99, Stade, Germany). C. Freksa and D. M. Mark. Berlin, Springer-Verlag.
1661: 95-107.

Frank, A. U. (2001). "Tiers of Ontology and Consistency Constraints in Geographic
Information Systems." International Journal of Geographical Information Science
75(5 (Special Issue on Ontology of Geographic Information)): 667-678.

Frank, A. U. (2003). Ontology for Spatio-Temporal Databases. Spatiotemporal Databases:
The Chorochronos Approach. M. Koubarakis, T. Sellis and e. al. Berlin, Springer-
Verlag: 9-78.

Frank, A. U. (to appear). Ontology for Geoinformation.
Frank, A. U. and I. Campari, Eds. (1993). Spatial Information Theory - Theoretical Basis for

GIS (European Conference on Spatial Information Theory COSIT'93). Lecture
Notes in Computer Science. Berlin-Heidelberg, Springer-Verlag.

Frank, A. U., I. Campari, et al., Eds. (1992). Theories and Methods of Spatio-Temporal
Reasoning in Geographic Space. Lecture Notes in Computer Science 639. Pisa,
Italy, Springer Verlag.

Frank, A. U., D. L. Hudson, et al. (1987). Artificial Intelligence Tools for GIS. International
Geographic Information Systems (IGIS) Symposium: The Research Agenda,
Crystal City, VA, NASA.

Frank, A. U. and W. Kuhn (1986). Cell Graph: A Provable Correct Method for the Storage of
Geometry. Second International Symposium on Spatial Data Handling, Seattle,
WA.

Frank, A. U. and D. M. Mark (1991). Language Issues for Geographical Information Systems.
Geographic Information Systems: Principles and Applications. D. Maguire, D.
Rhind and M. Goodchild. London, Longman Co.

Frank, A. U., B. Palmer, et al. (1986). Formal Methods for Accurate Definition of Some
Fundamental Terms in Physical Geography. Second International Symposium on
Spatial Data Handling, Seattle, Wash.

Frank, A. U., J. Raper, et al., Eds. (2001). Life and Motion of Socio-Economic Units.
GISDATA Series. London, Taylor & Francis.

Frank, A. U. and M. Raubal (1998). Specifications for Interoperability: Formalizing Image
Schemata for Geographic Space. SDH'98, Vancouver, Canada.

Frank, A. U. and M. Raubal (1999). "Formal Specifications of Image Schemata - A Step to
Interoperability in Geographic Information Systems." Spatial Cognition and
Computation 1(1): 67-101.

Frank, A. U. and V. Robinson (1987). "Expert Systems for Geographic Information Systems."
Photogrammetric Engineering and Remote Sensing?52(10, Oct.).

Frank, A. U., V. Robinson, et al. (1986). "An Assessment of Expert Systems Applied to
Problems in Geographic Information Systems." ASCE Journal of Surveying
Engineering 112(3).

Frank, A. U., V. Robinson, et al. (1986). "Expert Systems for Geographic Information
Systems: Review and Prospects." Surveying and Mapping 112(2): 119-130.

Frank, A. U., V. Robinson, et al. (1986). "An Introduction to Expert Systems." ASCE Journal
of Surveying Engineering 112(3).

Index 385

Frank, A. U. and B. Studenmann (1983). Semantische, topologische und räumliche
Datenstrukturen in Landinformationssystemen. FIG XVII. Congress, Sofia,
Bulgarien 1983.

Frank, A. U. and S. Timpf (1994). "Multiple Representations for Cartographic Objects in a
Multi-Scale Tree - An Intelligent Graphical Zoom." Computers and Graphics
Special Issue on Modelling and Visualization of Spatial Data in GIS 18(6): 823-
829.

Frank, A. U., G. S. Volta, et al. (1997). "Formalization of Families of Categorical Coverages."
IJGIS 11(3): 215-231.

Freksa, C. and D. M. Mark, Eds. (1999). Spatial Information Theory (Int. Conference
COSIT'99, Stade, Germany). Lecture Notes in Computer Science. Berlin, Springer-
Verlag.

Gallaire, H. (1981). Impacts of Logic on Data Bases. Proc. 7th International Conf. on VLDB,
Cannes.

Gallaire, H., J. Minker, et al. (1984). "Logic and Databases: A Deductive Approach." ACM
16(2): 153-184.

Galton, A., Ed. (1987). Temporal Logics and Their Applications, Academic Press.
Galton, A. (1997). Continuous Change in Spatial Regions. Spatial Information Theory - A

Theoretical Basis for GIS (International Conference COSIT'97). S. C. Hirtle and A.
U. Frank. Berlin-Heidelberg, Springer-Verlag. 1329: 1-14.

Galton, A. (2000). Qualitative Spatial Change. Oxford, Oxford University Press.
Gamma, E., R. Helm, et al. (1995). Design Patterns, Addison-Wesley Professional.
Gill, A. (1976). Applied Algebra for the Computer Sciences. Englewood Cliffs, NJ, Prentice-

Hall.
Goguen, J. A., J. W. Thatcher, et al. (1975). Abstract Data Types as Initial Algebras and

Correctness of Data Representations. Conf. on Computer Graphics, Pattern
Recognition and Data Structures, May 1975.

Goldenhuber, C. (1997). Aufdeckung von Numerischen Problemen in geodätischer Software.
Vienna, Austria, Institute for Geoinformation.

Goodchild, M. and R. Jeansoulin, Eds. (1998). Data Quality in Geographic Information -
From Error to Uncertainty. Paris, Hermes.

