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FOREWORD 

I want to tell a story—the story of geographic information 
systems (GIS). It is a story in small chapters, which are 
combined to form the complex whole. I believe that the 
complexity of the world results from the composition of small 
and simple components. The chapters of this book describe the 
concepts, which combine to produce the complex Geographic 
Information System. We observe that the same operations are 
repeatedly used and often implemented in different ways.  

I write this text to show that there are mathematical 
principles behind the construction of Geographic Information 
Systems and to present these principles as a formal theory. These 
principles are the same for all applications of GIS. They are 
based on various parts of mathematics and are likely to be 
independent of the rapidly changing technology and valid for 
decades. 

Formal treatment is necessary to overcome the 
terminological confusion in GIS. Geographic Information 
Science connects with many different, well-established sciences: 
Computer Science, Information Science, Geography, Geology, 
Surveying, etc. Each of these has a long and well-established 
tradition of terminology. There is no single terminology that 
suits all participating scientists and misunderstandings caused by 
differences in terminology are rampant in the GIS literature. I 
select an algebraic treatment—and the corresponding 
terminology—because it allows integrating in a single coherent 
picture the treatment of geometric, temporal and descriptive 
information. Algebra links to category theory, where I believe 
the definitions of many problems of semantics will ultimately 
become feasible. I use transformations, mappings, morphism, 
and functors to stress the relevant structural invariants that must 
be preserved when representing real-world phenomena in 
computers.  

The rules for composing components to construct a complex 
system is sometimes addressed as design principles or 
patterns(Alexander, Ishikawa et al. 1977; Gamma, Helm et al. 
1995). Unlike computer scientists, I use here methods to 
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compose functionality based on a mathematical framework: 
category theory and in particular functors are the guiding 
principles to identify components and to compose them. 
Composition is only possible if the components are ‘clean’ and I 
will put more effort to establish the foundation than is usual; this 
will be compensated later when composition is effortless(Wadler 
1989);(Frank 1999).  

The goal of the book is to cover in a formal way all the 
theory necessary to understand the core of a Geographic 
Information System including temporal data necessary to 
represent change. The focus on formal processing of spatial data 
results in a number of hotly discussed topics in GI being left out:  
• Ontology of geographic data and the Semantics of data;  
• Aspect of implementation and performance of algorithms;  
• User interface and interaction;  
• Approximations, uncertainties, and error. 
These limitations are necessary to allow concentrating on what 
we know well before we start addressing what we do not know 
and perhaps will never know. I have presented my understanding 
of these areas in other publications (Frank 1991; Frank 2001; 
Frank 2003) [ref frank 2004] and expect that a division of the 
discussion in formal theory of geographic data handling, 
separated from ontology and semantics, performance and user 
interfaces leads to a well-structured, effective discussion. The 
contribution here is restricted to areas where I assume that our 
current understanding will remain valid for many years.  

In a nutshell: this text embraces a constructive approach to 
GIS Theory: I want to show how a GIS is constructed from a 
small set of primitive notions and axioms defining them. The 
analytical approach to consider the applications in the world and 
deduce the necessary theory will be covered in a separate book 
with an ontological focus(Frank to appear).  

HISTORY OF TEXT 
Some parts of the text go back 20 years, to course notes on 
formal aspects of geographic information systems, which I wrote 
to support my teaching at the University of Maine (Frank 1985) 
and the research program that I stated there is still very much the 
program I follow now (see insert). A comprehensive approach 
was started in the text I wrote for a graduate course in spring 
2000 at the University of California in Santa Barbara. I have 
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improved and rewritten it for teaching my course “GIS Theory” 
at the Technical University Vienna.  

[This text] provides a quite generic treatment, suitable for the 
discussion of any complex information system that deals with a 
significant part of reality…Often enough a spatial information 
system is discussed as if it were only a computerized mapping 
system. … Computer cartography is the subject of a number of 
courses and a few books have recently appeared on the topic. 
They discuss how maps can be drawn using a computer and 
show results that are achieved using typical software packages. 
Their focus is on the graphical process of map creation and to a 
lesser degree on map design; very little is said about the source 
and organization of knowledge about the world that is necessary 
to draw the map. … 
[These] texts on spatial information systems take a radically 
different approach, trying to encompass the problem of 
constructing systems that will collect, maintain, and disseminate 
spatial information. It will be shown that it is clearly beneficial 
to discuss these problems in context and to understand the 
interaction among their different components. Using this view, 
a map is a spatial information system and can be analyzed in 
these terms, from data collection to map usage. This treatment 
strives for theoretical correctness and for the formal analysis 
and specification of a spatial information system. It is based on 
the observation that many of the problems with present day 
systems start with shortcuts and seemingly reasonable 
abbreviations, which later turn out not to be correct and which 
demand extensive remedial countermeasures. We start with the 
assumption that “a good theory is the most practical tool” and 
try to find the principles human cartographers intuitively apply. 
We try to cast them into a formal language that we can then use 
to program computerized information systems.  

Excerpt from 1985 course material(Frank 1985) 

Nearly 20 years later, cartography still influences GIS 
teaching. Cartography has two closely related foci: 
communication of spatial knowledge and analysis of spatial 
situations using maps. Waldo Tobler, one of the original 
members of the ‘quantitative revolution in geography’ in his 
Ph.D. thesis (Tobler 1961) gives a framework for analytical 
cartography based on transformations. His insight to give a 
mathematical formulation to traditional cartographic methods 
will be continued here. However, (carto-) graphics and computer 
analysis should be separated (Frank 1984; Frank 1985) to 
liberate the GIS from the limitations of the paper map. 

TEACHING GIS 
I use this text for a second course in GIS in the last year of an 
undergraduate degree or the first year of graduate studies. The 
students have attended before an introductory course and used 
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some commercial GIS software to work on example problems, 
which lead them to a basic understanding of the typical GIS 
applications.  

The "GIS Theory" course is a three credit course of 15 
weeks duration, where one part of this book is presented per 
week. Engineering students have covered before discrete 
mathematics course in linear algebra and vector and matrix 
operations. The material in these chapters need only be reviewed 
to connect it to GIS, but the text is self-contained and not 
dependent on any special math requirements beyond high school. 

I do not know of another textbook intended for a second, 
rigorous GIScience course. The question what to include and 
how to structure is not less difficult then for the introductory 
course where several text books exist with different content. 
During the 1980s, I divided my teaching in a course on the 
storage and retrieval of geographic data and another one 
covering geometric aspects of geographic data processing. This 
division became obsolete as the integration of databases and 
graphical data processing into mainstream progressed.  

For a post-graduate course we asked users 1993 what to 
include and how to structure the material. The result were three 
volumes: theory, implementation, and usage(Unwin 1990; Kemp 
1993; Kemp, Kuhn et al. 1993). Later, the focus moved towards 
understanding what the input data meant and how to interpret the 
results produced by the GIS: spatial cognition and ontology 
{Frank, 1995 #348; Frank, 1995 #349; Frank, 1995 #350; Frank, 
1997 #175}. Students—especially students in an engineering 
curriculum—had difficulties to grasp the questions of semantics, 
data quality, etc. while at the same time learning the technical 
aspects of Geographic Information Systems. An attractive course 
outline based on different aspects of cognitive space (Couclelis 
and Gale 1986) did not include enough of the basic knowledge 
necessary for use; I abandoned it as yet another attractive but not 
pedagogically suitable guideline.  

The approach followed here is novel as it concentrates on the 
part of the GIS theory we can explain with formal 
(mathematical) methods. It should appeal to engineering and 
computer science students, but also to students in a graduate 
program in geography with a bend to formal sciences. Our 
knowledge of Geographic Information Science has sufficiently 
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increased during the past years to cover the fundamental aspects 
in a formal way.  

The translation of the formulae to code and to demonstrate 
that this is sufficient for a model of a GIS was done in parallel to 
the writing of this text. It demonstrated that this foundation is 
comprehensive and no major holes are left. A number of typical 
GIS application questions can be solved with the theory 
presented here. Nevertheless, I invite students, fellow teachers, 
and researchers in GI Science to send me suggestions for topics I 
left out and inform me of errors in the presentation. 

ACKNOWLEDGEMENT 
A very large number of people have contributed in one or the 
other form to my understanding of GIS.  
 

 



 

PART ONE  INTRODUCTION 

A GIS integrates data describing different aspects of the world and how they 
are distributed space and time. It has been visualized as a "layered cake" 

(  
Figure 1): different aspects of reality are represented as layers, 
which are coordinated. GIS software must facilitate exploitation 
of thematic data with respect to location and time. A GIS 
contains functions to manipulated geographic data and is 
separated from other programs that treat text, photographs, etc., 
but integration of geographic data with other data in a single 
environment has started. 

This short first part of the book surveys the territory of 
Geographic Information Systems. It explains my understanding 
of what a Geographic Information System is and which major 
applications I think of. A brief history of GIS over the past 25 
years should give some historic perspective.  

Geographic Information Systems 
today are computerized systems, 
which treat geographic data. 
Geographic data processing is the 
processing of data that has a relation 
to the world (see chapter 3).  
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The second chapter gives an overview of the text and how it 
is structured. It details also what is left out and justifies the 
focus.  

The third chapter describes the GIS as a repository of a 
description of the real world. It establishes terminology and 
gives the frame for the rest of the book and explains the 
generally used terms system, model, etc.  

 

 

 
Figure 1:  The layered cake: GIS brings 
together data related to the same location 
in space 
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Chapter 1 WHAT IS A GEOGRAPHIC INFORMATION 
SYSTEM? 

Geographic Information Systems—commonly abbreviated as 
GIS—have evolved in the past 35 years from systems for 
specialists to produce maps with computers to programs that 
ordinary people use to solve ordinary problems: GIS is used for 
planning of urban development, make thematic maps for 
newspaper articles and help with the navigation in our cars. 

This chapter lists the different strands of evolution that lead 
to present day GIS and reviews some application areas: each 
discipline and application area has contributed its own 
conceptual framework and terminology, influences that are still 
felt today.  

1. ORIGINS OF GEOGRAPHIC INFORMATION SYSTEMS 
The roots of Geographic Information Systems can be seen in 
different developments that all introduce electronic data 
processing to some parts of geographic practice. Several, more 
or less comprehensive descriptions of the history of GIS exist 
(Tomlinson, Calkins et al. 1976; Rhind 1991; Rhind 1991; 
Kemp, Kuhn et al. 1993; Frank 1995; Mark 1997). David Rhind 
gives a graphical representation of the family tree of today’s 
systems(Maguire, Goodchild et al. 1991).  

The pioneering work of Roger Tomlinson introduced 
electronic data processing to the gigantic task of managing the 
natural resources of Canada. He coined the name of Canadian 
Geographic Information System in 1967(Tomlinson 1984). The 
Canadian GIS maintained maps showing an inventory of the 
natural resources of the Canadian territory—a task that was 
beyond what could be achieved with manual cartography. 

At about the same time, researchers at the Harvard Graphics 
Lab computerized the classical method of overlaying maps for 
cartographic analysis used in urban and rural planning with 
translucent paper sheets (McHarg 1969; Steiner and Gilgen 
1984). The computerized system can combine more layers than 
cartographers using paper maps and it can integrate data from 
different sources and in different scales(Chrisman, Dougenik et 
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al. 1992). For example, different administrative boundaries and 
census data can be combined with topographic maps.  

The researchers at the Harvard Graphics Lab moved on to 
the commercial world. Jack Dangermond founded the 
Environmental Systems Research Institute (ESRI) in 1969. It 
provided geographic data processing and analysis services. In 
1980 they offered for sale their programs under the name of 
ArcInfo, geared primarily to planners. David Sinton (1978) left 
the Harvard Graphics Lab to join Intergraph, which—together 
with Synercom—was one of the leading companies to produce 
GIS for public utilities.  

The US Bureau of the Census investigated the use of 
computers to produce the maps to organize the collection of 
census data in the field. They had mathematically trained staff, 
including James Corbett(Corbett 1975), Marvin White (White 
1979; White and Griffin 1979) and later Alan Saalfeld, who 
made early theoretical contributions, which lead to the widely 
used, standardized, topological Dual Independent Map Encoding 
(DIME)(Corbett 1975). 

The utility of the electronic computer to automate the labor 
intensive tasks of cartography was recognized early on. The 
Experimental Cartographic Unit of the Ordnance Survey UK 
focused on the computer-assisted production of high-quality 
printed maps(Rhind 1971; Tobler and Wineberg 1971). Using 
the computer to produce topographic maps, to construct thematic 
maps, and to maintain the large collections of relatively simple 
line graphs for public utility and real estate cadastre became 
possible(Messmer 1984). 

In Germany, a group working on the conversion of cadastral 
maps to computer databases (Automatisierung der 
Liegenschaftskarte ALK) was active since 1970(Neumann 
1978). This project is not completed yet and holds most likely 
the record for the longest running GIS project ever! In 1973 the 
preparation for the conversion of the Austrian cadastre started 
and the conversion was completed in 1984(Hrbek 1993). Public 
utilities reported successful and cost effective use of early GIS 
that integrated computer drawn maps with the corresponding 
administrative databases(Frank 1988).  

These different applications lead to different communities of 
users and developers, with limited communication. The series of 
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AutoCarto conferences began in 1974.In 1978 the two first 
"general" GIS conferences were organized in the USA by the 
Harvard Graphics Lab (Dutton 1978) and in Germany by the 
Geodesists of the Technical University of Darmstadt(Eichhorn 
1979). Application oriented and regional conferences emerged in 
the USA and Europe during the 1980s. In 1984 the Spatial Data 
Handling Conference (SDH)(Marble 1984) started {Marble, 
1984 #1724; Blakemore, 1986 #10384}.  

The US National Center for Geographic Information and 
Analysis was the result from a national competition(Abler 1987; 
Abler 1987; NCGIA 1989); it is a consortium of the University 
of California Santa Barbara, the New York State University 
Buffalo, and the University of Maine—two geography and a 
surveying engineering department—connected by a common 
research agenda (NCGIA 1989a). It organized numerous 
research meetings, called specialist meetings, to document the 
state of the art and to identify research questions [ncgia 
publication list]. Researchers associated with the NCGIA 
initiated several successful series of bi-annual conferences:  
• SSD for large spatial databases in 1989(Buchmann, Günther 

et al. 1990); this conference takes a Computer Science 
perspective and discusses spatial access methods, query 
processing, etc. for geographic information. It is now called 
SSTD for Symposium on Spatial and Temporal Databases. 

•  COSIT for Spatial Information Theory (COSIT) in 
1992(Frank, Campari et al. 1992; Frank and Campari 1993), 
collecting contributions from an interdisciplinary range of 
disciplines: human geography, cognitive science, 
mathematics, computer science, etc. 

• GI Science conference is held bi-annually and addresses the 
whole field of Geographic Information Science(Caschetta 
2000). 

2. APPLICATION AREAS FOR GIS 
Humans live in the spatial environment; all human activities 
require space and management of space—from real estate 
markets to urban planning(Abler, Adams et al. 1971). Space 
controls aspects of human interaction(Hillier and Hanson 1984; 
Hillier 1999). Humans are navigating in space and require 
information about the location of desirable locations and the path 
to them. All human activities require space. It is estimated that 
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80% of all data contains some relation to space—which indicates 
how prevalent spatial aspects in information handling are and 
that nearly all decisions are influenced by spatial information or 
the outcome of the decision has spatial effects. 

Application areas for GIS are many and a systematic 
classification difficult. In the abstract, three roles for a GIS are 
sometimes differentiated:  
• maintain an inventory of some objects in space;  
• analyses of spatial situations, mostly for urban and regional 

planning; and 
• mapping of geographic data.  

The management of resources located in space is of 
universal importance. GIS help to manage the environment, 
forest and mineral resources. Decision support systems provide 
tools for the analysis and assessment of the impact of planned 
actions. Improvement in the management of land is the result of 
using cadastre, facilities management systems, forest information 
systems, etc. Improvement in land management contributes to 
the economic development of a country. 

GIS are used in urban and regional planning. Computers 
produce comprehensive graphical presentations of the current 
situation and the systematic evaluation of options in the planning 
process and visualize different scenarios. 

The maintenance of large map collections—topographic 
maps produced by National Mapping Agencies and the 
collection of maps showing the lines of a public utility, e.g., the 
gas or water lines buried in the streets of a city—were the 
dominant applications in the 1980s.  

The combination of cartographic—mostly graphical—data 
with descriptive data permits analytical use of the data: one can 
identify objects and regions based on some criteria. For example, 
the water authority can identify all water mains, constructed 
from a troublesome material, and thus produce a plan for 
preventive maintenance of its water distribution network. This 
reduces interruption of services to customer and also cost for 
repair. Similar analytical functions help the forest manager to 
identify the forest stands to cut during the next years.  

Geographic information is used in business. For example, 
the decision to locate a new multiplex cinema or the selection of 
bank branch offices that should be closed is both dependent on 
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the spatial distribution of potential clients around the locations. 
The analytical functions in a GIS produce the information on 
which rational decision can be based.  

The different applications, but also the different disciplines 
contributing historically to GI Science used different concepts of 
GIS. The graphical paradigm of cartography—a truthful 
graphical representation of the real world—remains influential 
for GIS and GI Science (MacEachren 1995) and clashes with the 
paradigm of knowledge representation that dominates 
administration, database design, and decision support systems, 
which all build conceptual models of reality(Kent 1978; 
Lockemann and Mayr 1978). Today, the limitation is the lack of 
tools for the integration of temporal data(Frank 1998). 

In general GIS are used to make decisions: users retrieve 
information that they think is relevant for their decision and use 
it to improve their decision. This is, incidentally, the only use 
one can make of information. 

REVIEW QUESTIONS 
• What were the first functions GIS precursors fulfilled? 
• When was the first GIS (with this name) constructed? For 

what purpose? By whom? 
• How can the application of GIS be classified in three large 

groups? 
• What are the primary application areas of GIS? (Name five) 
• What is the difference between GIS and cartography? 
• Describe the evolution of GIS. 
• Do you believe that 80% of all decisions we make involve 

spatial information? Give examples for decisions that are not 
influenced by spatial information and the outcomes do not 
influence space. 

 

The only use of information is to 
improve decisions. 
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Chapter 2 FOCUS OF GIS THEORY: OVERVIEW OF TEXT 

How to understand GIS? How can we explain software that took 
hundreds of person-years to write and have manuals many 
hundred pages long? The commercial GIS courses train people 
on how to use a GIS product and explain GIS concepts from the 
perspective of a product(ESRI 1993). An academic course must 
be independent of products and focus on the core of a GIS.  

1. WHAT IS ‘GEOGRAPHIC INFORMATION SYSTEMS 
THEORY’  

In general it is assumed that Geographic Information Systems 
are a tool and do not have a theory. Many have pointed out that 
there is no science of hammers and similar tools and have 
suggested a science of Geographic Information Science 
(Goodchild 1990; Goodchild 1992; Goodchild, Egenhofer et al. 
1999) and denied the existence of a theory behind GIS. 

A number of applied sciences—what may be called ‘topical’ 
sciences—work on problems that connect to space; for example 
population studies or hydrographic research. Geography 
concentrates not on the ‘topical’ aspects of an application, but on 
the general understanding of processes in space(Abler, Adams et 
al. 1971). Geographic Information Science is investigating the 
questions of treatment of geographic information in general—it 
is an abstraction from different parts of geography and related 
sciences. Geographic Information Science investigates 
commonality between the different methods to treat geographic 
information and to establish some coherent body of knowledge 
as a common foundation for geographic analysis.  

Geographic Information Systems Theory concentrates on the 
representation and treatment of description of geographic facts 
and processes. It is the science of Geographic Information 
Systems, which are the technical systems with which geographic 
information is treated. GIS are used in most spatial sciences. GI 
science is a substantial subfield of geography. GIS theory is a 
subfield of GI science, founded on mathematics and computer 
science, with contributions from geodesy and measurement 
sciences(Krantz, Luce et al. 1971). 

The theory of GIS is intentionally a theory of the tool, a 
theory of the hammer so to speak. There exists, despite the 
aforementioned opinions to the contrary, a theory of hammers: it 

GIS theory is to GIS what physics to 
hammers is! 
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is physics, in particular mechanics, which deals with movement 
of masses, levers, impulse transfer from one mass to another 
upon impact, etc. The theory of GIS, presented here underlies the 
implementation of the currently available commercial GIS 
programs. To overcome two of the most obvious shortcomings 
of today’s commercial GIS software, the GIS theory must show 
how different representations of space can be integrated and 
contain methods to deal with temporal aspects—including 
changing values, processes, etc. This will be explained here. 

2. TARGET OF THIS BOOK 
The purpose of this book is to describe methods that are used in 
Geographic Information System software. It stresses the 
concepts that remain likely invariant under the changes that are 
brought on by technology—from ever faster CPU to the 
revolution of the World Wide Web. It seems futile to teach 
students facts that are immediately superseded by the rapid 
advances of technology, only formal theories do not change.  

The description concentrates on what the functions in a GIS 
do, not how they are implemented. I think it is necessary to 
understand the basic algorithm before one starts to decide on its 
implementation. Implementations involve trade-offs depending 
on the particulars of the application and the current state of 
technology(Frank 1991). Much of what is currently maintained 
as ‘well-known’ rules in GIS software design depends probably 
more on past technology than we are aware of. Some of these 
'well-known' rules may be patently wrong today, made obsolete 
by new technology and its different performance characteristics 
and the relevance of others for tomorrow’s implementation 
doubtful.  

Identifying the concepts—independent of application and 
technology—helps to separate what is logically necessary and 
what is baggage that was once necessary but can be shed today 
to construct lean systems. The novel aspect of this treatment is 
the focus on the construction of a formal theory of GIS software. 
The integration of time into GIS is a first demonstration of its 
usefulness. 

A theory of geographic data processing can be developed if 
one is ready to leave out areas where we have only limited 
knowledge: 

Mathematical truth does not change 
with the years!  