Goodchild, M. F. (1990). A Geographical Perspective on Spatial Data Models. GIS Design
Models and Functionality, Leicester, Midlands Regional Research Laboratory.

Goodchild, M. F. (1990). Spatial Information Science. 4th International Symposium on
Spatial Data Handling, Zurich, Switzerland (July 23-27, 1990), International
Geographical Union, Commission on Geographic Information Systems.

Goodchild, M. F. (1992). "Geographical Data Modeling." Computers and Geosciences 18(4):
401- 408.

Goodchild, M. F. (1992). "Geographical Information Science." International Journal of
Geographical Information Systems 6(1): 31-45.

Goodchild, M. F., M. J. Egenhofer, et al. (1999). "Introduction to the Varenius Project."
International Journal of Geographical Information Science 13(8): 731-745.

Goodchild, M. F. and S. Gopal (1990). The Accuracy of Spatial Databases. London, Taylor &
Francis.

Gray, J. and A. Reuter (1993). Transaction Processing: Concepts and Techniques. San
Francisco, CA, Morgan Kaufmann.

Guibas, L. J. and J. Stolfi (1982). "A Language for Bitmap Manipulation." ACM Transactions
on Graphics 1(3).

Guibas, L. J. and J. Stolfi (1987). Ruler, Compass and Computer//The Design and Analysis of
Geometric Algorithms. Theoretical Foundations of Computer Graphics and CAD, Il
Ciocco, Italy, NATO Advanced Study Institute.

Günther, O. (1989). Database Support for Multiple Representation. Multiple Representations:
Initiative 3 Specialist Meeting Report. B. P. Buttenfield and J. S. DeLotto. Santa
Barbara, CA, NCGIA. 89-3: 50-52.

Guttag, J. V. and J. J. Horning (1978). "The Algebraic Specification of Abstract Data Types."
Acta Informatica 10(1): 27-52.

Guttag, J. V., J. J. Horning, et al. (1985). Larch in Five Easy Pieces, Digital Equipment
Corporation, Systems Research Center.

Frank: GIS Theory Draft V15 Feb.05 386

Haerder, T. and A. Reuter (1983). "Principles of Transaction-Oriented Database Recovery."
ACM Computing Surveys 15(4 (December 1983)).

Hartley, R. and A. Zisserman (2000). Multiple View Geometry in Computer Vision,
Cambridge University Press.

Hartley, R. and A. Zisserman (2003). Multiple View Geometry in Computer Vision.
Cambridge, UK, Cambridge University Press.

Heath, T. L. (1981). History of Greek Mathematics: From Thales to Euclid, Dover
Publications.

Henle, M. (1994). A Combinatorial Introduction to Topology. New York, Dover Publications.
Herring, J., M. J. Egenhofer, et al. (1990). Using Category Theory to Model GIS

Applications. 4th International Symposium on Spatial Data Handling, Zurich,
Switzerland, IGU, Commission on Geographic Information Systems.

Herring, J. R. (1987). TIGRIS: Topologically Integrated Geographic Information System.
Auto-Carto 8, Baltimore, MA, ASPRS & ACSM.

Herring, J. R. (1990). TIGRIS: A Data Model for an Object Oriented Geographic Information
System. GIS Design Models and Functionality, Leicester, Midlands Regional
Research Laboratory.

Herring, J. R. (1991). The Mathematical Modeling of Spatial and Non-Spatial Information in
Geographic Information Systems. Cognitive and Linguistic Aspects of Geographic
Space: An Introduction. D. M. Mark and A. U. Frank. Dordrecht, Kluwer
Academic: 313-350.

Heuvelink, G. B. M. (1998). Error Propagation in Environmental Modelling with GIS.
London, Taylor & Francis.

Hillier, B. (1999). Space Is the Machine, Cambridge University Press.
Hillier, B. and J. Hanson (1984). The Social Logic of Space. Cambridge, Cambridge

University Press.
Hofstadter, D. R. (1985). Gödel, Escher, Bach - ein Endloses Geflochtenes Band. Stuttgart,

Ernst Klett Verlag.
Horn, B. K. P. (1986). Robot Vision. Cambridge, Mass, MIT Press.
Hornsby, K. and M. J. Egenhofer (1997). Qualitative Representation of Change. Spatial

Information Theory - A Theoretical Basis for GIS (International Conference
COSIT'97). S. C. Hirtle and A. U. Frank. Berlin-Heidelberg, Springer-Verlag. 1329:
15-33.

Hrbek (1993). 70 Jahre Bundesamt für Eich- und Vermessungswesen. Wien, Manz.
Hudak, P., J. Peterson, et al. (1997). A Gentle Introduction to Haskell, Yale University.
ISO. (2004). "ISO/TC 211 Geographic information/Geomatics." Retrieved 11. 09., 2004,

from http://www.isotc211.org/.
Jensen, K. and N. Wirth (1975). PASCAL User Manual and Report. Berlin-Heidelberg,

Springer-Verlag.
Jones, C. B., G. L. Bundy, et al. (1995). "Map generalization with a triangulated data

structure." CaGIS 22(4): 317-331.
Jungert, E. (1992). The Observer's Point of View: An Extension of Symbolic Projection.

Theories and Methods of Spatio-Temporal Reasoning in Geographic Space. A. U.
Frank, I. Campari and U. Formentini. Heidelberg-Berlin, Springer-Verlag. 639:
179-195.

Jungert, E. (1993). Symbolic Spatial Reasoning in Object Shapes for Qualitative Reasoning.
Spatial Information Theory: Theoretical Basis for GIS. A. U. Frank and I. Campari.
Heidelberg-Berlin, Springer Verlag. 716: 444-463.

Jungert, E. and S. K. Chang (1989). An Algebra for Symbolic Image Manipulation and
Transformation. Visual Database Systems. T. L. Kunii, North-Holland: 301-317.

Kahmen, H. (1993). Vermessungskunde. Berlin, de Gruyter.
Kemp, K. K. (1993). TUW Offers a New Kind of Course. GIS Europe. 2: 31.
Kemp, K. K., W. Kuhn, et al. (1993). Making High-Quality GIS Education Accessible: A

European Initiative. Geo Info Systems. 3: 50-52.
Kennedy, H. (1980). Peano Life and Works of Giuseppe Peano, Kluwer.
Kent, W. (1978). Data and Reality - Basic Assumptions in Data Processing Reconsidered.

Amsterdam, North-Holland.
Kirschenhofer, P. (1992). Mathematische Grundlagen für GIS, Ausseninstitut der

Technischen Universität Wien.

Index 387

Kirschenhofer, P. (1995). The Mathematical Foundation of Graphs and Topology for GIS.
Geographic Information Systems - Material for a Post Graduate Course. A. U.
Frank. Vienna, Department of Geoinformation, TU Vienna. 1: 155-176.

Klein, F. (1872). Vergleichende Betrachtungen über neuere geometrische Forschungen.
Erlangen, Verlag Andreas Deichert.

Klein, F., E. R. Hedrick, et al. (2004). Elementary Mathematics from an Advanced
Standpoint: Geometry (Dover Books on Mathematics), Dover Publications.

Knuth, D. E. (1992). Axioms and Hulls. Berlin, Germany, Springer-Verlag.
Krantz, D. H., R. D. Luce, et al. (1971). Foundations of Measurement. New York, Academic

Press.
Kuhn, W. (1989). Interaktion mit raumbezogenen Informationssystemen - Vom Konstruieren

zum Editieren geometrischer Modelle. Zürich, Institut für Geodäsie und
Photogrammetrie, ETH Zürich.

Kuipers, B. (1994). Qualitative Reasoning: Modeling and Simulation with Incomplete
Knowledge. Cambridge, Mass., The MIT Press.

Lakoff, G. and M. Johnson (1999). Philosophy in the Flesh. New York, Basic Books.
Lakoff, G. and R. E. Núnez (2000). Where Mathematics Comes From - How the Embodied

mind Brings Mathematics into Being, Basic Books.
Langran, G. (1989). Time in Geographic Information Systems. Department of Geography.

Washington, University of Washington, Seattle, WA.
Langran, G. and N. Chrisman (1988). "A Framework for Temporal Geographic Information."

Cartographica 25(3): 1-14.
Leonardis, A. and H. Bischof (1996). Dealing with Occlusions in the Eigenspace Approach:

22.
Lieblich, I. and M. A. Arbib (1982). "Multiple representations of space underlying behavior."

The Behavioral and Brain Sciences 5: 627-659.
Lifschitz, V., Ed. (1990). Formalizing Common Sense - Papers by John McCarthy. Norwood,

NJ, Ablex Publishing.
Lifschitz, V. (1990). Understanding Common Sense: John McCarthy's Research in Artificial

Intelligence. Formalizing Common Sense - Papers by John McCarthy. V. Lifschitz.
Norwood, NJ, Ablex Publishing Company: 1-8.

Lindsay, B., M. Stonebraker, et al. (1989). "The Object-Oriented Counter Manifesto."
Lockemann, P. C. and H. C. Mayr (1978). Rechnergestützte Informationssysteme. Berlin,

Springer-Verlag.
Loeckx, J., H.-D. Ehrich, et al. (1996). Specification of Abstract Data Types. Chichester, UK

and Stuttgart, John Wiley and B.G. Teubner.
Mac Lane, S. and G. Birkhoff (1991). Algebra Third Edition. Providence, Rhode Island, AMS

Chelsea Publishing.
MacEachren, A. M. (1995). How Maps Work - Representation, Visualization and Design.

New York, Guilford Press.
Maguire, D. J., M. F. Goodchild, et al., Eds. (1991). Geographic Information Systems:

Principles and Applications. London, Longman.
Mandelbrot, B. B. (1977). The Fractal Geometry of Nature. New York, W.H. Freeman & Co.
Marble, D. (1984). Proceedings First International Symposium on Spatial Data Handling.

Zurich, Switzerland.
Mark, D. (1997, August 29 1997). "The GIS History Project." Retrieved 10.08., 2004, from

http://www.geog.buffalo.edu/ncgia/gishist/other_sites.html.
Mark, D. M. and M. J. Egenhofer (1992). An Evaluation of the 9-Intersection for Region-Line

Relations. GIS/LIS '92 Proceedings, San Jose, ACSM-ASPRS-URISA-AM/FM.
Mark, D. M. and A. U. Frank, Eds. (1991). Cognitive and Linguistic Aspects of Geographic

Space. NATO ASI Series D. Dordrecht, The Netherlands, Kluwer Academic
Publishers.

Martin Breunig, Can Türker, et al. (2003). Architectures and Implementations of Spatio-
temporal Database Management Systems. Spatio-Temporal Databases: The
CHOROCHRONOS Approach. Berlin, Springer: 263 - 318.

McCarthy, J. (1985). Epistomological Problems of Artificial Intelligence. Readings in
Knowledge Representation. R. J. Brachman and H. J. Levesque. Los Altos, CA,
Morgan Kaufman Publishers: 24 - 30.