Excluded: 
- Ontology and semantics of data 
- User interface 
- Errors and uncertainty in the data 
- Performance 
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• Ontology and Semantics: All aspects of the meaning and use 
of the data in real world are excluded(Frank 2001; Frank 
2003). We assume that data with fixed and known 
interpretation is fed into the system and the results are 
interpreted in the same context, the details of which are left 
out. This excludes all considerations of what the data means, 
how it relates to the reality it represents and how treatment in 
computer systems of spatial information corresponds to the 
human cognitive abilities. 

• User interface: The communication between user and GIS is 
necessary to effective use of GIS technology. It is closely 
linked to questions of semantics and for the same reasons 
excluded here(Frank 1982; Egenhofer and Frank 1992). 

• Errors and uncertain data: Current GIS deal well only with 
data that is precisely known. Real world situations are neither 
well-defined nor precisely known. Understanding spatial data 
processing in the precise case contributes to handle imprecise 
and erroneous data later (Goodchild and Gopal 1990; 
Burrough and Frank 1996; Goodchild and Jeansoulin 1998; 
Heuvelink 1998; Shi, Fisher et al. 2002; Frank and Grum 
2004; Frank and Grum 2004; Pontikakis and Frank 2004). 

• Performance: Technology advances affects primarily how fast 
operations perform(Frank 1991). Transformation to convert a 
naïve algorithm to a more performing one are studied in 
computer science and is left here to the implementer(Bird and 
de Moor 1997). 

Some will argue that the topics excluded are all the really 
interesting and difficult ones—and I readily agree. These 
excluded topics are difficult because they appear currently as ill 
posed problems, not amenable in the form they are presented to 
formal treatment. There are no criteria available to determine the 
‘best ontology’, to compare two implementations or to judge the 
effectiveness of a user-interface. The topics excluded are those 
that link the formal treatment of geographic data to its use, to the 
give and take of the world, to politics and power. In this book I 
try to cover all the areas that I see fit today for formal treatment. 
I hope to provide a firm ground for future approaches to some of 
the problems excluded here. Without this clear separation, we 
taint the description of the things we presently understand with 
our ignorance in other areas. 

GIS Theory is similar in what it 
covers to standardization. 
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It is interesting to note that the focus used here—excluding 
application areas, performance or the specifics of interaction—is 
similar to the point of view taken by current standardization 
efforts, especially in the Open GIS Consortium (OGC 2000) and 
the ISO TC 211(ISO 2004). Standards—if understood 
correctly—must concentrate on fixing what should be done and 
leave the different vendors free to select how they want to 
achieve it.  

3. FORMAL APPROACH 
Each part of mathematics comes with its own terminology. To 
integrate them in a single system, a common notation is 
necessary. This was the overall purpose of the monumental effort 
by Whitehead and Russell writing the Principia 
Mathematica(1910-1913), but also of the French project 
Bourbaki. These two groups saw in set theory the foundation and 
attempted to build all other parts of mathematics on this base. I 
follow here the lead of theoretical computer science using 
algebra (Goguen, Thatcher et al. 1975) and category 
theory(Asperti and Longo 1991). Standard engineering 
mathematics, mostly calculus, is useful, but discrete mathematics 
and algebra (Mac Lane and Birkhoff 1991) are required for GIS 
Theory(Ehrig and Mahr 1985; Ehrich, Gogolla et al. 1989). 
Category theory provides a general framework to integrate 
different parts of mathematics, for example set theory and 
analysis, linear algebra, topology but also graphs, formal 
languages, and the theory of finite automata (see xx). To make 
the text self-contained, these foundations are reviewed as far as 
they are used.  

The focus of the book is on the concepts and not the 
implementation, thus a mathematical notation using the 
framework of category theory (Pitt 1985; Barr and Wells 1990; 
Herring, Egenhofer et al. 1990; Asperti and Longo 1991; Walters 
1991; Pierce 1993; Frank 1999) is usually sufficient. In a few 
rare exceptions, programming languages must be borrowed, 
where I prefer the Functional Programming Language(Backus 
1978), using the syntax and semantics of Haskell (Hudak, 
Peterson et al. 1997; Peterson, Hammond et al. 1997; Bird 1998) 
and the imperative language Pascal(Jensen and Wirth 1975). No 
knowledge of these languages is assumed.  
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4. STRUCTURE OF THE BOOK 
The text consists of eleven parts. This introduction explains the 
relation between the world, GIS and GI Theory. The second part 
sees the GIS as a repository of a description of the world. It 
introduces the formal languages and methods to build theories 
and uses them to describe measurements. 

The third part covers continuous space and time. It 
introduces time points and vectors to represent points in space, 
with the pertinent operations, and develops a general theory of 
spatial transformations. 

Part four then constructs functions that operate on map 
layers (like figure 1.1xx) or time series from functions relating 
properties of points.  

With the fifth part we enter the world of objects in space and 
how descriptions are stored in a database. Sharing of data among 
many programs leads to the centralization of data where it can be 
accessed with standardized functions. To maintain this data 
consistent for long periods of time, despite many concurrent 
users, requires special approaches. 

The sixth  part concentrates on infinite geometric objects: 
infinite lines, planes, etc., the relations between them and 
operations applicable to them. It uses projective geometry to give 
a most general and dimension independent description. 

The seventh part focuses on geometric objects with 
boundaries: line segments, triangles, etc. The simplest geometric 
objects for each dimension are called simplices and operations 
applicable to them, again independent of dimension, are given. 

The eight part looks at cartographic lines and how they 
structure space. It uses algebraic or combinatorial topology to 
discuss spatial subdivisions and the operations that leave the 
Euler formula for polyhedron invariant.  

The ninth part discusses aggregates of lines, which form 
graphs. Practically are graphs that represent street or stream 
networks. 

The tenth part specializes to a special form of subdivision, 
namely triangulation. It shows how they are constructed and 
used for the representation of Digital Terrain Models, or for the 
determination of service areas around service points using the 
Voronoï diagram, which is the dual of the Delaunay 
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triangulation. It also gives a method to compute intersections 
between arbitrary geometric figures. 

Part eleven covers temporal data for moving objects. It 
demonstrates that the framework is general enough to treat 
moving objects. Spatio-temporal database with the necessary two 
time perspectives are constructed as databases with changing 
content. 

Each part consists of short chapters, which are generally 
motivated by a practical example of geographic data processing. 
These examples connect the theory to concrete applications of 
GIS. The summary at the end of each chapter indicates what 
concepts to retain and links them to the following chapters. Each 
chapter contains also a list of review questions. 

REVIEW QUESTIONS 
• What is the focus of GIS Theory? Compare with GIScience. 
• Why is the content of GIS Theory similar to the efforts to 

standardize GIS functionality to achieve interoperability 
between GIS managed by software from different vendors? 

 



 

Chapter 3 INFORMATION SYSTEMS 

The Hitchhikers Guide to the Galaxy is an indispensable 
companion ... In case of major discrepancy it is always reality 
that’s got it wrong. (Adams 2002, 172) 

In order to understanding the world (Figure 2a), we construct 
representations of it, for example as a topographic map (Figure 
2b). In this chapter, the relations between reality and 
representations are explored. We will see that Information 
Systems are models of reality such that a correspondence exists 
for some operations and objects in the world and their 
representation in the model; we say that the model (i.e., the 
topographic map) has an interpretation. The interpretation for a 
map is given as natural language terms in the map legend. A GIS 
is useful as far as it is a true model, which means that there is a 
mapping between reality and information system that preserves 
structure. 

This chapter gives intuitive definition for often used but 
seldom defined terms like system, model, and data. It shows how 
they relate and how I intend to use them in this book. 

Figure 2 (a) Reality—a landscape near Geras with (b) the corresponding map 

Morphism: a structure preserving 
mapping. 
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1. WHAT IS A SYSTEM? 
The word system is often used, not always with a clear 
understanding what is meant. General systems theory 
(Bertalanffy 1973) emerged from biology and considers a 
system as a delimited collection of interacting parts (Figure 3). 
The system has a boundary. Closed systems have no exchange 
with their environment; all interactions are among elements 
within the system boundary (Figure 5). Open systems interact 
with elements outside the system boundary (Figure 4). Systems 
that can maintain their internal state constant are called 
homeostatic (Figure 6). Figure 7 gives the familiar heating 
control system as an example for a feedback loop to stabilize the 
temperature in a room. 

To consider something as a system, it is necessary to give 
its boundary and its interaction with the environment, the 
elements are identified and their interactions described. 

Interactions between elements can be material or informational. 
Systems are often analyzed in a hierarchical fashion. Starting 
with a coarse decomposition, it is possible to decompose and 
study each part, e.g., the thermostat (in Figure 7) may be 
considered again a system with interacting parts. 

2. MODEL 
A model represents a system that is a part of reality. The model 
railway I played with as a boy (Figure 8) represents a real train 
that I was not allowed to play with.  

Models are used for the study and prediction of the behavior 
of a system without affecting the original; they are necessary, 
whenever experimenting with the real system is impossible, 
hazardous, or expensive. Scientists and engineers build formal 
models of systems in which they are interested and work with 
the model instead of the real system. We do not want to build 
bridges with a trial and error method—some hold up and some 
crumble—nor do we want to test the effects of major accidents 
in nuclear power plants! We build models – computational or 
reduced scale – and use theory to predict the outcome of 
operations, without the risk or expenses of real systems. 

 
Figure 3: A system, its boundary, its 
elements and the interaction between them. 

 
Figure 4: Open System 

 
Figure 5: Closed System 

  
Figure 6: Homeostatic system with 
feedback-loop 

  
Figure 7: Self stabilizing heating system 
with feedback loop 

A system is a conceptualization, not a 
reality. Different systems can be 
identified at the same location. 

 
Figure 8: Railway and model  
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A model is an ‘image’ of a part of reality (Figure 9). The 
appropriateness of the model is determined by the usefulness of 
information it provides about the part of reality modeled. What 
elements and what relations from the real world should be 
included in the model? This is a question of how to limit the 
system that is modeled. There are many trade-offs to consider in 
choosing a model. Making a model more complete by adding 
detail is not necessarily make it more accurate. The inclusion of 
more detail makes the model more difficult to use or introduces 
too many uncertainties, such that the results are less reliable than 
what we achieve with a simpler model. 

Many models are reduced scale artifacts that are similar in 
shape and have similar behavior. We call these analog models 
(Figure 8). Maps are graphical models of reality (Figure 2b). 
Computational models are constructed with symbols 
manipulated according to rules in a computer (see Part 2), 
simulating the behavior of the system. The observations in the 
real world must be in a known relationship to the representations 
in the model as shown in Figure 2. The mapping from a real 
system onto a formal system is what makes the model useful. 
Mathematically we can see a situation similar to a 
homomorphism (see later chapter 5), which is a mapping that 
preserves (algebraic) structure.  

3. INFORMATION SYSTEMS 
An information system is one that has the main task to produce 
information (Figure 10); other aspects of the physical data 
processing machinery, e.g., the consumption of energy and the 
production of heat are disregarded. Information systems contain 
data and programs that are used to answer queries of human 
users. An information system may not connect directly to the 
data but to other information systems to obtain the answers on 
behalf of its users (Figure 11); this gives an easy approach to 
separate user interface issues from the management of the data.  

4. GEOGRAPHIC INFORMATION SYSTEM 
A geographic information system is an information system 
where data is related to physical (geographic) space and 
operations exploit the data with respect to the spatial location of 
the objects represented. For each GIS one must determine the 
region of the world it is describing; this amount to a definition of 

 
Figure 9: The connection between real 
system and model 

 
Figure 10: An information system contains 
data and programs to process the data; it 
answers questions 

 
Figure 11: Users connect indirectly to an 
information system through the net 
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a part of the world as a system, which is of interest and 
represented in the GIS. The GIS with the data is, of course, also 
a separate system, consisting of electronic equipment, programs, 
procedures, etc.). 

Not every collection of data with some geographic 
references makes a GIS: there must be analytical functions 
programmed, which allow users to analyze the data with respect 
to spatial location. For example, a telephone directory is not a 
GIS. It contains addresses but does not allow spatial questions—
one cannot ask "What is the closest police station to this phone 
number?" A GIS geocodes the addresses and then use the 
coordinates to answer this and many similar questions. 

5. DATA AND INFORMATION  

5.1 INFORMATION 
The term information will be reserved for contributions to the 
users' mental models. Information is only that which humans 
perceive and add to their mental models, and is not the raw 
material, that is, data or documents, from which they get this 
information. Only signs that can be perceived and interpreted by 
humans should be called information. Information is relevant 
only as it is used to make decisions that lead to actions. 

This definition excludes a number of things that are often 
considered information. For example, a telephone directory is 
not, by itself, information, as humans do not ordinarily read and 
comprehend it. We rather use it as an information system for 
extracting the information we need when we want to call 
someone. 

5.2 DATA AND DOCUMENTS 
The word data will be used for symbols represented in a formal 
language and assumed to have a fixed and known interpretation. 
Data are in a form accessible to computer hardware, e.g., 
encoded and stored on media that are accessible to computers.  

The word document denotes information recorded in a 
natural language. Documents require a human to interpret their 
content. Examples are the registry of deeds, libraries, and maps. 
Documents are not information unless they are read by a human 
user, but it is also not data, as it cannot be manipulated within a 
formal model. 

Information is an answer to a 
human’s question. 
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Data is in the formal realm—linked by the interpretation to 
the physical reality—and is thus amenable to mathematical rigor.  

6. INFORMATION SYSTEMS AS MODEL 
An information system is useful if the information in it 
corresponds to the situation in the real world, if it is a 
(computational) model of a part of reality. If we ask the 
information desk of the Austrian Railways Company “what is 
the next train from Vienna to Graz” and get the information that 
one is leaving at 12:20 p.m. at Wien-Südbahnhof we expect this 
information to correspond to the real world event when the train 
leaves the station and we will be ready at the platform a few 
minutes earlier. The train information system accessible at 
www.oebb.at is a model of some aspects of the Austrian railway 
system.  

For the information system to inform about the world there 
must be a defined relationship between the data and the objects 
in reality. We say that information is correct, if it follows the 
conventional, agreed interpretation of the data(Kent 1978). The 
mapping between data and real objects must preserve the 
structure that exists between the objects: the connection between 
‘train to Graz’ and ’12:20 pm’ must be the same as the relation 
between the train and its time of departure. It is not sufficient 
that we model the elements of the system, but we have also to 
model the relations between the elements (Figure 9). We will use 
the term interpretation for this relation between the features in 
the world as we experience them and the things in a computer 
program. The computer program with a known interpretation is a 
model—similar to a small mechanical model used to see how a 
machine works (Figure 8).  

In mathematics this mapping is described as morphism: a 
structure preserving mapping. The real world objects and their 
connections must have the same structure than the corresponding 
data objects and the links between them. Algebra gives a 
succinct definition of structure (see Part 2, chapter 6). Asking 
about the path of the train from Wien to Graz must result in the 
information about the stations that the train will call at. If this 
correspondence does not exist the information obtained from the 
information system is not useful; a system that informs us that 
the train leaves at 12:20, but arriving at the station at 12:10 we 
just see the train pulling out of the station is useless, because the 

 
Figure 12: Train information system as a 
model 

Data =  
Signs (symbols) in a formal 
language. 
Information =  
Material for constructing mental 
models. 
Document =  
Signs in a natural language that 
needs human interpretation. 

Correct data = Interpretation of the 
data corresponds to reality. 

Interpretation: a convention to 
connect symbols to real world 
phenomena. 
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information is not correct, not following the conventional 
interpretation of what '12:20' etc. means.. 

6.1 CORRECTNESS OF AN INFORMATION SYSTEM 
Users of information systems assume implicitly that they gain 
the same information, i.e., the same mental models, by 
consulting the information system, as they would by going out 
and gathering the information themselves through direct 
perception of reality (Figure 13). 
• You assume that the telephone number you receive from 

directory assistance is the same you would obtain by going to 
a person's home and reading it from their phone. 

• The tax assessors consulting their lists of parcels and 
frontages assume that the results are the same as if they went 
out and measured for themselves. 

Data stored in the database of an information system must be 
correct to be useful, that is, faithful representation of the 
structure in reality. A computerized system cannot, by itself, 
guarantee factual correctness; it has no way of going out and 
checking that the grass is green, that the moon is not made of 
cheese, or that the house at 16 Maple Street has fourteen 
windows. To assert correctness, we have to leave the information 
system (the formal model) and compare it with reality (Figure 
14). 

Within the information system, formal checks can only 
assert the weaker notion of consistency, which means that the 
database must be free of internal contradiction (see chapter 18). 
For instance, the database should never contain information at 
the same time that the building at 16 Maple Street has 8 and 14 
windows; if we find information that the train to Graz leaves 
Südbahnhof at 12:15 and 12:20 we are confused and wonder if 
there are really two different trains or rather one of the two times 
is wrong – but which one? 

6.2 AN INFORMATION SYSTEM AS A FORMAL MODEL 
The abstract view of an information system retained sees it as a 
system of symbols together with an interpretation that links the 
formal symbols to reality (Figure 2). A computerized 
information system is a formal model of a part of reality. The 
formal system, executed by the computer, operates on symbols 
that have an interpretation in the model perceived by people. 

Morphism: a mapping that preserves 
algebraic structure. 

 
Figure 13: The information system 
provides the same information than 
investigating reality 

 
Figure 14: The Banana Jr. computer 
inspects correctness of the data in the 
world 
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Information systems are useful if the mapping between symbols 
and real objects preserve this structure. 

All operations of computers are symbol manipulation. 
Human users tend to interpret computer operations differently, 
for example as a numerical computation, or even as a complex 
operation like booking an airline passage. The internal operation 
of a computer is never anything more than a manipulation of 
symbols according to formal rules laid down in programs. 
Computers represent symbols internally in bit patterns. Hardware 
and software operations are built to manipulate those patterns in 
a way consistent with our understanding of arithmetic or logical 
operations.  

7. SUMMARY 
A GIS is a representation of a part of reality. The interpretation 
of the symbols stored and treated in the GIS link the model to a 
part of reality. The treatment of the symbols in a useful 
information system corresponds to the part of reality represented. 
In the remainder of this book the rules for symbol manipulation 
that preserve the intended geographic interpretation will be 
discussed.  

REVIEW QUESTIONS 
• What is the definition of an information system; what is 

specific about a geographic information system?  
• In what sense do computers know about a train leaving? 
• What is the (only) use of information? 
• Why is an ordinary phone directory an (non-automated) 

information system, but not a GIS? 
 What is the difference between information and data?  

• What is the difference between correctness and consistency? 
• What is an interpretation of a model? 
• What is a structure preserving mapping? What is meant by 

structure in this context? 
 
 
 
 
 
 

 
 



 

PART TWO  GIS AS A REPOSITORY OF A 
DESCRIPTION OF THE WORLD 

Observations of the outside world are stored in the information 
system. Observations are the linkage between the real world in 
which we and the GIS operate (Figure 16). A description of the 
GIS must start with observations, measurements and how they 
are represented in the GIS. This part introduces methods to 
construct symbols to represent the result of observations and to 
manipulate these as well as methods to measure information 
content. Observation processes per se are discussed in the 
ontology and are not investigated in this book. 

In general, I will use the term observation for the process 
that connects the real world with the realm of information; 
measurement will be used for the representation of the result of 

an observation, measurements are often, but not always 
expressed on a numerical scale. 

The previous chapter reviewed the concept of an information 
system, which is a system that stores and transforms symbols. 
Symbols represent the outside world in an information system. In 
order to describe the theory of GIS, two issues must be 
addressed:  

• the representation of values obtained from observation 

of reality, 

• the rules for transformations of representation (i.e., 

data processing).  

The first chapter introduces formal languages to produce 
representations for the results of the observations in an 
information system. First order predicate calculus is an example 
of a formal language, widely used for the description of 
information systems(Gallaire 1981; Gallaire, Minker et al. 1984). 

The second chapter reviews algebras and categories, which 
seem more apt to represent processes that change the world. 

 
Figure 16: Observations of the world are 
put into the GIS 

Terminology:  
Observation (processes) results in  
measurements. 
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Category theory is considered as the theoretical foundation of 
computation(Asperti and Longo 1991). 

The third chapter discusses what operations can be applied to 
measurements. It starts with Steven’s classical scales of 
measurement (Stevens 1946) and the limitations on operations 
they each impose. It links the scales of measurement to well-
known algebras, like monoid, group and field and motivates the 
introduction of the concept of homomorphism.  
 
 
 
 



 

Chapter 4 FORMAL LANGUAGES AND THEORIES  

Information systems use computers to manipulate symbols 
according to some formal rules, called programs. In this chapter 
we discuss the rules for the construction and manipulation of 
symbols, which are then used to represent facts describing the 
world. 

Programs instruct computers to perform certain actions. 
Computer systems follow the rules laid down in the program 
when executing it. The result of a program with a given input are 
determined – if we see different results, then there must be 
additional inputs which vary between execution. Two computers 
may execute the same program differently: we say that they 
interpret the program differently; they use different dialects of 
the same programming languages, e.g., different extensions of 
the common standard language. 

Programs are written in a formal language with a well-
defined semantics. Programs have a different appearance and are 
more complicated than the axioms of the formal system we 
encountered in mathematics classes. Nevertheless, they are 
formal definitions of systems. In this book we concentrate on 
studying formal systems, which are introduced in this chapter.  

1. FORMAL LANGUAGES  
A formal language is a set of symbols that represents the 
vocabulary of the language and a set of rules how they can be 
combined to form legal well-formed formulae in the language. 
Formal languages are an abstract concept and the analogies to 
the vocabulary and the syntax of natural languages is limited. 
Natural languages have complex rules for the formation of words 
or sentences {de Saussure, 1995 #9510}. Applying the 
production methods described here for formal languages to 
natural languages has met with limited success(Chomsky 1980).  

1.1 DEFINITION FORMAL LANGUAGES 
A set of symbols (words, technically often called tokens) 
together with a set of rules for their combination, forms a 
language. The set of symbols is often called the alphabet and 
compares with the lexicon (vocabulary) of a natural language. 