Frank: GIS Theory Draft V15 Feb.05 388

McCarthy, J. (1996, 24.3.1996). "Notes on Formalizing Context." from http://www-
formal.stanford.edu/jmc/context3/context3.html.

McCarthy, J. and P. J. Hayes (1969). Some Philosophical Problems from the Standpoint of
Artificial Intelligence. Machine Intelligence 4. B. Meltzer and D. Michie.
Edinburgh, Edinburgh University Press: 463-502.

McCoy, N. H. and T. R. Berger (1977). Algebra: Groups, Rings and other Topics. London,
Allyn and Bacon.

McHarg, I. (1969). Design with Nature, Natural History Press.
McHarg, I. L. (1992). Design with Nature. N. Y., USA, Natural History Press.
McKeown, D. J. and R. C. T. Lai (1987). Integrating multiple data representations for spatial

databases. Auto-Carto 8, Baltimore, MA, ASPRS & ACSM.
Medak, D. (1997). Lifestyles - A Formal Model. Chorochronos Intensive Workshop '97,

Petronell-Carnuntum, Austria, Dept. of Geoinformation, TU Vienna.
Medak, D. (1999). Lifestyles - A Paradigm for the Description of Spatiotemporal Databases.

Department of Geoinformation. Vienna, Technical University Vienna.
Medak, D. (2001). Lifestyles. Life and Motion of Socio-Economic Units. A. U. Frank, J.

Raper and J.-P. Cheylan. London, Taylor & Francis: 140-153.
Messmer, W. (1984). "Wie Basel vermessen wird." Vermessung, Photogrammetrie,

Kulturtechnik 4: 97 -106.
Meyer, B. (1988). Object-Oriented Software Construction. New York, NY, Prentice Hall.
Miller, C. L. (1963). Man-Machine Communications in Civil Engineering, MIT Dept. of Civil

Engineering.
Minsky, M. (1985). The Society of Mind. New York, Simon & Schuster.
Molenaar, M. (1995). Spatial Concepts as Implemented in GIS. Geographic Information

Systems - Materials for a Post-Graduate Course. A. U. Frank, Department of
Geoinformation, TU Vienna: 91-154.

Molenaar, M. (1998). An Introduction to the Theory of Spatial Object Modelling for GIS.
London, Taylor & Francis.

Montello, D. R. (1993). Scale and Multiple Psychologies of Space. Spatial Information
Theory: A Theoretical Basis for GIS. A. U. Frank and I. Campari. Heidelberg-
Berlin, Springer Verlag. 716: 312-321.

NCGIA (1989). "The Research Plan of the National Center for Geographic Information and
Analysis." International Journal of Geographical Information Systems 3(2): 117 -
136.

NCGIA (1989). "The U.S. National Center for Geographic Information and Analysis: An
Overview of the Agenda for Research and Education." IJGIS 2(3): 117-136.

Neumann, H.-G. (1978). Die historische Entwicklung der Datenverarbeitung im
Vermessungswesen. Landinformationssysteme Symposium der FIG, Darmstadt,
THD Schriftreihe Wissenschaft und Technik 11.

Neumann von, J. and O. Morgenstern (1944). Theory of Games and Economic Behavior.
Princeton, NJ, Princeton University Press.

Newman, W. M. and R. F. Sproull (1981). Principles of Interactive Computer Graphics,
McGraw - Hill.

OGC. (2000). "The Open GIS Consortium Web Page." Retrieved 21 November, 2000, from
http://www.opengis.org.

Openshaw, S. and S. Alvanides (2001). Designing Zoning Systems for the Representation of
Socio-Economic Data. Life and Motion of Socio-Economic Units. A. U. Frank, J.
Raper and J.-P. Cheylan. London, Taylor & Francis.

Oxley, J. G. (1992). Matroid Theory. Oxford, Oxford University Press.
Parnas, D. L. (1972). "A Technique for Software Module Specification with Examples."

ACM Communications 15(5): 330-336.
Peterson, J., K. Hammond, et al. (1997). "The Haskell 1.4 Report." from

http://www.haskell.org/report/index.html.
Peyton Jones, S., J. Hughes, et al. (1999). "Haskell 98: A Non-Strict, Purely Functional

Language." from http://www.haskell.org/onlinereport/.
Pierce, B. C. (1993). Basic Category Theory for Computer Scientists. Cambridge, Mass., MIT

Press.
Pitt, D. (1985). Categories. Category Theory and Computer Programming; Tutorial and

Workshop Proceedings, Springer.

Index 389

Pontikakis, E. and A. U. Frank (2004). Basic Spatial Data According to User's Needs-Aspects
of Data Quality. ISSDQ, Bruck a.d. Leitha, Austria, Department of Geoinformation
and Cartography.

Quattrochi, D. A. and M. F. Goodchild, Eds. (1997). Scale in Remote Sensing and GIS. Boca
Raton, FL, CRC Press.

Randell, D. A., Z. Cui, et al. (1992). A Spatial Logic Based on Regions and Connection.
Third International Conference on the Principles of Knowledge Representation and
Reasoning, Los Altos, CA: Morgan-Kaufmann.

Reinhardt, F. and H. Soeder (1991). dtv-Atlas zur Mathematik: Grundlagen, Algebra und
Geometrie (Band 1). Muenchen, dtv.

Reiter, R. (1984). Towards a Logical Reconstruction of Relational Database Theory. On
Conceptual Modelling, Perspectives from Artificial Intelligence, Databases, and
Programming Languages. M. L. Brodie, M. Mylopolous and L. Schmidt. New
York, Springer Verlag: 191-233.