Language = A set of symbols + rules 
for their combination. 

 
Formula = A syntactically correct 

sequence of symbols in a 
language. 

 
Theory = A formal language + rules 

concerning valid relationships 
within the language. 

 
Formal System or Calculus = A 

language + rules for the 
transformation of formulae in 
other formulae. 
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The rules for the combination can be called the syntax of the 
language—roughly equivalent to the grammar of a natural 
language. A symbol or valid combination of symbols constructed 
applying the production rules is a well-formed formula. When 
using a programming language, we speak of a syntactically 
correct program. 

In general, languages are thought of as producing linear 
sequences of symbols, similar to the text in a natural language. 
This is not a restriction; languages to construct spatial, two 
dimensional, arrangements have been explored in biology 
(Lindenmair grammars) and in spatial planning(Hillier and 
Hanson 1984). 

1.2 STRINGS OF AN ALPHABET 
A language is constructed from an alphabet, which is a finite set 
of symbols. These symbols can be combined to words; the set of 
all words of infinite length over an alphabet A is described as 
A*. 

Alphabet A = {a,b} 
A* = {a, b, aa, ab, bb, ba, aaa, aab, aba, abb, baa, bab, bba, bbb, aaaa, aaab, 

…} 
Strings are sequences of symbols over an alphabet. Strings with 
the operation concatenation ++, which merges two strings, form 
a monoid, which is a semi-group with a unit (namely the empty 
string ""). String concatenation is not commutative: a ++ b ≠ b 
++ a; ++ gives a non-commutative monoid; other monoids are 
commutative. 

Monoid <S, ++, ""> 
 associative a ++ (b ++ c) = (a ++ b) ++ c = a ++ b ++ c 
 identity "" ++ a = a ++ "" = a 

The length of a string is the number of elements in it. The 
number of different strings in A*, where A contains k different 
elements with length exactly l is kl. This can be seen by 
comparing the elements in A to the digits of the base k; with l 
digits we can form kl different numbers.  

String <S, length> 
 distributive length (a) + length (b) = length (a ++ b) 

 

1.3 LANGUAGES DEFINED WITH PRODUCTION RULES 
The alphabet for a language consists of three different sets of 
symbols: 

Syntax: rules of combination of 
symbols to well-formed formulae. 
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• a close set of fixed symbols T, called the terminal symbols, 
• a set of non-terminal symbols N, which are not part of the 

language (N and T must be disjoint), 
• a special non-terminal symbol S, which is called the start 

symbol. 
Only the terminal symbols appear in well-formed formulae of 
the language. For many languages, the terminal symbols are 
characters or numbers. Other languages have terminal symbols 
that are words, e.g., BEGIN and END in Pascal. The non-
terminal symbols appear only in rules that lead to intermediate 
steps in the production of a language. For example, the language 
A* above is produced by  

S ::= a | b | a S | b S. 

Production rules explain how a symbol is replaced with other 
symbols in the course of the production of a well-formed 
formula of the language. Production rules have the form  

n ::= u  
where n stands for a non-terminal symbol and u is a sequence of 
terminal and non-terminal symbols. The production rules contain 
always a rule that translates the non-terminal start symbol S into 
a production. Production rules are applied repeatedly till all non-
terminal symbols are replaced and only terminal symbols appear. 
An example for a simple language RN (which stands for a 
simplified form of Roman Numerals) with an alphabet containing 
the non-terminal symbols S and N and two terminal symbols I 
and + is given with two production rules: 

Example language RN: 
S :: = N | N "+" N    (1) 
N ::= "I" | "I" N.    (2) 

The rule (2) is recursive: the non-terminal N appears on the 
left and the right side. Therefore, the language can produce an 
infinite number of well-formed formulae, namely I, II, III, … but 
also I + II, etc. Legal well-formed formulae in a language are all 
the sequences of terminal symbols that can be produced by 
repeated application of the production rules till the string does 
not contain any non-terminal symbols.  

The production rules are usually written in Backus-Naur-
Form (BNF). The BNF language is a formal language; it is a 
meta-language to describe other languages (the target language). 
BNF can be described in BNF, which is something like the 
famous Baron Münchhausen pulling himself out of a bog by his 
own hair! BNF uses the following terminal symbols: 

In a production rule "|" stands for 
choice, either the left or the right part 
is selected. 
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::=   is replaced by, or, produces 
|   or (select one or the other) 
[]   optional (zero or one times) 
{}   any number (zero, one, several times) 
()   parentheses can be used for grouping 
" "   quotes enclose terminal symbols 

The production rules of BNF are: 
syntax ::= { statement } 
statement ::= identifier ::=" expression 
expression ::= term { "|" factor } 
term ::= factor { factor } 
factor ::= identifier | "(" expression ")" | "[" 
expression "]" | 
"{" expression "}" 
identifier ::= string 
string ::= character { character } 
character ::= "A" | "B" | ... | "a" | "b" | ... 

1.4 PARSING 
Production rules are used to produce well-formed formulae, but 
are equally useful to determine if a given sequence of symbols 
represents a legal well-formed formula in the language. 
Compilers use production rules to analyze a given program and 
decide if it is a correct syntax, i.e. a well-formed formula in the 
programming language. An input text is parsed into tokens (see 
Figure 17 and Figure 18). In many cases, a program to parse the 
input can be produced automatically from the production rules. 
Parsing the string III of the language RN give the parse tree 
shown in (Figure 17), where the branches of the tree are labeled 
with the rule and the selection from the rule, which was used. 

1.5 EXAMPLE LANGUAGE: A SMALL SUBSET OF ENGLISH 
A small language patterned after rules for the construction of 
simple English sentences should help to understand the concepts. 
The alphabet is: 

Start Symbol: S 
Non-Terminal symbols: {S, NP, VP, Det, N, V}  
 (standing for sentence, noun phrase, determiner, verb pharse, noun, verb 

respectively) 
Terminal Symbols: {"the", "a", "Peter", "student", "professor", "saw", "met", 

"talked to"}, 
and the production rules are: 

S ::= NP VP  (1) 
NP ::= "Peter" | Det N  (2) 
VP ::= V NP  (3) 
Det ::= "the" | "a"   (4) 
N ::= "student" | "professor" (5) 
V ::= "saw" | "met" | "talked to" (6) 

With this grammar, well-formed formulae can be derived using 
the steps: 

1. Start with the start symbol 

 
Figure 17: Parsing III from RN 
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2. Repeat till no non-terminal symbols are left:  
replace a non-terminal symbol with (one of the choices) of the right hand 

side of the associated production rule: 
This produces for example:  

S      
NP VP    rule 1 
Peter VP    rule 2.1  
Peter V NP   rule 3 
Peter saw NP   rule 6.1 
Peter saw Det N  rule 2.2 
Peter saw a student rule 4.1 and 5.1 

Other choices would give other well-formed formulae like:  
A student talked to the professor 

Parsing is the reverse process, where a well-formed formula of a 
language is given and the sequence of rules applied for its 
production are determined; one can think that the meaning of a 
well-formed formula is in the sequence of production rules used. 
Figure 18 shows the parse tree for "The professor saw Peter". 

1.6 THE LANGUAGE OF PROPOSITIONAL LOGIC 
The language of propositional logic gives rules how well-formed 
logical formulae are constructed. Its terminal symbols are: 

"(", ")", "not", "and", "or", "implies", "=", and symbols to represent propositions 
like P, Q, etc. 

 "and", "or", "implies", "=", and "not" are special symbols called Boolean 
operators 

The non-terminal symbols are: literal, wff (for well formed 
formula), variable, constant, operator, predicate, term, and 
atomic formula, usually shortened to just atom. The language in 
BNF is: 

wff ::= literal | (wff "or" wff) | (wff "and" wff) 
 | (wff "implies" wff) | (wff "=" wff) 
literal ::= ["not"] atom 
atom ::= proposition 
proposition ::= "P" | "Q" | …  

The language just describes the appearance of a wff of 
propositional logic. Examples of wff are 

not (P or Q) = not P and not Q 
P or not P. 

Examples for well-formed formulae are: 
Mortal (Socrate),  
Human (Socrate),  
if Human (x) then Mortal (x). 

1.7 LANGUAGE PRODUCES REPRESENTATIONS 
The syntax of a language enumerates a set of words of the 
language. They are all distinct and can be used as constants to 
describe things. Such collections of representations are called 
domains and the symbols tokens or (data) values. Programming 
languages describe data types in a form similar to the BNF. 

 
Figure 18: Parsing 'the professor saw 
peter'  
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Consider the recursively defined data type tree; a tree is either a 
leaf or a tree combining two trees. This is defined in a program 
language (here Haskell (Peyton Jones, Hughes et al. 1999) as: 

Tree = Leaf | (Tree, Tree). 

The similarity to BNF is striking: Tree is a non-terminal symbol, 
Leaf and "(", "," and ")" are terminal symbols. A small tree 
would be (Leaf1 (Leaf2, (Leaf3, Leaf4))) (Figure 19). 

1.8 INFORMATION CONTENT OF REPRESENTATION: THE 
INFORMATION MEASURE OF SHANNON AND WEAVER 
The information content in a well-formed formula of a language 
corresponds to the number of binary choices that are necessary to 
select this well-formed formula from all the possible well-
formed formulae in the language of equal length. Assume a 
situation like Figure 20: A sender encodes a message (i.e. a well-
formed formula) and the receiver tries to reconstruct the same 
message from the symbols received. The information content of 
the message is the minimal number of binary signals a sender 
must transmit to a receiver to enable him to recreate (re-select) a 
message from all possible messages (Shannon 1938; Shannon 
and Weaver 1949) 
The information content of the representation is—following 
Shannon— 

H = ld card (s)  
where ld is the logarithms dualis and card (s) the number of 
different messages the sender may send and the receiver is 
prepared to receive. If a message has length l and is encoded 
with an alphabet of k symbols, then the number of different 
messages is kl (see 1.2 above) and the information content is 

H = ld kl = l * ld k. 
H is the maximum amount of information content a sequence of 
symbols (tokens) from one representation can carry. Information 
content is linear in the length of the string and the sum of the 
content of two messages is the same as the content of the 
concatenated message: 

H (a) + H (b) = H (a ++ b). 
If the symbols are not selected with equal probability, then the 
information content of a representation must take into account 
the probability to select a symbol and the formula becomes: 

H = - K Σ (pi ld pi). 

This can be used to optimize the representation; tokens that are 
selected more often are represented by shorter and tokens that 

 
Figure 19: A simple tree 

 
Figure 20: - Sender – channel – receiver  

Information content increases 
linearly with the length of a message.  
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are selected rarely are represented by longer strings of simpler 
tokens.  

2. FORMAL SYSTEMS 
A formal system or calculus consists of a language and rules for 
the transformation of representations into other representations. 
These transformations are called evaluation, if a complex 
expression is reduced to a simpler one. An example from 
arithmetic is: 3 + 5 is 8; an example from logic is: "When it rains 
I use the umbrella" and "it rains" follows "I use the umbrella".  

2.1 EVALUATION RULES FOR THE TRANSFORMATION OF 
REPRESENTATIONS 
A formal system has rules for the transformation of well-formed 
formulae. These are rules, which say that two well-formed 
formulae are equivalent and we can transform one into the 
other(Carnap 1958). For example, logical proof uses the rule 
modus ponens, which says "(A implies B) and A implies B". The 
language RN with the two following rules is a calculus. The 
well-formed formulae II + III can be evaluated to IIIII. 

Rule 1: Ix + y = x + Iy 
Rule 2: I + y = Iy. 
II + III  apply rule 1 gives 
I + IIII  apply rule 2 gives 
IIIII. 

Rewriting is the principle behind the evaluation of functional 
programming languages (like Haskell(Peyton Jones, Hughes et 
al. 1999)) or logical expressions in the language Prolog(Clocksin 
and Mellish 1981). 

2.2 PREDICATE CALCULUS 
Predicate calculus models human rational thinking in a formal 
system(Lakoff and Johnson 1999; Lakoff and Núnez 2000). 
Logic discusses the deduction of the truth value of some 
combinations of logical propositions for which truth values are 
given(Sowa 1998p. 20). Only well-formed formulae have truth 
values and are either true or false, other combinations are just 
meaningless.  
Examples: 

& a   (not wff because & needs 2 parameters) 
(~b) & a  (wff) 

Propositional logic is a calculus—a symbolic computation based 
on fully defined rules. Predicates are expressions formed 
according to the rules for propositional logic (see above 1.6), like 

Evaluation is the simplification of an 
expression (wff) till it cannot be 
further simplified. 

Lower case letters stand for 
variables! 
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q (x), p (a, b), which can be used to represent facts like mortal 
(Socrates) or relations like son (Robert, Henri). The calculus of 
predicate follows rules that we intuitively accept as logical.  

Syllogisms—formulae that are always true, independent of 
the values assigned to P and Q —are often used in explaining 
reasoning. Given the predicates P, Q, and R and the truth values 
T and F (for true and false, correspondingly) the following 
identities hold: 
• Idempotent laws: 

P and P = P 
P or P = P 

• Identity laws: 
P and F = F 
P or F = P 
P and T = P 
P or T = T 

• Complement laws: 
not F = T 
not T = F 
P and not P = F 
P or not P = T 
not not P = P 

• Commutative laws: 
P and Q = Q and P 
P or Q = Q or P 

• Associative laws: 
P and (Q and R)=(P and Q) and R 

P or (Q or R) = (P or Q) or R 
• Distributive laws: 

P and (Q or R =(P and Q) or (P and R) 
P or (Q and R)=(P or Q) and (P or R) 

• Absorption laws: 
P and (P or Q) = P 
P or (P and Q) = P 

• DeMorgan's Rules: 
not (P or Q) = not P and not Q 
not (P and Q) = not P or not Q 

• Modus ponens: 
((P implies Q) and P) implies Q 

• Modus tollens: 
((P implies Q) and not Q) implies not P 

• Modus barbara: 
((P implies Q) and (Q implies R)) 

implies (P implies R)

 
These rules can be used to simplify complex expressions. For 
instance, the following Pascal conditional statement is difficult 
to decipher: 
IF NOT ((name < > "Bob") OR (count < = 72)) THEN… 

After the application of DeMorgan’s rule, we obtain an 
equivalent expression that is much easier to read:  
IF (name = "Bob") AND (count > 72) THEN… 

Modus ponens is most often used for logical conclusions, 
such as 
IF all humans are mortal 
AND Socrates is human 
THEN Socrates is mortal. 

3. FORMAL THEORY  
We are interested in a formal system where some facts and rules 
are interpreted as true and deduce other true statements. A 
formal theory is a mechanism whereby rules are employed to 
associate an initial set of well-formed formulae with all others. If 

Some useful terminology:  
Given P implies Q:  
converse: Q implies P.  
inverse: not P implies not Q,  
contrapositive: not Q implies not P. 
 
a conjunction consist of some 
propositions joined by AND, 
  
a disjunction consist of some 
propositions joined by OR.  
 
In an implication, A => B, A is the 
antecedent, B the consequent.  
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the appropriate associations can be made, the other wff's are said 
to be true in, or proven in, or deduced from, the theory. 

3.1 TRUTH VALUES 
In a formal logic system, atomic formulae (predicates) are 
assigned values (called truth values: True or False). The initial 
assignment of truth values must be made by some agent external 
to the logic system; there is nothing intrinsically true about a 
formula. Mathematicians call an assignment of truth values an 
interpretation (in the sense of(Tarski 1977), similar as above in 
chapter 3). Most wff are either true (provable) or not; they can 
either be derived from the axiom set using the rules or they 
cannot. Gödel has shown that using unusual mechanism in an 
infinite universe, it is possible to construct formulae which 
neither can be proven, nor can we show their 
negation(Hofstadter 1985). Using a typed calculus avoids this 
problem. 

3.2 BOOLEAN OPERATORS 
The Boolean operators and, or, not, =, and implies are in the 
calculus defined by truth tables; these are equivalent to the 
syllogism given above (in 2.2); their meaning does not 
completely correspond to our everyday understanding of the 
corresponding natural language terms. 
 

P  not P 
true  false 
false  true 

The table above simply states that if P has a value true assigned, 
not P is false and vice versa. The next table shows the values 
obtained for P and Q, P or Q, P = Q, P implies Q and Q if P, for 
different assignments of True and False to P and Q. 

P  Q  P and Q P or Q P = Q  P implies 
Q  

Q if P 

true  true  true true true true true 
true  false  false true false false  false 
false  true  false true false true  true 
false false  false false true true  true 

P implies Q is false if and only if P is true and Q is false. If P is 
true the results depend on the value of Q (which seems "logical" 
in the ordinary sense); however, if P is false, it doesn't matter 
what Q is! The result is always true, which may surprise and 
does not correspond to our natural language ideas of what 
implies means. What it is saying, however, is something like: "If 
you start with a false premise, anything is possible." This 
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demonstrates why consistency is important: a contradiction is 
always false and then anything can follow 'logically'. This is 
expressed as a syllogism that a contradiction is always false: P 
and not P = F.  

3.3 AXIOMS AND THEOREMS 
An axiom is a statement (a wff) in a theory that is assumed to be 
true. Any non-trivial theory must have one or more axioms. 
Sometimes the rules that explain how to prove some (non-
axiom) wff are called the logical axioms of the theory. Usually, 
the axioms given above for first order predicate calculus are 
assumed. The other axioms are called non-logical. The non-
logical axioms of the theory that do not contain variables are 
called ground axioms, ground rules, or simply facts. 

A theory serves to test, whether a proposed statement, called 
a theorem, can be proven. If the proposed wff can be derived 
from the facts using the logical axioms it is then and only then a 
true statement (or logical model) in that theory.  

3.4 CLAUSAL FORMS 
Since many wff can be logically equivalent, it is desirable to have 
a standard form. Every wff can be transformed to clausal form, 
which are implications where a number (possibly zero) of joint 
conditions implies a number (possibly zero) of alternative 
conclusions: The antecedent of the implication is a disjunction 
and the consequent is a conjunction: 

A1 and A2 and A3 and … and An implies B1 or B2 or B3… or Bm . 

Ai and Bj  are predicates, and n, m ≥ 0. Since A implies B is 
equivalent to B if A, we write clauses in the following alternative 
clausal form: 

B1 or B2 or B3 or … or Bm if A1 and A2 and A3 … and An 

For example: 
gfa (H, S) or gma (H, S) if pa (H, x) and pa (x, S). 

Clauses are classified by the number of predicate terms in their 
consequent as: 

•  definite (if there are zero or one term) or m <= 1 

•  indefinite (if there are two or more terms).  m > 1 

The definite clauses are called Horn clauses. In the case where m 
= 1, and n = 0, we have a definite clause that represents a fact or 
ground axiom. 

fa (A, S) if () 

Axiom = A fundamental statement in 
a theory—it needs no proof. 
Logical Axiom = An association rule. 
Non-logical Axiom = All other 
axioms. 
Ground Axiom, Fact = A non-logical 
axiom that contains all constant 
values. 
Theorem = A statement you wish to 
prove. 
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Since no antecedent is required for the consequent, it is always 
true. Usually the empty if is discarded in this situation. Definite 
clauses where m = 1 and n > 0 are called rule clauses. They 
represent a logical axiom. 

B1 if A1 and A2 and A3 … and An 

For example: 
gfa (x, z) if fa (x, y) and fa (y, z) 

With a definite clause that has no consequent (i.e., m = 0, n > 0), 
the antecedents are considered to be negative facts, that is, facts 
that are known to be false. 

if fa (A, I) 
The empty clause has m, n = 0; it is always false by definition.  

The next sub-section shows two mechanical (programmable) 
algorithms to produce a logical proof. They expect the input as 
Horn clauses. Horn clauses seem to be a nice compromise 
between expressability and performance (Figure 21); more 
expressive languages lead to more complex and slower 
processing. Horn clauses are sufficient to express definite facts, 
but it is not possible to include negative statements. Relations are 
even less expressive; they allow only collections of facts, but 
deductions are much faster and reduce to search in the facts (see 
part 5).  

3.5 PROOFS  
Given a set of formulae, which are assumed as true, a proof is a 
sequence of logical transformation using the deduction rules 
given above (section 2.2), which show how the hypothesis can 
be derived from the axioms. The given true formulae are called 
axioms; the formula to derive is the hypothesis. 

3.5.1 Unification 
For each step in the process, unification between the variables 
and constant in the formula to proof with the axiom that is used 
in this step is required. Variables can be matched with variables, 
and variables can take on the values of a constant expression, but 
it is not possible to unify a constant with another constant or a 
variable already unified (bound) to a constant with another 
constant. 

3.5.2 Example theory: family relations 
The theory we build is representing some facts about a family 
written as Horn clauses. Constants will be marked by upper case 

 
Figure 21: Trade-off between 
expressiveness and performance 

Hint for interpretation: 
fa = father 
gfa = grandfather 
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symbols (A, B, C, …), variables with lower case letters (x, y, 
z…). 

fa (A, S) 
fa (H, A) 
fa (G, H). 

From these facts and the rule 
gfa (x, z) if fa (x, y) and fa (y, z), 

we can conclude using formal symbol manipulation without 
reference to any interpretation of the symbols involved that the 
following statements are true: 

gfa (H, S) 
gfa (G, A). 

The next two subsections show how to proof the first of these 
formulae. 