Reiter, R. (in preparation). Knowledge in Action: Logical Foundations for Describing and
Implementing Dynamical Systems.

Reuter, A. (1981). Fehlerbehandlung in Datenbanksystemen. München, Carl Hanser Verlag.
Rhind, D. (1971). "The Production of a Multi-Colour Geological Map by Automated Means."

Nachr. aus den Karten und Vermessungswesen(52): 47-51.
Rhind, D. (1991). Environmental Monitoring and Prediction. Handling Geographical

Information. I. Masser and M. Blakemore. Essex, Longman Scientific & Technical.
1: 122-147.

Rhind, D. W. (1991). Counting the People: The Role of GIS. Geographical Information
Systems: Principles and Applications. D. J. Maguire, M. F. Goodchild and D. W.
Rhind. Essex, Longman Scientific & Technical. 2: 127-137.

Rosch, E. (1973). On the Internal Structure of Perceptual and Semantic Categories. Cognitive
Development and the Acquisition of Language. T. E. Moore. New York, Academic
Press.

Rosch, E. (1978). Principles of Categorization. Cognition and Categorization. E. Rosch and
B. B. Lloyd. Hillsdale, NJ, Erlbaum.

Rumbaugh, J., Michael Blacha, et al. (1990). Object-Oriented Modeling and Design.
Englewood Cliffs, NJ, Prentice Hall.

Samet, H. (1989). Applications of Spatial Data Structures. Computer Graphics, Image
Processing and GIS. Reading, MA, Addison-Wesley Publishing Co.

Samet, H. (1990). Applications of Spatial Data Structures. Computer Graphics, Image
Processing and GIS. Reading, MASS, Addison-Wesley Publishing Co.

Samet, H. (1990). The Design and Analysis of Spatial Data Structures. Reading, MASS.,
Addison-Wesley Publishing Company.

Schek, H.-J. (1982). "Remark on the Algebra of Non First Normal Form Relations."
Schek, H.-J. (1985). Towards a Basic Relationsal NF2 Algebra Processor. Second

International Conference on Foundations of Data Organization and Algorithms.
Schek, H.-J. and M. H. Scholl (1983). Die NF2-Relationenalgebra zur Einheitlichen

Manipulation Externer, Konzeptueller und Interner Datenstrukturen, Springer-
Verlag Berlin Heidelberg New York Tokyo.

Schneider, M. (1997). Spatial Data Types for Database Systems. Berlin-Heidelberg, Springer-
Verlag.

Schönenberger, W. (1976). Schweizerisches Zivilgesetzbuch. Zürich, Schulthess
Polygraphischer Verlag AG.

Schröder, E. (1890). Vorlesungen über die Algebra der Logik (Exakte Logik). Leipzig,
Teubner.

Sellis, T. and M. Koubarakis, Eds. (2003). Spatio-Temporal Databases. Berlin Heidelberg,
Springer-Verlag.

Sernadas, A. (1980). "Temporal Aspects of Logical Procedure Definition." Information
Systems 5: 167-187.

Sester, M. (1996). "Acquisition of Rules for the Transition between Multiple Representations
in a GIS." International Archives of Photogrammetry and Remote Sensing
XXXI(B4): 768-773.

Shannon, C. E. (1938). "A Symbolic Analysis of Relay and Switching Circuits." AIEE Trans.
57: 713 - 723.

Frank: GIS Theory Draft V15 Feb.05 390

Shannon, C. E. and W. Weaver (1949). The Mathematical Theory of Communication.
Urbana, Illinois, The University of Illinois Press.

Shariff, R., M. Egenhofer, et al. (1998). "Natural-Language Spatial Relations between Linear
and Areal Objects: The Topology and Metric of English-Language Terms." IJGIS
12(3): 215-246.

Shi, W., P. F. Fisher, et al. (2002). Spatial Data Quality, Taylor & Francis.
Shipman, D. W. (1981). "The Functional Data Model and the Data Language DAPLEX."

ACM Transactions on Database Systems 6(March).
Sinowjew, A. A. (1968). Über mehrwertige Logik. Berlin, Deutscher Verlag der

Wissenschaften.
Sinton, D. (1978). The Inherent Structure of Information as a Constraint to Analysis: Mapped

Thematic Data as a Case Study. Harvard Papers on GIS. G. Dutton. Reading, Mass.,
Addison-Wesley. Vol.7.

Sowa, J. F. (1998). Knowledge Representation: Logical, Philosophical, and Computational
Foundations. Boston, PWS Publishing.

Steiner, D. and H. Gilgen (1984). Relational Modelling as a Design and Evaluation Technique
for Interactive Geographical Data Processing. International Symposium on Spatial
Data Handing, Zurich, Switzerland, Geographisches Institut, Abteilung
Kartographie/EDV.

Stevens, S. S. (1946). "On the Theory of Scales of Measurement." Science 103(2684): 677-
680.

Stolfi, J. (1991). Oriented Projective Geometry. San Diego, CA, USA, Academic Press
Professional, Inc.

Stonebraker, M., L. A. Rowe, et al. (1990). Third-generation Data Base System Manifesto,
UC Berkeley: Electronics Research Lab.

Stonebreaker, M. (1993). The SEQUOIA 2000 Project. Advances in Spatial Databases. D.
Abel and B. C. Ooi. Heidelberg, Springer Verla: 397 - 412.

Stroustrup, B. (1986). The C++ Programming Language. Reading, Mass., Addison-Wesley
Publishing Company.