3.5.3 Forward chaining—from facts to conclusions  
Forward chaining uses modus ponens: 

fa (x, y) and fa (y, z) implies gfa (x, z) 
(1) Select the first fact and substitute it into the logical axiom 
(x=A, y=S), gives 

fa (A,S) and fa (S,z) implies gfa (A,z) 
(2) Find an axiom that can be unified with the next predicate in 
the antecedent. There is no fact that can be unified with fa (S, z), 
we have to backtrack and return to (1). Select another fact: fa (H, 
A) gives substitutions (x=H, y=A): 

fa (H,A) and fa (A,z) implies gfa (H,z). 
Now, the fact fa (A,S) can unify with the predicate fa(A,z) and 
gives substitution (z=S): 

fa (H,A) and fa (A,S) implies gfa (H,S) q.e.d 

Reasoning with modus ponens starts with the facts and combines 
these in all possible ways till it reaches the theorem for which we 
search a proof. This works in small examples, but the number of 
possible combinations to explore grows exponentially in 
practical applications (combinatorial explosion). The algorithm 
has no guideline in which direction to go for interesting 
combinations and explores mostly ‘blind allies’.  

3.5.4 Backwards chaining—from conclusions to supporting facts 
A more effective form of reasoning is ‘backward chaining’, that 
is, starting with the question gfa (H, S)—which is only one—and 
tries to find facts to prove it. In this case, we use modus tollens  

((P implies Q) and not Q) implies not P 
and try to proof the negation of the question. Given the question 
which value of u stands in relation gfa to H  

gfa (H, u). 
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We start with its negation (i.e. stating that nothing stands in 
relation gfa to H): 

not gfa (H, u) 
using the (only possible) rule  

gfa (x, z) if fa (x, y), fa (y, z) 
and have substituted x = H, z =  u: 

gfa (H, u) if fa (H, y), fa (y, u). 
We search now for a fact that unifies with fa (H, y), which we 
find only with the substitution y = A, this leaves us with  

gfa (H, u) if fa (H, A), fa (A, u). 
Now we search for a fact that unifies with fa (A, u), which we 
find only with the substitution u =  S 

gfa (H, S) if fa (H, A), fa (A,S ). 
not gfa (H, u) is not true, because gfa (H, S) is provable. This 
leaves us with the useful result that H is in the relation gfa to S. 
As you have noticed, the search for ‘useful’ facts is automatic; if 
none would have been found, we had concluded that nothing 
stands in the relation gfa to H. Languages like Prolog (Clocksin 
and Mellish 1981) using such backward chaining. 

3.5.5 Comparison 
Forward chaining uses modus ponens and moves from facts to 
conclusions, backward chaining uses modus tollens and moves 
from conclusions to facts. Both are used in AI and are applicable 
to geographic expert systems(Frank, Robinson et al. 1986; 
Frank, Robinson et al. 1986; Frank, Robinson et al. 1986; Frank, 
Hudson et al. 1987; Frank and Robinson 1987). Forward 
chaining gives to a set of facts all possible conclusions; it works 
only for small numbers of facts, because the number of possible 
conclusions increases with the number of facts exponentially. 
Backward chaining searches for the facts that support a given 
conclusion. It is useful when a conclusion is given and we need 
to test, if it is following from a collection of facts and rules; 
backward chaining is selective and can be used even with large 
collections of facts. 

3.6 LOGIC WITH MORE THAN 2 TRUTH VALUES 
Usually the range of the values is restricted to either True or 
False, although multi-valued logics have frequently been 
employed, e.g., with values: True, False, Maybe; or real number 
values ranging between 0 and 1 representing various degrees of 
probability of a statement, or certainty about classification, so-
called Fuzzy Logic(Zadeh 1974). 
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For example, the three valued logic of Lukasiewicz has 3 
truth values: True, Neutral, and False. Neutral can be loosely 
interpreted as 'it is possible that'. The truth tables are: 

P  not P 
true  false 
neutral neutral 
false  true 

 
P  Q  P and Q P or Q  P implies 

Q  
true  true  true true true 
true neutral neutral true neutral 
true  false  false true false  
neutral true neutral true true 
neutral neutral neutral neutral true 
neutral false false neutral neutral 
false  true  false true true  
false neutral false neutral true 
false  false  false false true  

3.7 TEMPORAL LOGIC 
Logic described so far treats predicates that are not changing. To 
reason about changes requires either a temporal logic, of which 
several are known (Sernadas 1980; van Benthem 1983; Everling 
1987; Galton 1987) and which are difficult to use. Temporal 
logic includes four predicates (as defined by Prior [ref missing]): 

P – it has at some time been the case that … 
F – it will be at some time be the case that … 
H – it has always been the case that … 
G – it will always be the case that .. 

of which P and F can be defined in terms of G and H:  
P a = not H (not a) 
 F a = not G (not a). 

Alternatively, situation calculus separates a changing world in 
‘snapshots’, called situations and then describes each of them 
separately, assuming that the constant symbols stands for the 
same individuals at different times(McCarthy 1996). An 
improved version of situation calculus was presented by 
Reiter(Reiter in preparation); however, it uses some 
‘extralogical’ devices to arrive at a usable structure. Bittner has 
compared situation calculus as method to describe a GIS 
problem (real estate cadastre) (Bittner and Frank 1997)with an 
algebraic description and found that they are different formal 
expressions for essentially the same constructions.  



021 Languages 51 

3.8 VARIABLES AND QUANTIFICATION 
Logical formulae are written using variables and it is usually 
implied that the rule should be valid for all values of these 
variables. This is expressed with the all quantor:  

 
The existential quantor, states that there is at least one x such 
that the formula is true: 

 
 A variable occurring in a quantor is said to be bound. It is 
customary to drop the all quantors whenever obvious and write 
only the existence quantors. 

4. ORDER OF A LANGUAGES  
Languages can be classified by orders. We pay attention what 
role variable symbols—which are bound by quantifiers—can 
play: 
• A zero order language has no variables, only constants. 
• A first order language has variables, which stand for objects, 

but not for predicates or functions. 
• A second order language has variables that can stand for 

objects, predicates, or functions (sometimes called higher 
order).  

Classical logic, as used by philosophers, is (mostly) first 
order. Functional programming languages are an example of 
second order  languages(Backus 1978; Bird and Wadler 1988). 
In principle, all formulae can be expressed in first order 
languages(McCarthy 1985), but the expressions become 
complicated and difficult to understand.  

5. TYPED LANGUAGES 
It is useful to subdivide the constants in disjoint sets. One then 
says that the constant x has type t, for example, the constants 
Andrew, Stella, etc. all have type Human. The predicate father 
establishes a relation between two constants of type Human, and 
is meaningless if connected with constants of other types. 
Variables in formulae have corresponding types and formulae 
can be checked if they are consistently typed.  

The type information that belongs to some formulae is called 
its signature; we write it after a double colon: fa :: Human -> 
Boolean. 
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A typed language is not more expressive than an untyped 
one, but typed formulae exclude many non-sense formulae from 
consideration. Typing is not necessary when considering simple 
examples with few formulae, but becomes useful when 
describing large systems. Most modern programming languages 
are typed. A compiler for a typed language can formally check 
not only the syntax of the program, but also assure that the 
program is consistently typed. This excludes a large class of 
errors from occurring when the program is executed(Cardelli 
1997). 

6. CONCLUSION 
Languages produce the representations which stand for the facts 
of the world. Considering the size of the language produced by a 
set of rules and comparing it with the variation in the 
phenomenon we need to represent is often useful: we may find 
that a language is too small to represent all the differences we are 
interested in or it may be too large and contain multiple 
representations for the same facts or many symbols which are 
not representing anything.  

Logic transforms expressions we consider true into other true 
expressions; it mimics the human rational thinking. Logical 
deduction can be automated, but the most powerful reasoning 
engines are slow and the fast one are restricted – sometimes only 
simple facts and no rules can be dealt with, sometimes negation 
is not included in the language. For practical applications a 
trade-off between speed and expressive power must be stricken. 
 

REVIEW QUESTIONS AND EXERCISES 
• What is a production rule? Give an example. 
• What are the elements of BNF? What is it used for? Give 

examples and explain them. 
• What is the difference between formal language and formal 

system? 
• What is the relationship between language and representation? 
• Explain the information measure of Shannon and Weaver. 
• Why are the following well-formed formulae of the language 

'small subset of English' not well-formed: 
Simon saw Peter. 
A Peter saw student. 
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• What is a parser? What does it produce? How does it use 
production rules? 

• Extend the language "Small Subset of English" to include 
‘and’ in well-formed formulae like "Peter and the professor 
talked to a student". Give the parse tree for the well-formed 
formula. 

• Express the conditions for a construction site as conditions on 
size, reachability, exposition, etc. and simplify the expression 
using the formulae for Boolean expressions. 

• Simplify the expression for leap years: 
leapYear y = ((mod y 4 == 0) && (mod y 100 ≠ 0)) || 
     (mod y 1000 == 0) 

• What is modus ponens? Give an example. 
• What is the difference between forward and backward 

chaining? Give an example for each. 
• Why is the III + I = II wrong (using the rules stated above)? 
• What is meant with quantification of a logical formula? Give 

an example. 
• Extend the ‘family example’ with the fact fa(R,H). 

Demonstrate the deduction of gfa(R,A) using backward 
chaining. 

• What is a Horn Clause?  
• What are truth tables? 
• What is the difference between a typed and non-typed 

language? Is there a difference in expressiveness? 
• Show that if A then B and B implies A is equivalent using the 

respective truth tables. 
 



 

Chapter 5 ALGEBRAS AND CATEGORIES 

Logic describes properties of things; algebras focus on the notion 
of transformations (mappings) from states to states. This seems 
an attractive mathematical tool for geography that studies 
processes in space and time(Abler, Adams et al. 1971). 

Abstract algebras give a definition to the previously 
introduced notion of structure, which was mentioned in chapter 
3. Category theory generalizes the notion of algebra. It is well-
known, that everything can be expressed in logic(Lifschitz 
1990), but also in algebra. The purpose here is not theoretical but 
eminently practical: to find a mathematical tool that leads to a 
description of a complex system like a GIS that is compact and 
easy to understand. The following chapter 6 demonstrates its use 
to describe the measurement scales of Stevens(Stevens 1946). 

1. INTRODUCTION 
Algebra, by which I always understand abstract or universal 
algebra(Whitehead 1898), is a development of the 20th century. It 
has emerged from a view that algebra deals with the properties 
of numerical operations to investigations of the structure of 
operations. Algebra does not deal “primarily with the 
manipulation of sums and products of numbers (such as 
rationals, reals, or complex), but with sums and products of 
elements of any sort—under the assumption that the sum and 
product for the elements considered satisfy the appropriate basic 
laws or ‘axioms’” (MacLane and Birkhoff 1967, vii).  

The development in mathematics in the 20th century has 
stressed generality. Operations, which do not necessarily satisfy 
the laws of sum and product are investigated. Increasingly, 
separate parts of mathematics are dealt with in an algebraic 
fashion; we will introduce Boolean Algebra, in contradistinction 
to the closely related Boolean operators of propositional logic or 
predicate calculus shown in the previous chapter 4. Later we use 
algebraic topology (Part 8). Logic is closely related to the theory 
of databases(Gallaire, Minker et al. 1984); with equal 
justification one can say that algebra and category theory is the 
theory of computation(Asperti and Longo 1991). 

“an algebraic system … is thus a set 
of elements of any sort on which 
functions such as addition and 
multiplication operate, provided only 
those operations satisfy certain basic 
rules” (Mac Lane and Birkhoff 1991, 
p.1).  
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Software engineering has appropriated category theory to 
construct tools to write specifications(Guttag, Horning et al. 
1985). Operations are divided into constructors, which produce 
all the different elements in the domain and in observers, which 
report the differences between the expressions(Parnas 1972). The 
meaning of the operations is defined as properties of the result, 
as these are observed with other operations in the same algebra; 
to define the intended behavior of operations, we give 
expressions of the form  

obs1 (constr1 …) = value,  
where obs1 and const1 are operations of the algebra(Ehrich, 
Gogolla et al. 1989; Loeckx, Ehrich et al. 1996). This allows 
definitions independent of other previous definitions and 
circumvents the grounding problem of logic definitions by 
enumeration of properties. 

Algebra discusses the structure of operation and defines 
precisely what is meant by structure. Structure of operations 
means properties of operations that are independent of the 
objects the operations are applied to. Algebra describes the 
‘structure’ of a real world system in a precise way and 
independent of the representation. It is possible to describe the 
structure of complex real world systems—e.g., a coke vending 
machine—as an algebraic system and investigate its properties. 
The descriptions of the structure are independent of the 
realizations that behave the same; we say the descriptions are 
determined up to an isomorphism. 

2. DEFINITION OF ALGEBRA  
An algebra describes a class of objects and their behavior, and is 
closely related to the object-oriented discussion of software 
engineering(Guttag and Horning 1978). An abstract algebra 
consists of a collection of domains, and operations with axioms, 
describing their properties. One could differentiate between the 
theory described by an algebra, the algebra, an abstract data type 
and models for the algebra; but this seems not necessary for 
present purposes and following Erich et al. (Ehrich, Gogolla et 
al. 1989)and (Asperti and Longo 1991) I use the term algebra 
broadly.  

The next subsection gives as examples the basic algebraic 
structures that will be used later. We have already seen monoid 
(chapter 4). Here we introduce: 

Algebraic structure captures the 
essence of the semantics of 
operations and objects. 

Algebra consist of 
- a set of domains (sets of elements), 
- a set of operation names and 
signatures, 
- a set of axioms that describe the 
properties of the operations. 
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• Group  
• Natural Numbers (integers) 
• Boolean Algebra 
• Sets 
• Category 
The next chapter will give: 
• Equality, Order 
• Ring and Field 
Later chapters will use  
• Lattice 

We will always assume that an equality relation is defined 
for the domains and that all variables in axioms are implicitly 
all-quantified; existential quantification, if necessary, is stated. 

2.1 GROUP 
A group is an algebra that has an operation (written here as +), 
an inverse for this operation (written as -) and a unit value 
(written here as 0). The standard example is integers with plus, 
minus, and zero, but group is also an important algebraic 
structure in geometry. For example, translation (or rotations) in 
geometry form a group; the zero element is ‘translation by the 
zero vector’ (i.e., not doing anything).  

Group <+,-,0> 
 associative  (a+b)+c = a +(b+c) 
 unit  0+a = a+0 = a 
 inverse (- a):   a + (- a) = (- a) + a = e 

Many important groups are commutative (a + b = b + a) and are 
called commutative or Abelian group—honoring the 
mathematician Niels Abel (1802 - 1829). Ordinary addition is 
commutative and integers with plus form an Abelian group. 

2.2 NATURAL NUMBERS  
The natural numbers are as fundamental as points and lines in 
geometry. The axioms for geometry were studied by the Greek 
and formulated by Euclid around 300 BC in his Elements(Heath 
1981; Adam 1982; Blumenthal 1986). In contrast, an axiomatic 
definition for natural numbers was only given in the later 19th 
century by Peano(Kennedy 1980). 

The properties of natural numbers with basic arithmetic 
operations (+, -, *, /) are described as an integral domain (see 
next chapter). We can construct a model for natural numbers 
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with a representation using the simple language RN (from 
chapter 4). The axioms following the original description by 
Peano include a definition for equality of two numbers and for 
addition of two numbers: 

1. 1 elem N 
2. for all m (m elem N) exist a unique m' (m' elem N), called the successor of m. 
3. for each m elem N, m'≠ 1 (That is, 1 is not the successor of any natural 

number). 
4. If m, n elem N such that m' = n' then m=n 
5. let K be a set of elements of N. Then K=N provided the following conditions: 
 (i) 1 elem K 
 (ii) if k elem K, then k' elem K. 
Def. Addition: Let m, k be arbitrary elements of N. We define m + 1 = m'. If m + 

k is defined then m + k' = (m+k)' 
(McCoy and Berger 1977). 

2.3 BOOLEAN ALGEBRA 
A Boolean algebra with just two constants (customary notations 
are “T” and “F” or True and False or 0 and 1) and a unary 
operation not and binary operations and, or, implies, gives 
equivalent rules to what was before described (chapter 4) as 
Boolean Logic (named after George Boole 1815-1864). Laws 
like de Morgans law (not (a or b) = (not a) and (not b)) and 
similar can be added here as well.  

Boolean Algebra <{T, F}, and, or, not> 
  not :: b -> b 
  and, or, implies:: b -> b –> b  
 self-inverse not (not p) = p 
 associative a and (b and c) = (a and b) and c = a and b and c 
  a or (b or c) = (a or b) or c = a or b or c 
 commutative a and b = b and a 
  a or b = b or a 
 units a and T = a 
  a or F = a 
 inverse a and (not a) = F 
  a or (not a) = T 
 distributive a and (b or c) = (a and b) or (a and c) 
  a or (b and c) = (a or b) and (a or c) 

The logical operations can be defined as numeric functions as 
follows: represent False by 1 and True by 2, then  

and (a,b) = min (a,b),  
or (a,b) = max (a,b), 
 not a = 3-a;  

this approach is useful when allowing more than 2 truth values in 
a logic system(Sinowjew 1968). 
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2.4 SET 
Sets are an abstraction from the collection of elements as we 
encounter them in real life everywhere—fruit in a bowl, sheets 
of paper in a folder, glasses on a table, etc. (Figure 22). A 
simplistic set theory would construct only sets of real world 
objects, such that each object can only be in one set at a time. 
Then we have  
card (a) + card (b) = card (a ∪ b)  if a intersectoin b = empty. 
.  
This is too restrictive: an element can be in more than one set at 
a time, but it cannot be multiple times in the same set (a 
structure that permits multiple memberships is called a bag or 
multiset). Venn Diagrams are a useful tool to visualize sets and 
operations with sets. For example the intersection of the sets 'left 
paddock', 'right paddock', 'down', 'up' from Figure 24 is shown 
Figure 23. 

Sets give another example of a Boolean algebra. If the rules 
for sets are restricted to just two values all-set (for True) and 
null-set (for False), then union corresponds to the Boolean 
operation or and intersection corresponds to Boolean and. 

Set < ∪, ∩, complement, ∅, all> 
 associative a ∪ (b ∪ c) = (a ∪ b) ∪ c 
  a ∩ (b ∩ c) = (a ∩ b) ∩ c 
 commutative a ∪ b = b ∪ a 
  a ∩ b = b ∩ a 
 identity a ∪ ∅ = a 
  a ∩ all = a 
 inverse a ∪ (comp a) = all 
  a ∩ (comp a) = ∅ 
 distributive a ∪ (b ∩ c) = (a ∪ b) ∩ (a ∪ c) 
  a ∩ (b ∪ c) = (a ∩ b) ∪ (a ∩ c) 
  involution comp (comp a) = a 
 idempotent a ∪ a = a 
  a ∩ a = a 
 ∅  a ∪ all = all 
  a ∩ ∅ = ∅ 
 absorption a ∪ (a ∩ b) = a 
  a ∩ (a ∪ b) = a 

 

 
Figure 22: Examples of real world sets 

 
Figure 23: Venn diagrams of four sets 
intersecting 

 
Figure 24: Sheep grazing on a hill 
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The operation cardinality computes the number of elements in a 
set; the following rules apply: 

card (a ∪ b) = card a + card b –card (a ∩ b) 
0 < card (a ∩ b) < min (card a, card b) 

It is possible to determine if an element a is in set A with a 
membership function or element of (written as ∈) relation. The 
expression 'a ∈ A' is true if a is an element of set A. 

A set X is a subset of another set Y if every element of X is 
also an element of set Y, written as X ⊂ Y. Venn diagrams 
express subsets relations by inclusion (see Figure 23 above). The 
converse relation is called superset (Y ⊃ X). Subsets form a 
partial order (Figure 26). 

Mathematicians have constructed sets that contain sets and 
are different from sets just containing the elements in them; the 
set on the left of Figure 27 contains three elements, namely the 
sets E, F, and G, whereas the set on the right contains the 12 
elements which were in E, F, and G. Allowing unrestricted sets 
and set membership can lead to antinomies; for example, does 
the set, that is defined as containing all sets that do not contain 
itself, contain itself? Operating in a typed universe, these 
problems cannot occur, because as set of x is a different type 
than the set of (sets of x). 

3. DUALITY 
The axioms for Boolean algebra and for sets exposed a 
regularity: every axiom formulated for the operation union had a 
corresponding axiom for intersection (respective and and or). A 
valid formula can be converted into another valid formula, if we 
systematically exchange every operation for the dual operation 
and equally exchange the units: the all-set (True) becomes the 
empty set (False) and vice versa. Duality could have been used 
to reduce the number of axioms stated; it will become more 
useful later replacing operations difficult to compute with others 
that are easy (see chapters 19 and 30). 

4. FUNCTIONS ARE MAPPINGS FROM DOMAIN TO 
CODOMAIN 

A function from a domain A into a codomain B maps values 
from A to values of B(Gill 1976). A function assigns to a single 
value from A only a single value from B (unlike relations, which 
can have multiple result values—see later chapter 16). Computer 
science speaks of the domain and codomain as types(Cardelli 

 
Figure 25: Union with the empty set 

 
Figure 26: Subset relations form a partial 
order 

 
Figure 27: Set containing sets 

Duality for set: 
∪ <-> ∩  
allset <-> null set 
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1997); the signature of a function f : A -> B gives the domain 
and codomain. The application for single element x is written as 
x |-> f (x), and f (x) is the element assigned to x. 

Functions with more than one input or more than one result 
can be seen as function of a single input and single result, if the 
inputs or results are considered as tuples. The function a + b can 
be transformed into the function plus (a,b), which has a single 
input, namely the pair (a,b). 

4.1 TOTAL FUNCTIONS 
A function f : A -> B that has a result for any value in its domain 
is called total(Figure 28). Programmers prefer total functions 
because they do not require a test that a function value can be 
obtained. Non-total functions produce results only for a subset of 
the values in the domain (Error! Reference source not found.). 

Examples: Increment is a total function that adds 1 to any 
number. Division is partial, as division by 0 is not defined 
(Ehrich, Gogolla et al. 1989; Mac Lane and Birkhoff 1991, 6). 

4.2 INJECTIVE FUNCTIONS (INTO) 
If a function has an inverse function, then it is an injection: for 
each value of the domain there is a different value in the range 
(Figure 29): a ≠b implies f(a) ≠ f(b). Injective functions carry 
distinct elements in the domain to distinct elements in the 
codomain(Gill 1976, 53). Figure 30 gives an example of a 
function which is not injective. An injective function has an 
inverse function from the codomain to the domain. 