Stroustrup, B. (1991). The C++ Programming Language. Reading, Mass., Addison-Wesley.
Tansel, A. U., J. Clifford, et al. (1993). Temporal Databases. Redwood City, CA, Benjamin

Cummings.
Tarski, A. (1941). "On the Calculus of Relations." The Journal of Symbolic Logic 6(3): 73-

89.
Tarski, A. (1977). Einführung in die mathematische Logik. Göttingen, Vandenhoeck &

Ruprecht.
Timpf, S. (1998). Hierarchical Structures in Map Series. Faculty of Science and Technology.

Vienna, Technical University Vienna: 124.
Timpf, S. and T. Devogele (1997). New Tools for Multiple Representations. ICC'97,

Stockholm, Editor: Lars Ottoson.
Timpf, S. and A. U. Frank (1997). Using Hierarchical Spatial Data Structures for Hierarchical

Spatial Reasoning. Spatial Information Theory - A Theoretical Basis for GIS
(International Conference COSIT'97). S. C. Hirtle and A. U. Frank. Berlin,
Springer-Verlag. Lecture Notes in Computer Science 1329: 69-83.

Timpf, S., G. S. Volta, et al. (1992). A Conceptual Model of Wayfinding Using Multiple
Levels of Abstractions. Theories and Methods of Spatio-Temporal Reasoning in
Geographic Space. A. U. Frank, I. Campari and U. Formentini. Heidelberg-Berlin,
Springer Verlag. 639: 348-367.

Tinkler, K. J. (1988). Nystuen/Dacey Nodal Analysis (Monograph / Institute of Mathematical
Geography), Michigan Document Services.

Tobler, W. (1961). Map Transformations of Geographic Space. Seattle, Washington,
Uinversity of Washington.

Tobler, W. (1992). "Preliminary Representation of World Population by Spherical
Harmonics." Proc. Nail. Acad. Sc. 89: 6262-6264.

Tobler, W. R. (198?). "Resolution, Resampling, and all that." 129-137.
Tobler, W. R. and S. Wineberg (1971). "A Cappadocian Speculation." Nature 231(May 7):

39-42.
Tomlin, C. D. (1983). Digital Cartographic Modeling Techniques in Environmental Planning,

Yale Graduate School, Division of Forestry and Environmental Studies.

Index 391

Tomlin, C. D. (1990). Geographic Information Systems and Cartographic Modeling. New
York, Prentice Hall.

Tomlin, C. D. (1991). Cartographic Modelling. Geographical Information Systems: Principles
and Applications. D. J. Maguire, M. F. Goodchild and D. W. Rhind. Essex,
Longman Scientific & Technical. 1: 361-374.

Tomlin, D. (1994). "Map Algebra: One Perspective." Landscape and Urban Planning 30: 3-
12.

Tomlinson, R. F. (1984). Geographic Information Systems - A New Frontier. International
Symposium on Spatial Data Handling, Zurich, Switzerland.

Tomlinson, R. F., H. W. Calkins, et al. (1976). Computer Handling of Geographical Data: An
Examination of Selected Geographic Information Systems. Paris, The Unesco Press.

Tufte, E. R. (1997). Visual Explanations - Images, Quantities, Evidence and Narrative.
Ceshire, Connecticut, Graphics Press.

Ullman, J. D. (1982). Principles of Database Systems. Rockville, MD, Computer Science
Press.

Unwin, D. J. (1990). "A Syllabus for Teaching Geographical Information Systems."
International Journal of Geographical Information Systems 4(4): 457-465.

van Benthem, J. F. A. K. (1983). The Logic of Time, Reidel Publ. Comp.
Vckovski, A. (1998). Interoperable and Distributed Processing in GIS. London, Taylor &

Francis.
Vckovski, A. and F. Bucher. (1998, Dec. 1995). "Virtual Data Sets - Smart Data for

Environmental Applications." 1998, from
http://www.ncgia.ucsb.edu/conf/SANTA_FE_CD-
ROM/sf_papers/vckovski_andrej/vbpaper.htm.

Vetter, M. (1977). Principles of Data Base Systems. International Computing Symposium,
Liege, Belgium.

Wadler, P. (1989). Theorems for Free! Functional Programming Languages and Computer
Architecture, ACM: 347-359.

Walters, R. F. C. (1991). Categories and Computer Science. Cambridge, UK, Carslaw
Publications.

Wegner, P. (1987). Dimensions of Object-Based Language Design. Object Oriented
Programming Systems, Languages and Applications (OOPSLA'87), Orlando,
Florida; October 1987.

White, M. S. (1979). A Survey of the Mathematics of Maps. Auto Carto IV.
White, M. S. and P. E. Griffin (1979). Coordinate Free Cartography. Auto Carto IV.
Whitehead, A. (1898). A Treatise on Universal Algebra. Cambridge, Cambridge University

Press.
Whitehead, A. and B. Russell (1910-1913). Principia Mathematica. Cambridge, Cambridge

University Press.
Wirth, N. (1971). "The Programming Language Pascal." Acta Informatica 1(1): 35-63.
Wittgenstein, L. (1960). Tractatus logico-philosophicus. London, Routledge & Kegan Paul.
Wolfram, S. (1988). Mathematica. Bonn, Addison-Wesley.
Wolfram, S. (2002). A New Kind of Science, Wolfram Media.
Zadeh, L. A. (1974). "Fuzzy Logic and Its Application to Approximate Reasoning."

Information Processing.
Zaniolo, C., P. C. Lockemann, et al., Eds. (2000). Advances in Database Technology -

Proceedings of EDBT 2000 (Konstanz, Germany, March 2000). Lecture Notes in
Computer Science. Berlin Heidelberg, Springer-Verlag.

Zehnder, C. A. (1998). Informationssysteme und Datenbanken. Stuttgart, B. G. Teubner.

Frank: GIS Theory Draft V15 Feb.05 392

INDEX

A
Abelian group, 56
abort, 201
Absolute Scale, 79
abstract data type, 55
ACID, 201
adjoint, 130
affine transformations, 99
algebra, 25

universal, abstract, 54
algebras, 54
ALK, 18
Allegories, 186
analog models, 30
analytical geometry, 113
analytical model, 225
Analyzes, 20
ANSI X3/SPARC, 172
arrows, 65
assignment statement, 188
atomic formula, 41
Atomicity, 202
Austrian cadastre, 18
Automatisierung der
Liegenschaftskarte, 18
axiom, 46

B
Backus-Naur-Form, 39
Backwards chaining, 48
base

topological space, 254
base vectors, 128
bijective, 60
BNF, 39
Boolean algebra, 57
Boundary points, 250
Boylyai, Johann, 89

Branching time, 105
Bureau of the Census, 18
business geography, 20

C
calculus, 43
Canadian Geographic
Information System, 17
canonical factorization, 69
cardinality, 59
Cartography, 12, 102
category

opposite, 187
category theory, 25, 65
Category theory, 54
cell, 330
Chorochronos, 103
clausal form, 46
Clausal form, 47
closed set, 251
closed world assumption,
212
closure, 216, 251
COBOL, 174
CODASYL, 174
CODASYL sets, 174
cofactor matrix, 130
collection of points and
lines, 330
collinear, 121, 221
collinearity, 124
commit, 201
commutative diagram, 62
commutative law, 67
complement, 251
complete

database, 211
complexity, 10
computational model, 32
Computational models, 30

Index 393

computer science students,
13
concurrency, 199
conferences, 19
Congruence relations, 98
connected, 252

simply, 252
consistency, 33

during update, 200
Consistency constraints, 202
consistent, 210
constructors, 55
contamination, 203
Continuity, 247
continuous space, 91
continuous time, 91
continuous transformations,
248
Continuous transformations,
99
converse, 178
converse relation, 181
conversion, 82
conversion of dates, 110
Corbett, James, 18
correct, 32, 33
COSIT, 19
counts, 79
course outline, 13
Cramer's rule, 222
criteria, 34
Critical path, 106

D
Dangermond, Jack, 18
Data, 31
Data Description Language,
172
data independent, 170
Data Manipulation
Language, 172
data model, 173
Data sharing, 171
database assumptions, 212
database complete, 211
Database concept, 169

database management
system, 172
Database Management
System, 172
datamodel

relational, 193
Daylight Saving Time, 109
DBMS, 172
decision, 34
decision making, 34
dense, 104
design principles, 10
determinant, 129
dimension, 238, 249
dimension, of matrix, 126
discrete, 104
discretizations, 92
distance, 244
Distance

point - line, 232
distributive law, 67
Documents, 31
domain closure assumption,
212
Domain Closure
Assumption, 213
domains, 41, 55
Dual

k dimensional objects in
n dimensional space, 243

Dual Independent Map
Encoding, 18
dual of flats, 239
Dual of line in 3-space, 241
duality, 219

geometric construction in
2d, 227

Duality, 59
Duality in Homogenous
Space, 228
Duality in Vector Space, 228
duomorphism, 229
duplicate storage, 170
Durability, 205
Duration, 106

Frank: GIS Theory Draft V15 Feb.05 394

E
Engineering students, 13
Entity, 178
Environmental Systems
Research Institute, 18
epic, 187
equivalent of matrices, 130
error, 83
error propagation, 83
Errors, 69
ESRI, 18
Euclid, 88
experience, 90
Experimental Cartographic
Unit, 18
extensional, 180
Exterior Point, 250

F
fact, 169
Fact, 178
facts

describing
measurements, 179

field, 79
fields, 174
fifth axiom, 89
first order language, 51
fixed point, 216
flats, 235
flow graphs, 169
formal language, 37
formal model, 33
Forward chaining, 48
fractal Dimension, 93
Franck, Georg, 104
from, 191
function, 59
Functional Dependency, 194
functor

Maybe, 191
projective geometry, 224

functors, 68, 74
future states of the world,
105

G
Game theory, 106
Gauss, C. F., 88
general linear group, 133
General systems theory, 29
Genus, 252
Geographic Information
Science, 22
geographic information
system, 30
Geographic Information
Systems, 15
geometric objects

infinite, n-dimensional,
235

geometry, 96
GI Science, 19
GISDATA, 103
glb, 184
Gödel, 45
Granularity, 107
Granularity of transactions,
208
greatest lower bound, 184
group, 56
group of transformation, 96

H
Harvard Graphics Lab, 17
Hesse Normal form, 220
Holes, 252
homeostatic system, 29
homogeneity, 134
Homogenous coordinates,
134, 219
Hopper, Admiral Grace
Murray, 174
Hopper, Grace Murray, 174
Horn clauses, 46, 211
hyperplanes, 236