4.3 SURJECTIVE FUNCTIONS (ONTO) 
A function f : A -> B is surjective if every element of B is the 
image of some element of A (Figure 31). The image is the whole 
codomain. Figure 32 gives an example of a function which is not 
surjective. 

4.4 BIJECTIVE FUNCTIONS (ONE-TO-ONE) 
If a function is surjective and injective, it is called bijective 
(Figure 33). Such functions have inverses that are total. We will 
later see that this classification is useful not only for functions, 
but generalizes to relations (see chapter 16).  

Terminology: 
A function f : A -> B  
maps from domain A to codomain B. 

 
Figure 28: Total Function with image f(A) 

Functions are total if they take every 
element of S to an element of T; they 
are not total  if there are elements of 
S that are not mapped. 

 
Figure 29: Injective Function (inverse is 
partial) 

 
Figure 30: an example of a function which 
is not injective 

 
Figure 31: Surjective Function  

 
Figure 32: example of a function which is 
not surjective 

 
Figure 33: Bijective function (has inverse, 
which is total) 
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A function f: S -> T is injective if no two inputs are 
mapped to the same result. 
A function is surjective if every element of its 
codomain T is the result of some element in the 
domain S. 
A function is bijection if it is both injective and 
surjective 

5. ALGEBRAIC STRUCTURE 
Algebras describe structure independently of an implementation 
or previous understanding. The same algebra describes the 
behavior of a class of different things if their behavior is 
structurally equivalent. For example, the operations with counts 
and operations that apply to the result of the counting, are the 
same, independent of what we count: beers, sheep, matches, gold 
bars, whatever.  

The structure is described in form of axioms, which can 
often be expressed as the observation of the result of on 
operation in terms of other observations. For example all 
numbers useful for counting must have the structure of a group 
with the rule that adding zero to a number yields the same 
number: a + 0 = a. Numbers represented as Roman numerals, 
Arabic numbers, or as binary numbers in a computer work the 
same. The algebra describes behavior ‘up to an isomorphism’, 
meaning it describes many things that behave, under the limited 
perspective of the operations defined in the algebra, the same. 
Differences that can not be observed with the operations defined 
in the algebra are not relevant. 

5.1 EXAMPLE— COUNTING  
The definition of equality or addition on natural numbers as 
defined by Peano (subsection 2.2 above) is only of interest as it 
is useful for solving real world problems. How many beers do I 
have to pay if my count reads I11 and my friends I1? Using the 
rules from RN (see chapter 4) I11 + I1 = I1111, which is 5 in 
ordinary language (Figure 34). The algebraic definition of 
addition corresponds to the natural adding of counts. This 
correspondence was introduced before when we discussed 
information systems as a morphism (see chapter 3). 

 

 
 

 
Figure 34: 2 + 3 

The homomorphism h : A -> B 
carries also the operations f : A -> A 
to operations f' : B -> B, such that h 
(f (a)) = f' (h (a)). 
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5.2 HOMOMORPHISM BETWEEN ALGEBRAS 
A morphism, is a mapping between things of two types which 
preserves its algebraic structure. The addition (operation + 
above) is the same if applied to Roman numerals II + III = V or 
to Arabic numbers 2 + 3 = 5 (Figure 36), but it is also the same 
if we take any set with cardinality 2 (e.g., a pair of sheep, Figure 
34) and merge it with a set with cardinality 3 (e.g., another flock 
of 3 sheep).  

The algebraic structure of addition is preserved across the 
mapping F from one kind of numbers to the other: We can add 
the Roman numerals and transform (map) the result to Arabic 
numbers or we can transform first to Arabic and then do the 
addition, the result is the same (Figure 35). Category theory 
studies a generalized concepts of morphism and shows 
morphism succinctly as a commutative diagram (Figure 35) 
(Barr and Wells 1990; Asperti and Longo 1991; Mac Lane and 
Birkhoff 1991). 

A homomorphism does not imply that the operation maps to 
the 'same' operation. The example with different counts (Figure 
34) may be misleading: the operation was two different kinds of 
add, once with RN, once with N. Logarithm gives a different, 
familiar example (Figure 37).  

5.3 DEFINITION MORPHISM AND COMMUTATIVE DIAGRAM  
Mac Lane and Birkhoff explain a morphism for a binary 
operation as: “Let * be a binary operation on a set X, while ▫ is 
another such operation on a set X’. A morphism f: (X,*) -> (X’, 
▫) is defined to be a function on X to X’ which “carries” the 
operation * on X to ▫ on X’, in the sense that 

f (x * y) = (f x) ▫ (f y) 
for all x, y ∈ X. On the left (Figure 38), one applies to an element 
(x,y) ∈ X × X first the operation *, then the function f; on the 
right one applies first f × f (i.e., apply f to both elements in the 
pair) and then ▫. In other words, f is a morphism if and only if the 
diagram below is commutative." (Mac Lane and Birkhoff 1991p. 
37). This can be generalized to unary functions as:  

"If (X,h) and (X', h') are sets with unary operations h: X -> 
X, h': X' -> X', a morphism f: (X,h) -> (X', h') of unary 
operations is a function f: X -> X' with f (h (x))  = h' ( f (x)) for 
all x ∈ X. " (Mac Lane and Birkhoff 1991 p. 38) and to functions 
with more than two arguments. 

 
Figure 35: Commutative diagram 

 
Figure 36: Two alternative paths to 
compute II + III 

An algebra with axioms describes a 
structure independent of the carriers 
or the names of the operations  

 
Figure 37:The law of exponents defines a 
morphism 
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A categorical diagram is said to be commutative if we can 
travel both paths and arrive at the same result, often from top left 
to bottom right. In Figure 37 it does not matter if we take the 
logarithm first and divide by two (right and down path), or if we 
take the square root first and then compute the logarithm (down 
and right path). 

Morphisms are classified by considering the type of the 
function f. A morphism f: (X, h) -> (X', h') is a  

monomorphism if the function f is injective: 
epimorphism if the function f is surjective; 
isomorphism if the function is bijective. 

Isomorphisms are very important in computer programming as 
they allow a lossless transformation forwards and backwards 
between two representations and the corresponding operations. 
For example, computers are faster adding binary representations 
of integers than integers represented as Roman numerals or 
strings of digits. It is customary to represent integer numbers in 
most cases as binary numbers and have all operations executed 
with them. Computer representations are not isomorphic to 
integers, because only numbers up to a certain magnitude can be 
represented; the transformation is isomorphic only for the 
restricted domain, but this is nearly always sufficient. 

injection ->  monomorphism 
surjection ->  epimorphism 
bijection ->  isomorphism 

5.4 APPLICATION TO INFORMATION SYSTEMS 
The representation relation between the things in the world and 
the things in an information system introduced in chapter 3 is not 
a simple static mapping, relating objects in the world to objects 
in the program; in Figure 34 the two sheep map to the numeral 
II. We must also map the operations in the world—merging the 
two flocks of sheep—to the operations with numbers in the 
computer—the addition. We need two kinds of mappings: 
objects to representation and operations we can perform in the 
world mapped to operations applied in the information system to 
the representations. This is exactly what a morphism does. To be 
useful, the outcome of an operation in the world and the 
corresponding operation in a computer must correspond. I called 
this—in analogy to the commutative diagrams of category 
theory—closed loop semantics (Figure 39) : applying the action 

 
Figure 38: Commutative diagrams 
(after(Mac Lane and Birkhoff 1991, 37)) 
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to the world or to the mental image obtained by observation must 
result in the corresponding result(Frank 2001; Frank 2003). 

5.5 MODELS  
Algebras are abstract constructions. If we want to implement and 
experiment with an algebra, we have to build a model with 
carriers we can represent and operate on. A representation for an 
algebra is a model of this algebra. Roman numerals are a model 
of natural numbers. For computational models, the 
representations are computer data types (see chapter 4). Models 
of algebras with different representations have the same 
behavior, because the behavior is the abstract property of the 
algebra. Some models of algebras are special (initial algebra, 
terminal algebra, Herbrand model) but this is not of importance 
in this context; we will tacitly assume initial algebras as models 
for our specifications(Ehrich 1981; Loeckx, Ehrich et al. 1996).  

5.6 MORPHISMS AS A METHOD TO CONNECT ALGEBRAS 
We have encountered two morphisms in the previous chapter, 
namely the operation to determine the length of a string length 
and the operation to determine the information content of a string 
H. For both we have stated that they combine with string 
concatenation ++: 
length (a) + length (b) = length (a ++b) 
H (a) + H (b) = H (a ++ b) 
These are both morphisms that map strings to numbers and 
concatenation to addition, such that the two diagrams commute 
(Figure 40, Figure 41). 

6. IMAGE AND KERNEL 
The image of G in H is the set of values that are the result of 
applying Ф to all values in G. The image of Ф has the same 
structure as G (for example if G is a group then the image of Ф is 
a subgroup of H).  

If the algebraic structure has units, then we may ask, what 
are all the elements of G that map to a unit of H? This set is 
called the kernel or null space (i.e. the values in G which solve 
the equation Ф (g) = 0). It indicates how much this morphism 
"collapses" G (Mac Lane and Birkhoff 1991, 75). Null space is 
increasingly used in explanation of operations for projective 
geometry and image processing (Faugeras and Luong 2001; 
Hartley and Zisserman 2003). 

 
Figure 39: Closed loop semantics: the 
observations are connected to actions 

Morphisms connect algebras. 

 
Figure 40: Length is a string morphism 

 
Figure 41: Information content H is a 
string morphism 

 
Figure 42: The Image and Kernel  of G 
under Ф 

kernels are general constructions 
which measure the failure of a 
homomorphism or function to be 
injective.[wikipediaentry  kernel] 
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Image and kernel can be used to identify different types of 
morphism: 

If Ф : G -> H is an 

Epimorphism  <-> Im (Ф) = H Ф is surjective 
Monomorphism <-> Ker (Ф) = 1 Ф is injective 
Isomorphism <-> Ker (Ф) = 1 and Im (Ф) = H Ф is bijective 

7. CATEGORIES 
Constructing computational models reduce the complexity of the 
world to constants and variables, procedures and functions. The 
conceptual diversity can be reduced further and procedures, 
functions and constants all seen as functions with a different 
number of arguments; constants are functions with no 
argument(Bird 1998). This simplification allows a view of 
operations that can describe the semantics of operations without 
resorting to representations: we describe the semantics of the 
operations by formulae without reference to the elements they 
are applied to. This approach is typical for mathematical 
category theory(Pitt 1985; Barr and Wells 1990; Asperti and 
Longo 1991; Walters 1991). Category theory is a generalization 
of (universal) algebra and shares with algebra many concepts – 
often with slightly different meaning. 

Category theory is an application of concepts of algebra to 
algebras themselves. It is not related to the category theory of 
cognitive science and ontology, where classes (categories) of 
similar objects are formed(Rosch 1973; Rosch 1978). 

7.1 A CATEGORY AS AN ALGEBRA OVER FUNCTIONS 
Category theory deals with categories, which consist of arrows 
connecting objects.  An arrow f maps from the domain A to the 
codomain B: f : A -> B. The most intuitive example for a 
category is the category of sets, where functions are the arrows 
and sets are the objects, but category theory is much more 
general. Category theory is a simple, general algebra of arrows 
and the operation of interest is the composition of two arrows. 
For each domain there is a unit, which maps every element to 
itself. For functions this is constant function identity id that does 
nothing: for all x: id x = x.  

The primary operation in a category is the composition of 
arrows. It is written as ‘.’ and must be associative; this makes 
parentheses unnecessary as (a.b).c= a.(b.c) = a.b.c. Composition 

A category is "a collection of 
algebraic systems and their 
morphisms" (Mac Lane and Birkhoff 
1991, 129) 
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is partial and only defined when the domains map: f: A -> B, g : 
B -> C; (g.f) : A -> C. Function composition follows the rule:  

for all f, all g, all x: (f.g) x = f (g (x)). 
Note that function composition for the category of sets and 
functions (see chapter 4) the above formula is second order, 
quantifying over all functions f and g. Categories are like groups: 
they have a single operation that is associative and has a unit, but 
not necessarily an inverse (or like a semi-group with a unit).  

Comment on notation: When taking a functional point of 
view, function application is the most common operation: f is 
applied to x. In analysis multiplication is the most common 
operation ab means a * b and function application is written as f 
(x). In a functional context, where function application is the 
most common operation, we just write f x to indicate the 
application of f to x—no parenthesis required (parentheses are 
used for grouping as usual). This is not used consistently in this 
text; when it is convenient, then the traditional f(x) notation with 
parenthesis is used. 

Category <·,id>   
  dot, (·) :: f -> f -> f 
   condition:  a . b defined only for codomain b = domain a 
  id ::o ->  f  (there is an identity for each object type o) 
  domain :: f -> o 
  codomain :: f -> o 
 associative: (a.b).c= a.(b.c) = a.b.c. 
  unit:  id(codomain f) . f  = f 

Category theory gives us a high level, abstract viewpoint: 
instead of discussing the properties of elements we directly 
address the properties of the operations. This corresponds to the 
interest in geography, where the discussion concentrates on 
processes that occur in space, not on the collection of locations 
and properties of spatial objects(Abler, Adams et al. 1971; Frank 
1999). 

The properties of operations are described—as far as 
practical—without reference to the elements the functions are 
applied to. To state that two functions op and inv are the inverse 
of each other, we simply write op . inv = id. For the function 
increment inc and its inverse decrement dec the composition is 
the identity function: dec.inc = id. To state that a function can be 
applied any number of times and producing the same result as a 

Categories treat algebras the same 
way than algebras deal with 
entities(Frank 1999). 

In the category of sets, composition 
combines functions like ordinary 
operations (e.g., addition) combine 
numbers. 
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single application—we say the function is idempotent—one 
writes op. op = op. 

A categorical viewpoint demonstrates that semantics of 
operations are independent of the representations they are 
applied to. A ‘pointless’ definition is independent of the 
representation and this is documented by the absence of the 
elements (sometimes called points) the functions are applied on 
in the definition. 

7.2 COMMUTATIVE DIAGRAMS EXPRESS AXIOMS 
The axioms for a group can be expressed as commutative 
diagrams. The commutative law (a + b = b + a) is shown in 
Figure 43: Commutative la, where the function twist :: A x B -> 
B x A, twist (a,b) = (b,a). The associative law gives (a + (b + c)) 
=((a + b) + c).  

To show these axioms as commutative diagrams stresses that 
they are generally applicable, for many arrows and domains, not 
only the category of sets with functions; the arrow f can be +, but 
could be some other operation that follows these laws.  

7.3 CATEGORIES CONTRIBUTE TO THE UNIFICATION 
Category theory is the generalization that allows us to bring 
together different parts of mathematics and identify the 
commonality. Most fields in mathematics deal with a category, 
as shown in the following table(based on Asperti and Longo 
1991, 4); category theory establishes the connections between 
them.  

 
Figure 43: Commutative law (twist (a,b) -> 
(b,a)) 

 
Figure 44: Associative law 
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Category objects Morphism Part in this book 

Set sets functions Chapter 6 
Measurements 

Top topological 
spaces 

continuous functions Part 7 

Vect vector spaces linear transformations Part 3: Space time,  

Part 6: Projective Space 

Grp groups group homomorphism  

PO partial ordered 
sets 

monotone functions  

Graphs edges and 
nodes 

graph morphism Part 8 

Rel relations join Part 5: DB 

8. REPRESENTATION AS MAPPINGS: PRACTICAL 
PROBLEMS 

Many common problems in Computer Science and GIS can be 
analyzed in terms of properties of operations and mappings from 
real world to computer representations. For example, that the 
division is not a total function (no division by 0!) is well-known, 
but even commercial programs fail because programmers forgot 
to check for this case(Goldenhuber 1997). A systematic solution 
for all such cases of non-total functions is the extension of the 
codomain of the division with an additional value 'not a number' 
(NAN in the ISO standard for numeric computation[ref]) or 
similar, to which all division by 0 are mapped. The new function 
is then total! We will later call such morphisms functors (see 
next chapter 6). 

8.1 TOO MANY REPRESENTATIONS: RATIONAL NUMBERS 
Rational numbers can be represented as pairs of integers, like 
(1/2, 2/4, 3/4, etc.), but many pairs, for example, the pairs 2/4 
and 1/2, are the same value. Generally, all values i*n/i*d for any 
i are equivalent. We select the value n/d as the representative of 
the equivalence class. This defines a surjective function from 
pairs P to the (reduced) rational numbers R. This function has no 
inverse, given a rational number 3/4, we can not determine if this 
was originally 3/4, 6/8, 9/12, etc. 

 
Figure 46: Extension of Natural Numbers 
to make division total 

 
Figure 47: Construction of rational 
numbers with a surjective function to map 
to the rational numbers 
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A general solution is found through canonical factorization. 
Given a function f: A -> B, the equivalence kernel of f is a 
relation ρ (a, b), which is true when f(ai) = f(aj). ρ is an 
equivalence relation and induces a partition A/ ρ, where each 
equivalence class consists of all elements whose image is a given 
element in the range of f (Gill 1976p. 57) 

8.2 PARTIAL REPRESENTATION: STRAIGTH LINES 
Representations that cannot represent all values of interest cause 
difficulties. Here a geometric example: straight lines can be 
represented as functions f (x) = y, with y=m*x+c, which suggest 
a representation of a straight line as pair of values m and c. This 
mapping from straight lines to pairs of reals is partial, because 
lines parallel to the y-axis (vertical lines) have no representation 
in this form. We will later give a different representation for 
straight lines (chapter 19), which has for each straight line 
multiple representations, that is, a case of 'too many 
representations', but at least can represent all straight lines.  

8.3 REDUNDANCY 
Representations that allow many more tokens than are needed to 
represent the intended values can be used to guard against errors. 
A rule that defines the unused tokens as illegal allows 
differentiating between intentionally produced legal tokens and 
erroneous tokens (Figure 51: Redundancy allows separation 
between valid and non-valid tokens ). Errors in the transmission 
can be detected if they result in an erroneous token. A typical 
example is the introduction of a parity bit, to guard against 
transmission errors. 

9. CONCLUSIONS 
Formal methods rely on the manipulation of symbols according 
to some rules, which are written as sequence of symbols and 
called programs. The logical approach shows how true 
statements are transformed to other true statements; the algebraic 
viewpoint stresses the general rules of such transformations.  

Formal systems show how to translate one representation 
into another one, preserving properties of interest. Algebras are 
descriptions of the structure of formal systems and define the 
concept of structure. It is possible to understand the production 
rules in the language definitions as functions (morphism)(Ehrich, 
Gogolla et al. 1989; Loeckx, Ehrich et al. 1996). This is useful as 

Solution for too many equivalent 
solutions: select a canonical value to 
represent each equivalence class. 

 

 
Figure 48: Canonical factorization 
(after(Gill 1976p.56)) 

 
Figure 49: A straight line represented as 
y=m*x+c 

 
Figure 50: A vertical line is not 
representable as a pair m and c 

 
Figure 51: Redundancy allows separation 
between valid and non-valid tokens 

Algebras describe abstract structure, 
which can be preserved across 
transformations between different 
representations. 
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it shifts the focus from the (often infinite) set of sentences in a 
language to the finite set of production rules and leads to 
conclusions about a language based on properties of the 
production rules. 

Morphisms are used here to "construct from simple parts 
complex systems"; we have seen how length of string is a 
morphism from strings to integers, which maps string 
concatenation to addition. In the next chapter, we will generalize 
this notion, using the concept of a functor from category theory. 

Category theory is an abstract treatment, where we 
concentrate on the operations, independent of the representation. 
It is useful when we have to bring together in the GIS different 
parts of mathematics, e.g. set theory, geometry, topology and 
relations. It is increasingly used in computer science, for 
example in image processing. 

REVIEW QUESTIONS 
• What is an algebra? What does it consist of? Give an example. 
• Explain what a total function is. Give examples. Why is this 

important for programming? 
• What is a homomorphism? Give three examples. 
• What is the connection between Boolean Algebra and 

Boolean Logic? 
• What is a category? Why are we interested in it?  
• What is the ‘.’ (dot) operation? Explain in a formula in a style 

you are familiar with. 
• Why are isomorphisms practical? Why can we say that they 

are 'transparent'? 



Observations 71 

Chapter 6 OBSERVATIONS PRODUCE MEASUREMENTS 

GIS store observations of the outside reality. We will use the 
notion measurement for the representation of the results of such 
observations in a general sense. Measurements can be the result 
of surveying operations with instruments, counts resulting from 
statistics or other observations of physical properties.  

We observe reality. Observations can be the color of a field, 
the height of a point or the force of gravity. The result of an 
observation is expressed as a value on the appropriate 
measurement scale; for different observations different 
measurement scales apply: color is recorded as a value like ‘red’ 
or an RGB triple (red, green, blue intensity), whereas the height 
of a point is 324.4 m above mean sea level or the force of gravity 
is 9.9413487 mgal. Typed functions then connect these values to 
other values on different measurement scales; for example, the 
area of a rectangle is calculated as the product of two length 
values and the result is expressed as square meters. 

The representation for measurements is produced by a 
language (see chapter 4). The results of observations are typed 
expressions on some measurement scale, which are algebras, 
understood best as sets of operations that are possible with these 
values such that operations with the values relate to operations in 
reality. Measurement scales determine, for example, what 
statistical operations are meaningfully applied to some 
observations. Scales of measurements are—in the terminology of 
programming languages—(abstract data) types. 

In this chapter we will study functors, which map between 
types. Functors transform types, preserving the intentions, the 
semantics, or—technically—the algebraic structure. These three 
notions are used here as synonyms. Transformation of types by 
functors is different than the 'type cast' operations, which change 
just the type and do not preserve the algebraic 
structure(Stroustrup 1991). 