I
ID, 178
idempotent, 67
identifiers ID, 178
identity, 65

Index 395

image, 64
Image, 80
incidence, 124
Incircle Test, 232
infinite geometric objects,
218
information, 31
Information, 31
information content, 42
information system, 30, 63
Information Systems, 28
injection, 60
inner product, 118
Input-Processing-Output,
169, 198
Input-Processing-Output
paradigm, 169
instants, 107
integral domain, 78
Intensional, 180
interactive computing, 199
interference, 202
Intergraph, 18
Interior Point, 250
interpretation, 32, 45
intersection, 58
Intersection

line, 221
intersection of two lines

by meet, 231
interval scale, 77
intervals, 107
Invariance, 95
invariant, 248
inverse, 56
inverses of matrix, 130
isolate data, 171
Isolation

for updates, 202
Isometries, 98

J
join, 184
Join, 193

constructiong n-
dimensional objects, 237

K
kernel, 64
Kernel, 80
Klein, Felix, 86

L
language, 71
lattice, 184
Lattice, 183
Lattices

applied to geometry, 230
layered cake, 15
leap day, 108
leapYear, 109
least upper bound, 184
levels of detail, 92, 107
Line Intersection in
Homogenous space, 222
Linear algebra, 125
linear transformations, 124
linearly independent, 117
lines

representations, 220
Lobachewsky, Nicolai, 89
Locking strategy, 204
logic view, 211
logical view, 171
Long transactions, 206
Lorentz group, 97
lub, 184

M
management of resources,
20
Manhattan distance, 114
Map projections, 99
Map Scale, 92
maps, 330
matrix operations, 124
Maybe, 191
measurement scales, 75
Measurement Units, 80
measurements, 35

as facts, 179
measurements of time, 106
meet, 184

Frank: GIS Theory Draft V15 Feb.05 396

Meet
for line intersection, 231
intersecting n-
dimensional objects, 237

metric relations
of flats, 244

metric space, 250
Minkoswki-Norm, 114
model, 29, 64
model view, 211
module, 114
modules

left or right, 228
modus ponens, 43, 48
modus tollens, 48
Monic, 187
Monoid, 38
morphism, 32, 62
multiset, 58
multi-valued logics, 49

N
National Center for
Geographic Information and
Analysis, 19
National Mapping Agencies,
20
NCGIA, 19, 103
neighborhood, 248
Neighborhoods

axioms, 248
axioms, 248

network data model, 174
New York State University
Buffalo, 19
nominal scale, 75
Normalization rules, 194

O
object relational, 195
object-oriented concepts in
databases, 175
object-oriented data models,
175
Observations, 35
Observations in space, 112
observers, 55

open set, 250
Optimistic strategy, 204
Order, 76
ordinal scale, 76
origin of time line, 108
orthogonal, 120, 130
orthogonality, 119

P
parallel lines, 89
parse, 40
Peano, 56
Performance of Databases,
173
Plausibility Rules, 216
Point set topology, 247
pointless

properties of relations,
187

Pointwise multiplication,
119
pointwise sum, 126
Poset, 183
power transpose, 190
Powersets, 185
processes in space, 22
Product, 254
Project, 193
projection, 119
projective geometry, 219,
224
projective plane, 134
projective space

construction, 226
Projective transformations,
99
proof, 47
propositional logic, 41

Q
Quantification, 51
quantitative revolution in
geography, 12
quantor, 51
query as a proof, 211

Index 397

R
rank, 128
ratio scale, 78
reality, 28
record, 169
records, 174
Recovery

database, 205
redundancy, 210
Redundancy, 214
relation

binary, 178
converse, 181

Relation Algebra, 180
relation datamodel, 178
relational algebra, 193
relational calulus, 180

'
'relational complete', 189

R
relational data model, 175
relational datamodel, 193
relational table, 193
relations

order, 181
point - line, 232

Relations, 47
representations, 28
resolution, 92
resource, 170
Rewriting, 43
right handed, 117
rigid bodies, 114
roll-back

of database, 205
Rotation, 98
ruler and compass, 113

S
Saalfeld, Allan, 18
schema

application, 173
logical, 173
physical, 173

schemas, 172
Schemas, 172
Schröder, 180
second order language, 51
Select, 193
set theory, 25
Sets, 58
Shannon, 42
SI unit, 107
similarity transformations,
98
simultaneous equations, 222
Singleton, 191
Sinton, David, 18
situation calculus, 50
snapshots, 102
space and time, 86
Spatprodukt, 121
spherical model, 224
standard, 81
straight lines, 218
straight model, 225
String, 38
Strings, 38
structure, 55
subset, 59
Subspace, 254
Subspaces, 236
summer time, 109
surjective, 60
surrogates, 195
symbol manipulation, 34
symbols, 37
synchronization, 107
syntax, 38
system, 29
system boundary, 29
systems

closed, 29
open, 29

T
tabular relations, 180
Tarski, 180
tax assessor, 88
taxi-cab metric, 114
temporal logic, 50

Frank: GIS Theory Draft V15 Feb.05 398

terminal symbols,, 39
theory, 46
Time, 102
time zones, 109
time, totally ordered, 104
time-sharing system, 200
to, 191
Tobler, Waldo, 12
Tomlinson, Roger, 17
Topological relations, 248
topology

point set, 247
topology, geometry on a
balloon, 248
transaction concept, 200
transformation, 131
Translations, 98
transpose, 128
triple product, 121
truth tables, 45
truth value, 45
type, 51, 72
type checking, 73
Typed functions, 71
types of geometries, 86

U
unboundedness, 104
unification, 47
union, 58

Unique, 191
unique name assumption,
212
Unique Name Assumption,
213
unit, 56
unit matrix, 128
universe, 237
University of California in
Santa Barbara, 11
University of California
Santa Barbara, 19
University of Maine, 11, 19
urban and regional
planning, 20

V
vacuum, 237
valuation function, 34
vector product, 120
vector space, 114
Volume, 245

W
Weaver, 42
well-formed formula, 38
wff, 41
White, Marvin, 18