1. REPRESENTATION USING A LANGUAGE 
The values must be represented. A formal language, for example 
the language of decimal point numbers, produces distinct values, 
but the representation and the type is not the same: one kind of 

 
Figure 52: A surveyor observes a distance 
and produces a measurement 

Measurement units are functors, they 
map numbers to measurements, and 
the operations that we want to apply 
to measurements, to operations on 
the numbers.  
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representation can be used to represent values that have different 
semantics and allow different operations. In many currently used 
programming languages, type and representation is incorrectly 
equated. 

For example, the representations of soil observations are 
made on a scale of sand, gravel, podsol, etc. These nominal 
values may be represented with numbers, but this does not imply 
that numerical calculations make sense. It is not meaningful, to 
sum such numbers, for example calculations that the average 
between podsol and sand is gravel are utter nonsense! This 
example shows that measurement scales are not just 
representations but algebras. 

2. ENTITIES AND VALUES  
Observations presuppose that we observe something as distinct 
from other things. We will call these things 'entities'. Anything 
for which we assume a distinct existence and durability in time is 
an entity. A first type of entity is a point in space and time, for 
which different observations are possible. 

The result of an observation is a measurement, which is a 
value selected from a collection of values. For example, 
observations of color are sometimes selected from the set of 
values red, yellow, blue, etc. or the observation of today’s 
temperature in °C (Celsius) results in the value 13, a distinct 
value of type integer, that is, from the set of values 0, 1, 2… , etc. 
Some people describe the temperature more precisely as 13.5 °C, 
a value from floating point numbers. 

3. TYPES OF MEASUREMENTS 
The set of values from which an observation selects one is a 
type(Cardelli 1997). Different observations of the same kind all 
result in values of the same type—but distinct values. The 
temperature yesterday was perhaps only 10°C, which is a 
different value but of the same type as today's temperature. The 
distinction of types makes it possible to guard against nonsense 
operations, like the one shown in Figure 53. 

Soil types: 
  sand = 1, 
  gravel = 2, 
  podsol = 3, 

An entity is anything conceptualized 
as having a distinct 
existence(Zehnder 1998). 

An observation connects an entity 
with a measurement value. 
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Measurements are not just representations, because 
representations alone would not be typed. Representations alone 
do not have an algebraic structure. A typed formalization allows 
automatic type checking of all formulae; this increases our 
confidence in the formalization—many common mistakes in 
human reasoning are discovered by type checking. Type 
checking in a formal language is similar to the checking of 
dimensions for formulae in physics. Most students of physics 
learn to control their formulae by checking that they are correct 
for the dimensions.  
Example:  

s = v * t, where 
 v velocity in m/sec 
 t time in sec 
 s distance in m 
 [s] = [v * t] = [v] * [t] -> m = m/sec * sec 

Such formulae, connecting measurements of one type with 
measurements of another type are the fabric that makes an 
information system! They are expressions of the semantics of the 
corresponding measurement types. Conversions of measurement 
units are not changes in types: the same operations apply to the 
length measured in m or in feet; it is only a conversion of the 
numerical values that represent the multiplicity of the unit to 
achieve the desired value.  

4. FUNCTORS 
Measurements are expressed on scales appropriate for the 
observation and preserving structures that we assume to exist in 

 
Figure 53: The description of New Cuyama, California (Mike Goodchild 
holding, picture by Helen Couclelis) 

Types represent a part of the 
structure of reality(Asperti and 
Longo 1991). 

Physical dimensions are different 
types but different measurement units 
are not different types. 
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reality. Most of the time we forget the algebraic properties of the 
measurements and operate with them as if they were just 
ordinary numbers without the special properties of 
measurements. This custom to calculate with the numeric values 
of measurements is most often justified (Figure 53 shows the 
exceptions) because the algebraic structure of the measurement 
scale and the numbers are the same. We can see the 
measurements scales as functors that construct new algebraic 
systems from the given ones.  

4.1 DEFINITION OF FUNCTOR 
Given two categories A and B and two objects A1 and A2 in A 
then a functor F from A to B consists of functions  

F :: obj A -> obj B (i.e., it maps a function in A to a function in B),  
and for each pair of objects A1, A2 of A, with  

g :: A1 -> A2, F (g) :: F (A1) -> F (A2),  
satisfying  

F (id) = id,  
F (k.l) = F (k) . F (l) (when k :: A2 -> A3 and l :: A1 -> A2) (Walters 1991, 93) 

4.2 FUNCTORS CONSTRUCT TYPES 
Consider vectors with 3 elements as a functor F :: Real -> Vec3. 
The unit 0 is mapped to <0,0,0>, addition maps to pointwise 
addition of the elements: <a,b,c> + <d,e,f> =<(a+d), (b+e), 
(c+f)>. You can immediately see that the group properties are 
preserved; e.g. v + 0 = <a,b,c> + <0,0,0> = <a,b,c> etc. 

Dimensioned measurements are types, constructed by a 
functor. We will use the name of the measurement unit for these 
functors (e.g., meter) meter :: R -> L. The functor meter takes a 
(numeric) domain R and constructs the domain of 'length 
measurements' L, e.g., real numbers -> length in real numbers 
(i.e., R -> Length R); the same functor meter takes a function 
add:: R x R -> R, to meter (add) :: Length R -> Length R and the 
diagram in Figure 55 commutes. 

5. MEASUREMENT SCALES 
Different observations result in different kinds of values: the 
determination whether a student passes a course is a Boolean 
value (True or False), the students grade is on a scale A, B, C, D, 
and F, today’s temperature is 13 °C and my height is 182 cm. 
Stevens (1946) identified differences in the way measurements 
must be treated; he called them measurement scales. In our 
terminology, a measurement scale is an algebra, which defines 

"many constructions of a new 
algebraic system from a given one 
also construct suitable morphism of 
the new algebraic system from 
morphism between the given ones. 
These constructions will be called 
'functors' when they preserve identity 
morphism and compositive 
morphism."(Mac Lane and Birkhoff 
1991, p. 131).  

Pointwise application of a function: 
Apply the function to each element. 

 
Figure 55: Functor meter 

Categories generalize algebras; 
Functors generalize morphism. 
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what operations can be applied. The operations applicable 
determine then, for example, what statistical operations are 
possible, because statistical operations depend on basic 
arithmetic operations. 

Traditionally four measurement scales are differentiated and 
correspond to algebraic structures that are well-known(Stevens 
1946): 
• Nominal  -> equality 
• Ordinal  -> order 
• Interval  -> 1D affine space 
• Ratio   -> field 
Arguments to consider absolute, logarithmic scale, count, and 
cyclic scale as measurement scales have been 
published(Chrisman 1975; Frank 1994; Fonseca, Egenhofer et al. 
2002), but no agreement has been reached yet. 

Measurement scales are mostly discussed in cartography and 
statistics. In cartography they help to select an appropriate 
graphical representation for a set of observations: the graphical 
properties of the representation must have the same algebraic 
structure as the value to depict graphically and the 
transformation from an internal representation to a graphical 
representation must preserve this algebraic structure (Bertin 
1977; Chrisman 1997, 13). Increasingly other applications find 
the concept of measurement scales useful. 

6. NOMINAL SCALE 
The least structured measurement scale is a nominal scale: the 
result of an observation is a value, of which we can only say if it 
is the same or different from another one. Examples: 

Soil types: gravel, sand, podsol, etc. 
Land use classes: agricultural, residential, forest 
Names of people: Peter, Fritz, John (names in general) 

A special case of a nominal scale is the two truth values True 
and False encountered before.  

The algebraic structure is the algebra of equality. It has two 
binary operations, namely a test for equality and a test for not-
equality that result in a Boolean value, and a single axiom, which 
says that not equal is the same as not-equality. The equality 
relation must be transitive, symmetric, and reflexive: 

Equality 
 inverse not (=) = ≠ 
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 transitivity (a==b) && (b==c) => a == c 
 commutative (a==b) => (b==a) 
 reflexive (a==a). 

7. ORDINAL SCALE 
Observation can result in values that are ordered; one can tell if a 
value is more or less than another value, but not how much more. 
Examples: Size of T-shirts: Small, Medium, Large, XLarge. 
Grades in School: A, B, C, D, and F. In each case, we know that 
Large < XLarge or A > C, etc.  

One can compare two values on an ordinal scale and 
determine which one is bigger, but it is not possible to say 
whether the difference between two values is the same than the 
difference between two other values. It is true that an A is the 
better grade than a B, but to state that the difference between an 
A and a B grade is the same than the difference between B and C 
is for most tests nonsense. 

7.1 TOTAL ORDER 
Values on the ordinal scale are supporting the operations of the 
nominal scale, that is, we can differentiate two values. Order is 
imposed on a collection of values by a relation (<=) that is 
transitive, anti-symmetric, and reflexive (compare: equality is 
transitive, symmetric, and reflexive). Other operations, like <, 
>=, >, are derived and need not be defined individually. 

Total Order 
 transitive (A <= B) and (B <= C) => A <= C 
 anti-symmetric (A <= B) and (B <= A) => A == B 
 reflexive (A <= A) 
 totality (A <= B) or (B <= A) 

For ordinal scales, the maximum or the minimum value from 
two arguments can be computed.  

max (a,b) = if a > b then a else b 
min (a,b) = if a < b then a else b 

In bounded data types—and all data types representable in a 
computer are bounded—the maximum value is the unit for min 
and the minimum value is the unit for max: 

max (minVal, a) = a 
max (maxVal, a) = a. 

7.2 LEXICOGRAPHIC ORDER 
It is common to impose on nominal scales that are not ordinarily 
ordered an arbitrary ordering, called lexicographic order. 
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Assuming that the letters of the alphabet—which by themselves 
are also on a nominal, unordered scale—can be arranged in an 
order, namely the order of the alphabet, one can deduce an order 
relation between any two names. This is convenient and can 
speed up search procedures considerably. Imagine searching for 
a name in a telephone directory that was not arranged in 
alphabetical order! The same principle can be applied to many 
other values that do not have a ‘natural’ order. These are tricks to 
improve performance and do not correspond to an order in 
reality! From the fact that “Frank” is ordered before “Heinrich” 
one must not conclude anything about the properties of the two 
families (Figure 56). 

Beware of different alphabets and orders for different 
languages. Austria adds the Umlaut Ä, Ö, and Ü at the end of the 
alphabet (Swiss translate them as Ae, Oe, and Ue and order them 
at the corresponding place). A Spaniard uses an alphabetical 
order A, B, … L, LL, M, N, Ñ, O, P, Q, R, RR … etc. Can you 
imagine an "alphabetic order" for Chinese characters?  

8. INTERVAL SCALE 
The interval scale is the scale represented with numbers, for 
which the computation of a difference is meaningful. On the 
interval scale, no absolute zero is defined (Figure 57). The most 
common examples are temperatures expressed on conventional 
scales (Centigrade or Fahrenheit). One can calculate differences: 
the difference between days with 20 and 25 °C is the same as the 
difference between 10 and 15 °C. However, the difference of 5 
°C is not the same as a day with 5 °C temperature. The value of a 
difference is expressed on a ratio scale (next section) and the 
operation difference has an inverse.  

Mathematically, an interval scale is a 1-dimensional affine 
space, where we have the numbers of the interval scale I and real 
numbers R and the operations diff and plus that map from the 
interval scale to the real numbers (Mac Lane and Birkhoff 1991, 
564): 

diff (a,b) = r => plus (a,r) = b 
diff (a,a) = 0, plus (a, 0) = a 
plus ( plus (a,r), p)) = plus (a, r + p) 

This is the foundation for statistical operations with interval data: 
we take the difference to some arbitrary base (for example the 
value zero) and then compute with these ratio values as usual. 
The result of the average must then be added to the base. The 

 
Figure 56: Two families 

 
Figure 57: Different zero's 
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base may be the arbitrary zero of the scale diff and plus are then 
not changing the numeric value, but just the type. They convert 
the ration type in which differences are expressed back into the 
interval type. 

9. RATIO SCALE 
If there is an absolute zero—determined by properties of the 
phenomenon, not an arbitrary selected point like the freezing of 
water for 0°C, then we have a ratio scale. On a ratio scale, it is 
possible, to compare two values and say that $20 are twice as 
much as $10, which would be nonsensical for interval scales: a 
day with 15°C noon temperature is not half as warm as a day 
with 30°C at noon! For the temperature scale, 0°K (Kelvin) is an 
absolute zero. Length is measured on a ratio scale—the zero is 
the distance from a point to itself—but measurements for the 
length may differ when users use different measurement units: 
the 0 is fixed on the scale, but not the 1. For example, a sheet of 
A4 size is 210 mm or 8.27 inches (Figure 58). 

The results of measurements expressed on the ratio scale 
leads to the algebraic structure "field", with the operations + and 
* ; inverses for both; and a defined zero and one as units for the 
two operations. Fields are a special case of rings, which are 
introduced first: 

9.1 ALGEBRAIC STRUCTURE RING AND FIELD 
We carry out ordinary arithmetic calculations with integers, 
(approximations) to real numbers or with fractions and are 
assuming more algebraic structure than just a group (see chapter 
5). We use two operations (+, *) and each has a unit (zero and 
one, for + and *, respectively). This structure is called a ring, 
which is a an Abelian (commutative) group <R, +, 0> with an 
additional operation and a unit (these two form a monoid <R, *, 
1>). The two operations are connected by the distributive axiom. 

Ring <R; +,*, 0> Abelian group for <R,+,0> 
 associative a* (b * c) = (a * b) * c 
 distributive a * (b + c) = a * b + a * c 

The identity for the multiplication is usually denoted by 1: 
identity 1 * a = a * 1 = a, 

and it may be commutative 
a * b = b * a, 

but not all rings are commutative (e.g. the ring of matrices where 
A B /= B A). An integral domain is a commutative ring with 

 
Figure 58: Measuring with meter and feet 
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multiplicative identity that satisfies the cancellation law(Gill 
1976, 288-289): 

a * b = a * c => b = c 
b * a = c * a => b = c. 

A ring that satisfies the cancellation law has no divisors of zero, 
that is, it has no non-zero elements a and b such that a* b = 0. 

Field <F, +, -, *, -1, 0, 1>  Commutative Ring 
 Inverse for *: a * (a -1) = 1  for a ≠ 0 

A field is a ring with an inverse for the multiplication with a 
corresponding axiom.  

 (a*a -1 ) =1   for b≠0 
Rational numbers (fractions) are another example for a field. The 
real numbers form a field, but we always use finite 
approximations, which only approximate these axioms:  

a * (a -1) ~~ 1.  

10. OTHER SCALES OF MEASUREMENTS 
Most observations produce values from one of the above scales, 
but a few other are sometimes used: absolute scale, counts and 
cyclic scale are discussed here. 

10.1 ABSOLUTE SCALE 
Probability is measured on a scale 0 to 1. This is more 
determined than a ratio scale, because not only the 0 is fixed, but 
also the 1. There are no transformations possible and necessary.  

10.2 COUNT 
Counting results in positive integers. There is a zero and there is 
a one—which makes it an absolute scale expressed in integers, 
but the ratio between two counts is expressed as a fraction 
(remember: fractions are a field). The difference between two 
counts is again a count—which shows a difference from interval 
scales; the ratio of two counts is not a count—which shows a 
difference to the ratio scale. Therefore counts are a separate 
scale.  

There is a conceptual difficulty with results from statistic. 
We expect generally that the average is expressed on the same 
measurement scale as the original observations. A transportation 
authority observes the number of persons per car: The values are 
expressed as positive integers, i.e. count, but the average will be 
a figure like 1.3 persons/car—which is expressed as a real. This 
is not a contradiction, as the value is not of type persons, but 
persons per car.  
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10.3 CYCLIC SCALE 
The results of observations of regularly repeated properties 
result in yet a different measurement scale: the measure of an 
angle, the time of day or the date in a year are expressed on a 
cyclic scale. It is difficult to say if 9 a.m. is before or after 
midnight, 9 hours after midnight comes 9 a.m., but 15 hours after 
9 a.m. comes midnight again. It is before and after midnight and 
order as defined for a linear scale is meaningless. It is a 
convention to say that 9.a.m. is after midnight and 11 p.m. is 
before midnight, because 9 a.m. is closer to the midnight before, 
whereas 11 p.m. is closer to the midnight afterwards. The same 
applies for angles and other cyclic measurements(Frank 1994). 

This is an example where we have multiple representations 
for the same value: the angle expressed as 20º, 380º, 740º, etc. 
are all the same. On the regular 12 hour dial, 9 a.m. and 9 p.m. 
(21 h) are the same. To make processing simpler, we select one 
preferred representation for each value, among the many, and 
call this ‘canonical representation’ (see before chapter 5.8xx). 

The concept of Image and Kernel (see chapter 5.6xx) can be 
applied here. The reduction of a large set of values H to a smaller 
(canonical) one G can be seen as a morphism ρ: G -> H. In our 
example of angles, G is the real number line and H is the interval 
of (0..2π); the image of G is all of H (Figure 60); the values 
n*2*π for all integers n is the kernel of this mapping. The 
morphism δ collapses the real numbers to the interval [0..2π].  

11. MEASUREMENT UNITS 
Measurements describe the quantity or intensity of some 
properties at a given point in comparison with a standard 
quantity. The same observation process yields different values if 
applied at different points in time or space. The observed 
measurements are usually proportional to the intensity of the 
property at that point. The results of observations become 
comparable, if they are each compared with a selected standard 
value. Well-known is the former meter standard, defined as the 
distance between two marks on a physical object manufactured 
from platinum, which was kept in Paris. It is superseded today 
by a new definition using a physical process that can be 
reproduced in any location. The current definition is stating that 
a meter is the 1/299 792 458 part of the distance light travels in 
the vacuum in a second(Kahmen 1993). The reference point for 

 
Figure 59: Time Measurements on Cyclic 
Scale 

Canonical representation is the 
selection of one element of an 
equivalence class to represent the 
class. 

Measurement = unit * value 

 
Figure 60: The canonical mapping δ of  the 
real numbers to angles 
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the Celsius scale of temperature is the temperature of melting ice 
at 0ºC and the reference point for 100°C is the temperature of 
boiling water and similar definitions exist for other standard 
quantities.  
The combination of a measurement unit with an observation 
value is a mapping between two types, namely from numbers to 
measurements. The value 3.2 is mapped to 3.2 m — 3.2 is 
multiplied with the unit 1 m. The measurement unit is a functor, 
which converts a number to an element of domain with a 
dimension and unit (Figure 55) and ordinary algebraic operations 
apply to these quantities with units:  

3 * (3.2 m) = (3 * 3.2) m 

11.1 CALIBRATION 
Observation systems are calibrated by comparing their results 
with the standard. The raw measurement results are then 
converted with some formulae to yield a measurement value, 
expressed as a quantity times a unit, 3 m, 517 days or 21ºC. 
Different observation processes that measure the same physical 
dimension (e.g., length, time) are brought to a common base.  

11.2 BASE UNITS 
The selection of base units is arbitrary. People use convenient 
units, based on the cultural environment and such that the 
numerical values for many measurements are small but sufficient 
to differentiate relevant differences: we use mm for table-top 
items, meters for apartments and gardens, km for geography, etc. 
Conversions are necessary during input and output of values, 
because a single internal computations in floating point numbers 
is sufficient and only a difference in the exponent results from 
different units (3.5 * 103 m = 3.5 * 106 mm). 

The Système International d'Unités (SI) is founded on seven 
SI base units for seven mutually independent base quantities 
(Table 1). This system of units superseded the previously used 
cgs-system, where the units where centimeter, kilogram, and 
second. For example, the unit of gravity in the cgs-system was 
Gal, named after Galileo (1 Gal = 1 cm s-2), newer books refer to 
the SI unit as m s-2. 

 
Figure 61: Figure standard rod used to 
measure 
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USA and some other English speaking countries use 
traditional units like feet and pounds. Additional confusion can 
result from different definitions for different countries: imperial 
(English) and U.S. definitions, sometimes with regional variants 
for surveyors, abound. Units may also differ, depending what is 
measured: fluid ounces and troy ounces (for gold) are different. 
A rumor has it that the loss of the probe to the Mars—a costly 
NASA space exploration mission—was due to passing a value 
from one program to another where the one assumed SI units 
(i.e., meters) and the other assumed traditional units (i.e., feet) 
for the height above ground.  

11.3 CONVERSION OF MEASUREMENTS 
Theoretically the conversion of one measurement unit to another 
is usually a linear formula, like the conversion of inch to mm 
(multiply by 25.4) or ºC to ºR. The general case is the conversion 
between two measurement scales on interval scales, where the 
units and the zero point are different (Figure 62). This is, as we 
will see later (see chapter 10), an affine transformation in 1-
dimensional space.  
Example: The conversion between Centigrade and Fahrenheit, 
which is used in the USA and Jamaica. The definition of the 
Fahrenheit scale is set today to 0°F = 32 °C  and 212º F is 100º 
C, which results in convenient conversion formulae. The original 
concept was to fix 0º to the freezing point of alcohol (17.8º C) 
and 100°F to the temperature of the human body (37 °C). For 
conversion use: 

[°F] = [°C] · 9/5 + 32  
[°C] = ([°F] − 32) · 5/9 

In general, a 1-dimensional affine transformation is determined 
by two parameters (Figure 63) (Mac Lane and Birkhoff 1991, 
561): 

12. OPERATIONS ON MEASUREMENTS 
The operations applicable to the numerical values representing 
measurements on the ratio scale are those of a field, which are 
the ordinary arithmetic operation. Not all of these operations are 
meaningful. Because measurements types are functors, 
measurements can be added and subtracted and multiplied or 
divided by a scalar value (i.e., a real number with no 
measurement type). Other combinations, e.g., the multiplication 
of two measurements give as a result another measurement type 

Table 1 : SI units 
 
The mutually independent SI base 
quantities: 
meter (length) m 
kilogram (mass) kg 
second (time) s 
ampere (electric current) A 
Kelvin (thermodynamic temperature) 
K 
mole (amount of substance) mol 
candela (luminous intensity) cd 

Figure 62: Three scales for temperature 

Conversion is not a change of type 

 
Figure 63: 1-dimensional affine 
transformation 



Observations 83 

(see next section): the multiplication of two length values 
resulting in an area value, not a length. Measurements form an 
algebraic structure, which is called a module (see later 9.5xx) 

Measurements <M, S, +, -, 0, 1, *, 0m, 1m, /> 
Addition, Subtraction  
Scalar Multiplication s1 * m + s2 * m = (s1 + s2) * m 
  m / s = 1/s * s 

13. COMBINATIONS OF MEASUREMENTS 
Measurement instruments observe some easy to detect 
quantity—for example, an electric current—which is in some 
direct relationship with the quantity of interest—e.g., the amount 
of light. The instrument then includes an analog or discrete 
computation to compute the value of interest. For example a 
balance measures the elongation of a string under, which is 
proportional to the weight attached to the hook (Figure 64). The 
computation of an area results from observation of two length 
measurements. The area value is the product of the two lengths 
values, but its type is a different one: 

area :: Length -> Length -> Area 

This approach requires the definition of suitable types and 
coding of the standard formulae and will guard against confusion 
between units and dimensions.  

14. OBSERVATION ERROR 
All observations are imperfect realizations and have some error. 
This is in the limit a consequence of Heisenberg's uncertainty 
principle, but most practical observations are far less precise than 
the uncertainty principle would permit. Measurements more 
accurate than 1 part per million (ppm) are generally difficult. 
Distance measurements with an error of less than 1 millimeter 
per kilometer are demanding, but few centimeters per kilometer 
are standard performance of surveyors today. The best 
observations are for time intervals, where 10-15 is achieved, but 
the theoretical limit would be 10-23, still 100 million times less! 

Parts of the error of real observations are the result of 
random effects and can be modeled statistically. Surveyors 
report measured coordinates often with the associated standard 
deviation, which represents—with some reasonable 
assumption—an interval with 68% chance to contain the true 
value. Errors propagate through the computation. The Gaussian 
law of error propagation approximates the propagation of 

 
Figure 64: The spring based scale used on 
markets all over the world  
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random error; it says that the error propagates with the first 
derivation of the function of interest. Given a value a = f (b,c) 
and random errors for b and c estimated as eb and ec (standard 
deviations), then the error on a is following Gauss: 

ea = sqrt( df/db*eb
2 + df/dc * ec

2). 
In this book, errors are not in the focus and all quantities are 
assumed to be 'perfect' knowledge. 

15. ABUSE OF NUMERIC SCALES 
Measurement scales determine what operations are possible with 
the values; they determine, among other things, what statistical 
operations are appropriate. Unfortunately, it is customary to 
express values on a nominal or ordinal scale with integers or 
reals—and it is then technically feasible to calculate with values 
that do not have the required properties for these calculations.  

There are numerous examples for abuse of ordered scales, 
representing them with numerical values and then compute 
averages. Common is the computation of average grades in 
school. Grades are expressed on an ordinal scale; a difference 
between two grades is not a defined quantity. I do not believe 
that the difference in knowledge of a student between a grade of 
A and B and the difference between grade B and C is the same—
but this is assumed to calculate the average. This method is used 
because we do not have a better solution to arrive at a fair and 
equitable determination of final grades in a class where multiple 
exams where taken, but we should be aware of the limitation.  

16. CONCLUSION 
Measurements describe observation of a physical dimension; 
different physical dimensions are different types and cannot be 
mixed, the logic of a typed language helps to avoid nonsensical 
operations as adding a date and a length (Figure 53). Internally 
all measurements of one physical dimension can be expressed 
with the same units, conversions are necessary for input and 
output.  

Measurements are expressed on scales of measurements, 
which each represent an algebra that determines what operations 
are possible with measurements of this kind.  
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REVIEW QUESTIONS 
• What is wrong with the panel in Figure 53? Would a type 

language discover the problem (e.g., Pascal)? 
• What is a canonical representation? Why is it useful? Give a 

practical example from real life. 
• Define Group, Ring, and Field. Give axioms. 
• What are scales of measurements? What are the classical 

measurement scales? 
• Explain the concept of functor? How is it applied to 

measurements?  
• What is a partial order? Give an example. 
 
 

 



 

PART THREE  SPACE AND TIME  

Position in space and time are fundamental for a GIS. They 
allow connecting other observations to locations in space and 
time. Measurements of length and duration determine relations 
between points in space and time. But not for all applications of 
GIS the metric properties of space are crucial and other aspects 
are more. For example, to determine a path in a network, 
connections between the nodes are crucial and more important 
than the distances. A GIS must connect different 
conceptualizations of space and allow an integrated analysis of 
facts related to them(Couclelis and Gale 1986; Frank and Mark 
1991; Mark and Frank 1991).  

In this part we start the discussion of geometry following the 
approach by Felix Klein(Klein 1872). We will not follow the 
customary route of separating geometry by dimension, 
discussing 1-, 2-, and 3-dimensions in turn, but differentiate 
types of geometries independent of dimension, which have 
different approaches to discretization and abstraction of 
continuous space and show the transformations and invariants in 
each. Different aspects of space lead to different 
conceptualizations of geometry and geometric properties. 
Quantitative approaches in geography are often based on 
transformations of space, such that certain relations are 
expressed more directly(Tobler 1961). For example, the map of a 
city is transformed such that distance on the map directly 
represents travel time to the center (fig. xx).  

Geometry in gymnasium deals with geometric constructions: 
geometric elements situated in space gives structure to space and 
allow operations, which result in other geometric 
elements(Klein, Hedrick et al. 2004). This is one of two classical 
viewpoints of space: space consists of spatial elements and the 
properties of space are the result of the properties of the spatial 
elements. Most of the properties of spatial elements depend on 
the metric defined for the space, they are metric properties. From 
the position of points in space most metric properties of a 

Geometry: properties which remain 
invariant under a group of 
transformations. 
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geometric figure can be deduced; positions in space are 
expressed in computers with approximations.   

 
The first chapter in this part separates different types of 

geometries; it concentrates on what remains invariant under 
transformation. Each 'geometry' defined by properties invariant 
under a transformation, defines one of the different ways we 
conceive space and time. The second chapter concentrates on 
observation of duration and time points. The third chapter then 
introduces coordinates to represent points in space in a 
computerized information system. The last chapter of the part 
covers transformations of coordinate space. The part reaches 
some unification of different aspects of transformations of space 
and time into a single formalism. 
 
 
 
 
 

Produce values to describe points in 



 

Chapter 7 CONTINUITY: THE MODEL OF GEOGRAPHIC 
SPACE AND TIME 

Applications of GIS use different models of geographic space 
and time. Consider how a tax assessor appraises a property: he 
considers the area and the frontage of the parcel and weights the 
value by the distance to the city center (Figure 65). This uses 
three different 'spaces': an areal and a linear space in which the 
property is evaluated and a gravity model of space with a decay 
from a center for valuation(Abler, Adams et al. 1971). 

A GIS must be capable of integrating these different 
conceptual models in a single formal system. The chapter gives a 
partial answer to one of the fundamental question of GIScience, 
namely “What is special about space?” (Egenhofer 1993)and 
justify what a theory of GIS must achieve: integration of 
different aspects of space and a uniform treatment of different 
representations of space. Considering the connection between 
transformations and properties which remain invariant 
(unchanged) by them gives us a handle to classify different parts 
of geometry: e.g., affine, projective geometry, or topology. 

The chapter differentiates types of geometry by groups of 
transformations and what properties they leave invariant. The 
questions, which should be answered here for each different 
concept of space, are:  
• Why are there multiple representations? 
• What are the transformations? 
• What are the invariants?  
• What are the operations necessary?  
A discussion of time follows in the next chapter. 

1. DIFFERENT GEOMETRIES 
The discovery of other than the "ordinary" geometry described 
by Euclid was an "intellectual revolution" that changed the way 
the world was seen(Blumenthal 1986). Kant had postulated that 
Euclidean geometry was inherent in nature ("god given") and his 
opinion weighted so much, that the eminent mathematician C.F. 
Gauss was not willing to publish his discovery of other than 
Euclidean geometries, about which he wrote in a letter 1824. The 

 
Figure 65: Geometric elements used to 
assess value of a property 
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original publications are by Nikolai Lobachewsky in 1829 and 
Johann Boylyai 1832 a few years later. 

 Non-Euclidean geometries were discovered in an effort to 
proof the independence of Euclid’s axiom about parallel lines. 
Euclid stated five axioms for classical geometry constructed with 
ruler and compass: all observed properties of geometric figures 
follow from these axioms(Heath 1981). The properties of space 
and geometry seem to be captured in these axioms and not 
limited to measurements and numbers! It may be useful to 
reproduce them here: 

"Let the following be postulated: 
I. To draw a straight line from any point to any point. 
II. To produce a finite straight line continuously in a straight 

line. 
III. To describe a circle with any center and distance. 
IV. That all right angles are equal to one another 
V. That, if a straight line falling on two straight lines makes 

the interior angles on the same side less than two right angles, 
the two straight lines, if produced indefinitely, meet on that side 
on which the angles are less than two right angles." (Figure 66) 
(Blumenthal 1986, 2) 

Lobachevsky demonstrated that a logical system with a 
negation of the fifth axiom is consistent. He expected a 
contradiction which would have shown the dependence of the 
fifth axioms from the other four axioms. The new consistent 
system of axioms produced a new logical system for geometry, a 
geometry with axioms different from the ones given by Euclid. 
One of these non-Euclidean geometries, namely projective 
geometry, in which all lines intersect, will be used in chapter 19 
to find a closed formula to compute line intersections and avoid 
the ordinary Euclidean computations that require special 
treatment for parallel lines. 

The discovery of non-Euclidean geometries led later Einstein 
to the formulation of relativity theory. Geography deals with 
objects and spaces that are limited to the earth and we are not 
concerned with large distances and, correspondingly, very high 
velocities. For the purposes of geography, not however for 
geodesy, Euclidean geometry is sufficient and relativistic effects 
are not relevant. We can ignore the Lorentz-transformations 

 
Figure 66: Euclid's fifth axiom: P is on the 
side where the angles are less then two 
right angles 
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(Figure 67), which reduce for all movements that are slow in 
comparison with the speed of light to the ordinary Galilean-
Transformations. However, they are a prominent example for a 
special concept of geometry, which includes relative movement; 
the Lorentz-transformations also demonstrate how a general 
theory reduces to a simpler theory in ordinary cases. 

The power of abstract geometry, allows many kinds of 
geometric objects that cannot exist in reality (Blumenthal and 
Menger 1970; Galton 2000, 502)(Figure 68). The art of 
modeling geometry in GIS is to find subsets of geometries that 
cover the cases that are possible with physical objects and 
correspond to our experiential abilities limited by our senses. 
Different special cases were studied individually but a GIS 
requires a combination of them. 

2. DIFFERENT MODELS FOR DIFFERENT APPLICATIONS 
Space and time is fundamental for biological life—all people and 
animals are physical bodies that occupy space and move around 
in space(Couclelis and Gale 1986). Space is also fundamental for 
human cognition. Our daily experience with space and in space 
shapes our theoretical understanding of space and time(Lakoff 
and Johnson 1999). This understanding is formalized as 
geometry (Lakoff and Núnez 2000) and needs implementation in 
a computer system that deals with spatial information.  

 
Figure 67: Transformations of space 

Figure 68: An example of a volume not 
physically realizable: a Menger sponge 
(from Wikipedia: Fractals) 
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Experience with space varies depending on the goals we 
pursue: we may walk in space moving from one point to another, 
we may till the land for agriculture, and we may construct 
dwellings. But space is also involved when we draw a picture on 
paper, when we arrange the tools on our workbench, 
etc.(Couclelis 1992). Couclelis and Gale have discussed the 
different aspects of space and time: the concept of space used in 
mechanics, where motion can be reversed, is different from the 
one used in biology, where heat is dissipated and change cannot 
be reversed(Couclelis and Gale 1986). In human cognition, space 
is differentiated by the size of the space and how it is 
apprehended. Space with 2-or 3-dimension and time can be 
merged in a 3- or 4-dimensional physical or continuum, but 
human experience with these dimensions is different: time 
cannot replace space and even in space align, the vertical 
direction is more salient than front-back or left-right. This 
motivates different conceptualizations, which are each optimized 
for some applications. 
•  "Figurative space is … smaller than the body, its properties 

may be … perceived from one place without … locomotion".  
• "Vista space is larger than the body and … can be visually 

apprehended from a single place without … locomotion". 
• "Environmental space is larger then the body and surrounds 

it." It cannot be apprehended directly without considerable 
locomotion and requires "the integration of information over 
… time".  

• "Geographical space is much larger than the body and cannot 
be apprehended directly through locomotion; ..., it must be 
learned via symbolic representations."(Montello 1993, 315).  

For physical analysis, motion in space assumes continuous 
time and continuous space and the motion itself is continuous. 
Human conscious thinking about motion and change reduces 
these continua to discrete entities, which are represented in the 
cognitive system (Figure 69),(Kuipers 1994; Galton 2000, 321). 

Differentiate 4 kinds of space: 
- figurative, 
- vista, 
- environment, and 
- geographic. 
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The representation of continuous time and space in a discrete 
form is fundamental to human reasoning with space—and it 
seems that each approach captures some features for one class of 
activities leaving out others that are less for this application. The 
ways people treat different spatial experiences motivate the 
different discretizations used for continuous space and time. 
Different discretizations are essentially different theories of 
space, different geometries so to speak: the geometry of graphs 
is motivated by the network of streets (Figure 69), ordinary 
Euclidean geometry by the movement of rigid objects in space 
(Figure 70).  

3. SPACE ALLOWS AN UNLIMITED AMOUNT OF DETAIL 
Space, like time, can be observed at different levels of detail. We 
select the appropriate level for the task at hand and observe more 
precisely, when more detail is necessary(Timpf, Volta et al. 
1992; Timpf and Frank 1997; Timpf 1998). There is always 
more detail possible: from a map 1:1 Mio, we can go to a map 
1:200,000 and then to 1:50,000, etc. But this does not end with 
maps 1:50; maps of 1:1 are possible (Caroll 1893; Borges 1997) 
and even a map 10:1 can be drawn—there is detail in space to be 
shown, even if we cannot see it with our eyes directly. 

The same applies to time: finer resolution is always possible. 
Actions are composed of smaller and smaller acts; often we are 
not aware of the finer level of temporal resolution because the 
activities at this level of detail are not visible to us and are of no 
interest in normal circumstances. Molecules move in an arbitrary 
movement, the speed of which is proportional to the temperature 
of a substance—we are satisfied with the temperature reading 
and are not interested in this Brownian motion. 

3.1 MAP SCALE AND LEVEL OF DETAIL 
Map scale is defined as a numerical factor, obtained from 
dividing the distance in a map by the corresponding distance in 
reality. This concept of scale is of little use in computer 
representations, where points are represented by their (real 
world) coordinates; scale is necessary when existing maps are 
digitized or data is visualized as maps. 

The map scale implies also how much detail from reality is 
selected and represented on the map. The concept Level of Detail 
describes this better. The physical world in space and time can 

  
Figure 69: Graph representing the Street 
Network around TU Wien 

 
Figure 70: Euclidean geometry of solid 
objects 

Scale: ratio between distance on map 
and distance in reality. 
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be observed at (practically) unlimited level of detail. There are 
atomistic limits, but these are not relevant for a discussion of 
geography—geographic objects are many orders of magnitude 
larger than the smallest particle that we consider as undividable 
(atomic). For each representation a level of detail must be 
selected. Tobler has pointed out that we can detect objects which 
are n meters large, if the scale of the map is 1/n*1000; for 
example, in a map 1:100,000, objects of 100 m size can be 
detected(Tobler 198?). 

3.2 SELF-SIMILARITY AND FRACTAL DIMENSION 
Continuity avails more detail as we increase the resolution. This 
leads to a question for measurement: at what level of detail is 
the correct observation? Richardson (quoted by Mandelbrot 
1977) has observed that measuring the length of a coastline 
depends on the level of detail with which one measures. If we 
measure the length of a line with a compass set to a fixed length 
and count how often this unit is in the line (Figure 70) the result 

varies with the size of the unit distance. If you repeat the 
experiment with a smaller unit distance, the total length of the 
line becomes longer (Figure 71). The length of the line depends 
on the level of detail of the representation 
considered(Buttenfield 1984; Buttenfield 1989). 

The increase in length is a function of the reduction of the 
unit with which one measures. Following Mandelbrot, the ratio 

log length / log unit is called the fractal dimension of a line; a 
straight line has dimension 1; its length does not increase if we 
use a smaller yardstick! 

A line with fractal dimension 2 fills all of 2-dimensional 
space. Ordinary curved lines have a fractal dimension between 1 
and 2. Figure 73 shows a construction of a fractal line with 

 
Figure 71: A coastline measured with 
yardstick of 2 units 

 
Figure 72: Coastline measured with 
yardstick of 1 unit 

Figure 73: Fractal dimension (from 
http://www.vanderbilt.edu/AnS/psychology/
cogsci/chaos/workshop/Fractals.html) 
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fractal dimension 4/3. Mandelbrot has pointed out that fractal 
lines are self similar, each part has the same form as the 
whole(Mandelbrot 1977), which, to a certain degree, is true also 
for geographic phenomena, e.g. coast lines. This relation 
between length of a line and resolution with which one measures 
applies not only to the length, but to other observations as 
well(Batty and Longley 1994; Quattrochi and Goodchild 1997). 
Openshaw has studied extensively the 'movable areal unit 
problem' (MAUP): what is the correct resolution to study for 
example unemployment rates: the block, the town, the county, or 
a whole state? Different results obtain! (Openshaw and 
Alvanides 2001) 

4. MULTIPLE REPRESENTATION 
The infinite amount of detail potentially available requires 
multiple representations of the same reality, at different scales 
and with different intentions(Buttenfield and Delotto 1989; 
Günther 1989; Frank and Timpf 1994; Timpf and Devogele 
1997). A town can be shown as a point, an area, a grid of major 
roads, a collection of buildings, etc. (Figure 75). Some of these 
representations use different types of geometries: for example a 
road can be seen as a volume of building materials, an area (as a 
street parcel), or as a street line connecting two intersections. 

The description of the methods to treat aspects of geometry 
is only the conceptual foundation(Timpf 1998). For real systems, 
we must be able to link different representations together and use 
reasoning across representations(Timpf, Volta et al. 1992). 

5. SPACE AND TIME ALLOWS MANY RELATIONS 
Between objects in space and time many different relations can 
exist. We can consider topological relations, like "Jamaica is an 
island in the Caribbean" or the distance between Vienna and 
Salzburg and compare it with other distances between cities. 
There are nearly infinite many relations between objects in space 
and it is impossible to represent them all explicitly. A GIS with 
10000 named places could have 50 million distance relations 
between them. The often seen tables for distances between 
villages work only for a small island like Elba. 

It is to identify those properties from which other properties 
can be derived. Only the first need be explicitly stored, the others 

Figure 74: Koch's snowflake. A line with 
fractal dimension 4/3 

 
Figure 75: A town at different levels of 
detail 
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are computed. For example, a GIS stores the location of places 
as coordinate pairs and computes the distances.  

Relations that are not changing are most useful to remember. 
We call such relations invariant. For example, the length and 
width of a taxi cab remains the same, while the location of the 
taxi is changing. Concentrating on properties that remain valid 
despite other changes reduces the need for constant updating of 
the relation or property. It is economical to identify the key 
properties from which others can be deduced. 

6. DIFFERENTIATION OF GEOMETRIES BY WHAT THEY 
LEAVE INVARIANT 

‘Invariance under a group of transformation’ can be used to 
divide geometry in logically connected subfields as suggested by 
Felix Klein in the "Erlanger program" (Klein 1872) and links 
directly with our experience: The use of objects is determined by 
what we can do with them—for example move them in space—
and what properties they maintain. These are the properties that 
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determine the preferred spatial concept for this application; we 
may say, they determine the "geometry of this application".  

The prototypical geometric objects are small, movable, rigid 
bodies (Figure 76), which preserve their geometry even when 
moved in figurative space. Continuity of space is preserved even 
in objects that are not rigid: continuity is preserved in garments, 
which do not have a definite form, but can be folded to be put in 
the wardrobe and then put on, hung an a hook, etc.(Figure 77). 
Continuity is preserved in objects that are even more flexible, 
e.g., rubber sheets and balloons, which can be deformed in many 
ways, but always preserve continuity (Figure 78).  

Klein has proposed (1872) to study as geometry properties 
that remain invariant under a group of transformation. This 
abstract viewpoint captures practical aspects of objects. Rigid 
objects like a sword, a cup, or the triangles and rulers used for 
geometric constructions (Figure 76) ‘work’ only because they 
preserve a set of properties—a sword made from rubber does not 
work in the intended way, nor does a ruler. Garments made from 
rigid materials like tin foil were an interesting idea by Paco 
Rabanne for Haute Couture, but definitely not what we want to 
use everyday! It is essential for garments to be flexible, but 
preserve continuity (Figure 77). The same for a balloon—if it is 
punctured and bursts, it is not a balloon anymore. 

Klein required that the transformations considered form a 
group (see chapter 5), meaning that there must be a unit 
transformation, an inverse to each transformation and 
transformations can be composed. These group properties are 
essential for the concept of a spatial transformation—if a 
transformation cannot be undone by its inverse or if there is no 
option of doing nothing, then it seems not to be a geometry. 
These requirements capture the properties of abstract physical 
space, not the living space of animals and plants, where 
movements cannot be completely undone as energy is 
dissipated(Couclelis and Gale 1986). 

7. DIFFERENT TYPES OF GEOMETRY DEFINED BY 
GROUP OF TRANSFORMATIONS 

Modern mathematics works towards unification: different 
theories should be brought into a single context, connected to 
work together and to be constructed on a common foundation. 
This requires that common concepts are ‘factored out’. For 

Differentiating geometric properties 
as invariant under transformations 

 
Figure 76: Different solid objects 

 
Figure 77: Different forms, but the same 
topology 

 
Figure 78: A balloon changes its form 
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example, what are the common properties of different 
geometries, what is the essence of geometry(Blumenthal and 
Menger 1970). This is the same question as Egenhofer posed in 
“what is special about spatial?” (Egenhofer). A more geographic 
but similar viewpoint is found in Abler, Adam and Gould's work 
"Spatial Organization" (Abler, Adams et al.). 

A geometry is a group of mappings M of a space S onto 
itself, where the geometry studies properties of a figure (a subset 
of S) that are invariant under each transformation of the Group 
M(Blumenthal and Menger 1970, 25-26). This definition is 
general and includes not only all what is usually studied under 
the notion geometry, but also, for example, relativity theory, 
which is the theory of the invariants of a 4-dimensional 
continuum (Minkowski’s world) with respect to a given group of 
collineations (the Lorentz group). 

The geometrical essence of the definition of Klein is the 
equivalence of transformed figures and the properties of these 
equivalent figures. For example the three shapes in Figure 79 are 
equivalent under topological transformations—topology deals 
with the properties that they have in common and which are 
invariant under these transformations. 

Blumenthal (Blumenthal and Menger 1970, 27) defines a 
geometry as  

A geometry G over a set Σ is a system {Σ, E}, where E denotes 
an equivalence relation defined in the set of all subsets (figures) 
of Σ. The geometry {Σ, E} studies those properties of a figure F 
that the figure has in common with all figures equivalent to F; 
these are the invariant properties.  

8. TRANSFORMATIONS USEFUL FOR DIFFERENTIATION 
OF GEOMETRIES 

8.1 RIGID BODY MOTION  
These transformations describe the movement of rigid objects. 
They have various names: they are sometimes called Euclidean 
(Hartley and Zisserman 2000) or congruence transformations, 
because figures remain congruent. They are transformations of 
space, which preserve distances between the parts of the 
objects—this is the essence of rigidity. Rigid body motions can 
be separated in translations and rotations.  

Factorization and its use in ordinary 
arithmetic: 
35 + 25 + 15 = 5 * 7 + 5 * 5 + 5 * 3 
= 5 * (7 + 5 + 3) = 5 * 15 = 75 

 
Figure 79: Object deformed 

Geometry is the study of 
automorphism groups. 

 
Figure 80: Translation 
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8.1.1 Translation  
Translations form a group of transformations (Figure 80): every 
translation has an inverse and doing nothing is a zero translation. 
Translation leaves distances invariant.  

8.1.2 Rotation 
Rotation (Figure 81) forms a group, with the rotation with angle 
0 as zero and the inverse rotation is the rotation with the reversed 
angle. Rotation leave distances invariant. 

8.1.3 Congruence relations preserve angles 
Translations and rotations leave distances unchanged and 
necessarily also angles. We speak of metric properties when 
discussing the preservation of distances and angles. Translation 
leaves invariant azimuth, which is the angle between a line 
connecting two points and one of the base vectors of the space. 
Rotation does not preserve azimuth (Figure 83: Azimuth 
(positive turning)). 

8.2 ISOMETRY 
Isometries are all transformations which leave distances and 
angles invariant. They are the rigid body motions and the 
reflections. Reflections leave distances invariant, but reverse the 
direction of angles. 

8.3 SCALING 
Scaling forms a group of transformations, with the unit 
transformation is scaling with the value 1 and the inverse scaling 
is scaling with the (multiplicative) inverse scale. This leaves 
invariant azimuths and angles, but not distances. Areas are 
multiplied with the square of the scale factor. 

8.4 SIMILARITY TRANSFORMATIONS 
Similarity transformations leave the proportions of metric 
properties the same ; they consist of translations, rotations, and 
scale changes. This is ordinary Euclidean geometry, where 
circles remain circles.  

 
Figure 81: Rotation 

 
Figure 82: Congruence Transformation 

 
Figure 83: Azimuth (positive turning) 

 
Figure 84: Scaling 

 
Figure 85: Affine Transformation 
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8.5 AFFINE TRANSFORMATIONS 
A generalization of linear transformations leads to affine 
transformations (Figure 85), which include translation, rotation, 
and scale as special cases. They can result from parallel 
projection and transform parallel lines into parallel lines. They 
preserve the ratio of length of parallel line segments. Affine 
transformations can be seen as a composition of two different 
scales on orthogonal axis. The areas are multiplied by the 
product of the scale factors. 

8.6 PROJECTIVE TRANSFORMATIONS 
Projective transformations preserves collinearity (Figure 88) 
and the cross ratio (Figure 87)(Stolfi 1991, 123). They are a 
generalization of affine transformations. 

 

8.7 TOPOLOGICAL TRANSFORMATIONS 
Continuous transformations are transformations that preserve 
neighborhoods. They do not allow puncturing, cutting, and 

gluing parts of objects together (Figure 89). Closing the legs of a 
pair of pants by sewing them shut is a practical joke and make 
the pants non-functional. Puncturing a hole in a cup renders it 
useless. Topological or homoemorphic transformations preserve 
these properties of objects, which are crucial for the function of 
an object.  

9. MAP PROJECTIONS 
Map projections are a special case of transformations, namely 
from the surface of a 3-dimensional sphere to a 2-dimensional 
plane. They leave incidences—points lying on a line remain on 
the line—but do not preserve angles, distances, and azimuths all 
at once. Geodesic lines are not always mapped to geodesic lines. 
Map projections do not form a group of transformations and do 
not define geometries in the sense of Klein's Erlanger Program. 
There are various optimizations to preserve gestalt, a concept 
that has not been expressed in mathematical terms. Many 
different map projections exist and they optimize different 
properties. The transformations are in general not linear. A 
systematic treatment of cartographic projections is not intended 
here(for more detail see Bugayevskiy and Snyder 1995). 

 
 Figure 86: Perspective transformation 

 
Figure 87: Cross ratio 

 
Figure 88: Preservation of collinearity 

 
Figure 89: Puncture a balloon, glue an 
envelope shut and cut off a coupon 

Note: homomorphism and 
homeomorphism are two distinct 
concepts! 

 
Figure 90: Neighborhood 

Topological transformations preserve 
neighborhoods. 
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10. SUMMARY 
Many of the geometric constructions—especially the classical 
constructions of Euclidean geometry carried out through motions 
of rigid bodies (compass, ruler)—can be seen as translations, 
rotations, etc. and the problems of classical geometry formulated 
as transformations. These transformations have the properties of 
a group (0, inverse). Transformations can be composed. This 
makes a transformation based approach attractive, because 
composition of ordinary geometric constructions with compass 
and ruler are difficult to describe.  

Geometry as transformation relates directly to the treatment 
of geometry in computers when point positions are represented 
with coordinates, and where transformations are expressed as 
linear transformations, that is, matrices with the ordinary 
operations of linear algebra (this is the topic of chapter 9 and 
10). The relation between transformation and the properties they 
leave invariant is shown in Figure 91. 

Space is continuous and contains infinite amount of detail; 
our conceptualization and representation picks out aspects that 
are relevant for some application; different applications pick 
different aspects. It is not possible to construct a single 
representation that suits all application areas, but we demand that 
data and operations from different application areas can be 
integrated. The question is to find a most general set of 

 
Figure 91: Different transformations and what they leave invariant 



Time  101 

operations that is applicable to many representations. In this 
chapter we have shown a classification; in the following chapters 
the differentiated parts of geometry are discussed individually, 
following this classification. 

REVIEW QUESTIONS 
• Where does the impossibility to represent continuous space 

practically show? Give example form real life and from 
information system. 

• Explain the difference between physical and biological time. 
• How was non-Euclidean geometry discovered? 
• List three geometries and describe what transformations are 

permitted and what properties remain invariant. 
• Why is it important that geometric transformations form a 

group? 
• How many degrees of freedom has a projective 

transformation? How many a congruence transformation? 
• Demonstrate that affine transformations form a group. 
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Chapter 8 TIME: DURATION AND TIME POINTS 

Time is a fundamental dimension of reality: people and all other 
things exist and evolve in time. Support to manage temporal 
aspects is usually not included in GIS software but often 
demanded. For managing weather data, natural resources but 
also the cadastre and land registration, time is important(Al-Taha 
1992). 

A GIS that includes time needs a reference system to 
describe points in time, not only measured duration (chapter 6). 
This chapter deals with the conventional method of describing 
time points, for which we will also use the term 'instant' and how 
we convert time as duration (intervals) which we can measure, to 
time points, which we cannot measure. Converting and 
integrating time points observed in different reference frames 
pose a difficult problem.  

Time observations and time points are covered before we 
discuss observations and points in space. The 1-dimensionality 
of time makes it easier to discuss time and shows the issues more 
clearly than when discussing space. There are more differences 
between time and space than just the difference between 1- and 
3- dimensions. Time is fundamentally different from space: we 
can move freely in space, but not in time; time is ordered and 
there is a special point 'now', which is constantly changing. 
Position in space is observed to be able to return to this point – 
time points are observed only for synchronization, because we 
cannot return to a previous time ever. Day and night imposes on 
conventional time a regular ‘natural’ structure; space has—at 
best—an irregular structure, which we call geography.  

1. INTRODUCTION 
Time and space are the fundamental dimensions of the reality in 
which people live. Without time no change, but ‘life is change’, 
without time no life! Most GIS software today concentrates on 
the management of spatial snapshots and ignore time {Frank, 
1998 #8250}. They show the geographic reality as an 
immutable, unchanging collection of facts. This may be a carry 
over from printed maps, which focus on objects, which remain 
unchanged for long periods of time. Cartography has only 
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limited methods to represent change (Tufte 1997)[PhD. diss with 
monmonier; possibly something by ncgia – babs?]; but with 
electronic media, there is no need to concentrate on the 
immutable part of reality. GIS could provide support for time 
and changing situations and many web services provide 
constantly changing maps of, e.g., the traffic situation in a 
region. Change, not a static situation, attracts attention; it is 
difficult not to watch something moving within one’s visual 
field. Change in the socio-economic or the natural environment 
attracts the politician’s attention and we should make any effort 
possible, to build GIS that can inform about change(Frank 1998). 

Efforts to introduce time into computing, in particular into 
geographic data processing came only around 1988 with a thesis 
by Langran (Langran and Chrisman 1988; Langran 1989). The 
original NCGIA research plan (NCGIA 1989) included ‘Time’ 
as a special research focus and organized an initial meeting 
(Barrera, Frank et al. 1991) and later a specialist 
meeting(Egenhofer and Golledge 1994). In Europe a meeting 
was organized in the GISDATA series(Frank 1996). The 
Chorochronos project studied spatio-temporal databases(Frank 
2003; Sellis and Koubarakis 2003). The book by Galton gives an 
AI perspective on time (Galton 2000) and Güting and Schneider 
give a database perspective restricted to moving objects [Güting 
and Schneider]. 

2. EXPERIENCED TIME 
Time is experienced by humans in subjective, non-uniform 
ways: sometimes time flies like an arrow, sometimes waiting 
becomes unbearable and time progresses slowly. Do you 
remember how you were waiting for Christmas when you were a 
child? We will concentrate here on the objective view of time 
and assume an absolute time, which marches continuously and 
uniformly from the past through the now to the future (Figure 
92).  

We customarily use two metaphors to conceptualize time: 
we (the now) is moving in time (Figure 93), or the time is 
rushing past us and we are fixed looking towards the future 
(Figure 94)—there is no difference between the two for the 
formal treatment. The third option: where the observer looks 
towards the past and the future is approaching unseen from the 
back (Figure 95) is customary for some American Indians; it 

 
Figure 92: Time from Past to Future 

 
Figure 93: March towards the future 

Joke:  Times flies like an arrow, 
 Fruit flies like bananas. 
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seems more fitting with the facts: we know the past and do not 
know the future. 

We all are at the same point in time—the now, and can 
observe the world state at only this time. The now is the same for 
all of us and we can never return to it. This is different from 
space, where we can move freely and observe at arbitrary points, 
where different people have different perspectives. 

Time is a fundamental resource. Georg Franck has pointed 
out that a person’s time is the only resource that is fundamentally 
scarce: every person has a lifetime—just one. An economic 
assessment of the resource ‘personal time’ leads to deep insights 
in how we manage attention and explains high payments to 
celebrities and the economy of the media in general(Franck 
1998).  

3. TOTALLY ORDERED MODEL OF TIME 

Points in time are similar to points in space—they are 
dimensionless points, imbedded in the 1-dimensional time line. 
The time line is a single line, dense and continuous. (This model 
of time does not include the concept of a now). It is customary to 
represent time by real numbers and approximate them with 
floating point numbers in a computer. Using a dense and 
continuous time line allows to apply the apparatus of calculus to 
time, and later to space-time, which has demonstrated great 
merits in physics and engineering.  

Galton's model of time is totally ordered by a primitive 
relation before (<). Galton adds unboundedness to the axioms, 
stating that there is no first and last time point. Time can be 
either dense, meaning that between any two points is another 
point; or, alternatively, discrete, where there are immediately 
preceding and following time points, such that no other time 
points are in between. Either the dense or the discrete axiom 
gives together with the other axioms a consistent and 
syntactically complete set(Galton 2000). 

Totally Ordered Time < 
 irreflexivity  not ( t < t)   
 transitivity  t < u and u < v => t < v   
 linearity  if t ≠ u then either t < u or u < t  
 unboundedness For every t, exist u and v, such that u < t and t < v. 
 

 

 
Figure 94: Time rushes past us 

 
Figure 95: An Indian metaphor for time: it 
approaches us from behind 

Dense—between any two instants 
there is another instant 
Continuous—no gaps 

 
Figure 96: Axiom for discrete time 
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 dense  For every t and u, t < u  exist v such that t < v and v < u 
or 
 discrete  For every t and u, t < u, there are instants t’ and u’ such that t < t’ 

and u’ < u, and for no instant v is it the case that either t < v and v < 
t’ or u’ < v and v < u.  

4. BRANCHING TIME (TIME WITH PARTIAL ORDER) 
The ordinary ontological commitment is assuming only one 
single world, which marches through time {Frank, 2001 #9957; 
Frank, 1999 #182; Frank, 2003 #9920}. Science Fiction is using 
other models of time, where parallel universes exist in their 
separate times(Asimov 1957; Adams 1979). These branching 
times are not only interesting to construct science fiction novels, 
but necessary to deal with plans for the future and to represent 
uncertainty about the past. Branching models of time are 
necessary for Game Theory (Neumann von and Morgenstern 
1944) and can represent the uncertainty of events in the 
future(Galton 1987).  

Planning describes future states of the world. We make 
decisions between different courses of actions and reach then 
different states of the world. Alternatively, considering the 
current state of the world, we may hypothesize about different 
sequences of actions that have produced this state; this may be in 
a criminal story or describing geological processes that have 
produced the current shape of the world(Flewelling, Egenhofer 
et al. 1992). 

4.1 UNCOORDINATED REPORTS OF EVENTS 
Unrelated reports may give sequences of events, but not describe 
their relations precisely. The sequence of actions necessary to get 
to the office in the morning is the same for most of us: an alarm 
goes off, we get up, dress, have breakfast and then go to the 
office. If a day starts with both Dr. Navratil and me sleeping at 5 
o'clock in the morning and later we meet at the office at 9 
o'clock, then the events for each of us are totally ordered, but 
there is no order between events not in the same sequence; in 
chapter 16 we will introduce the notion of partial order to 
formalize this. We can not determine if I had breakfast before 
him or not (Figure 99).  

 
Figure 97: Different planned futures 

.  
Figure 98: Hypothetical different pasts 
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4.2 CRITICAL PATH 
Practically, models of branching time are for the determination 
of the critical path—that is the path that determines the minimum 
time necessary to achieve some future state. In a Critical Path (or 
Program Evaluation and Review Technique PERT) diagram, the 
arrows represent activities that have a minimal and maximal 
duration and the nodes are milestones when a defined state is 
reached (e.g. the excavation for a building is completed). It is 
then possible to calculate the earliest and the latest time possible 
a state is achieved. The path with the longest minimal time 
determines when a state can be achieved the earliest and is called 
the critical path to this event; only speeding up actions on the 
critical path leads to an earlier achievement. 

4.3 GAME THEORY 
Game theory considers in its simplest case a special case of 
branching time: in a two person game, the two adversaries have 
each one decision to make and the outcome of the game (i.e., the 
future state of the world) depends on the two decisions.  

Game theory evaluates the future state from the perspective 
of each player and gives rules, what action a rational player will 
select, and thus what you have to expect from a rational 
opponent(Neumann von and Morgenstern 1944). Game theory 
has found many applications in economy (Davis 1983) and even 
law (Baird, Gertner et al. 1994) 

4.4 PROBABILITY OF FUTURE STATES 
Sometimes the transition from a current state to a future state are 
taken with a known probability, diagrams show the combined 
probability to reach different future state. They are useful to 
assess the likelihood of serious accidents that result from the 
unlikely combination of small errors—for example in the 
management of nuclear plants. 

5. DURATION (TIME LENGTH) 
Time is measured as duration—even if it appears that we 
determine duration as the difference between two time points. 
Duration is a measurement, expressed in seconds or multiple of 
seconds. It is a ratio type (see chapter 6.9xx). For duration the 
same operations than to other measurements apply: addition, 
subtraction, multiplication and division with a scalar and ratio, 

 
Figure 99: Two totally ordered sequences 
give a partially ordered sequence 

Branching time is partially ordered 

 
Figure 100: Critical Path Diagram 
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comparing two durations (see algebra for measurements in 
chapter 6xx). 

The SI unit is the second—which is defined today as a 
number of oscillations of a well defined atomic state and 
multiples of seconds:  minutes, hours and days, based on 
traditional Babylonian divisions in 60 and 12. Week is the 
longest commonly used time unit, which has a fixed length. 
Neither month nor year have always the same length, but are 
commonly used as if they were of fixed length! 

For scientific purposes, especially astronomy, other 
definitions of day and year are used, based on the rotation of the 
earth and the movement of the earth around the sun (Figure 101). 
These exact definitions of the length of day and year seem not to 
be used in GIS. 

6. INSTANTS AND INTERVALS 
One can take instants as primitives and construct intervals from 
them (Galton 1987) or to take intervals as primitives and 
construct instants from them(Allen and Hayes 1985); we follow 
here Galton’s approach, which translates later more directly to an 
implementation. 

The technology for measuring time is measuring time 
intervals, but synchronization between clocks is so advanced that 
the illusion of measuring time points directly is achieved. 
Accurate radio signals giving time in the absolute frame of UTC 
(Coordinated Universal Time), which is the mean time of the 
Greenwich Astronomical Observatory (in London, UK) and used 
for all civilian applications.  

7. GRANULARITY OF TIME MEASUREMENTS 
Time, like space, can be investigated at different levels of 
resolution. Depending on the task we are interested in, time is 
measured in years, days, seconds, milliseconds, etc. The 
precision with which we measure time varies and is often fixed 
for application areas: in commercial banking, duration is 
measured in days and all time points within a day are considered 
as happening at the same time; banking is a cyclic operation, 
with a cycle per day(Frank 1998). In a traditional world, where 
nights of silence and rest separate days of activity, this makes 
perfect sense—but in today’s global economy, where stock is 

Figure 101: Tropical and sidereal day 

A mean tropical year has  
365.2422 SI days 
 
A sidereal day has 23 hours 56 m and 
4 seconds 

Instants have no duration, they are 
points in time.  

 
Figure 102: Measurement of duration gives 
absolute time 
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traded around the clock in one or the other stock exchange 
around the globe, such conventions lose their force. 

For administration, all events during a day or a year are 
considered concurrent, whereas events, only seconds apart but in 
different years, are treated differently. Usually days go from 
midnight 00:00 to 23:59:59, and similarly for month, year etc. 
All the customary intervals—seen as container—do include the 0 
moment, but not the ending moment.  

This is different from measurements of limited precision in 
space, where there is no dominant subdivision against which 
measurements are taken. The subdivision of space is irregular—
e.g., the political subdivision (Figure 104)—and provides a 
frame for imprecise indication of location(Bittner 1999; Bittner 
and Smith 2003; Bittner and Smith 2003; Bittner and Smith 2003 
(draft)); but this is not treated as measurement. Rome is in Italy 
is an indication of location comparable to x was born Feb 10, 
1982. 

8. ORIGIN OF THE TIME LINE 
To determine time points an origin must be selected and time 
points are determined by measuring the duration of the interval 
from the origin to the desired point. Astronomical observations 
are used to establish new, derived points of fixed and known 
distance from the selected origin. 

The origin of time systems for our western calendar, the 
supposed year of the birth of Christ is used and years are 
measured from  AD 1 following. The conventional system 
assumes a year 1 BC, immediately followed by a year AD 1 
(there is no year 0). The creation of the earth is the origin for the 
civil Hebrew calendar, conventionally at 3 760 BC, and the 
escape from Mecca of the Prophet Muhammad, 622 AC is used 
as the year 1 in the Arabic and the Persian calendar. The Hebrew 
calendar is lunisolar, the Arabic is lunar and the Persian is solar 
and in consequence the number to subtract from a western year 
varies over time. 

 The length of the year is not an even number of days but 
365.2422 days and the difference is absorbed in a leap day in 
February every 4th year, but not when the century is dividable in 
4. This current calendar is the result of the reform by Pope 
Gregory XIII in 1582; this reform was not accepted by the 

Customary Time Intervals are 
defined as half-open; they include the 
start point, but not the ending point. 

 
Figure 103: Granularity of Time 

 
Figure 104: Irregular granularity of space 

 
Figure 106: No year 0 

Around 2006 the difference between 
western and 
- Islamic year is 579 
- Hebrew year is 3760 
- Persian year is 721 
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Orthodox Church and became effective in Russia only with the 
Revolution. 

leapYear y = ((mod y 4 == 0) && (mod y 100 ≠ 0)) || 
     (mod y 1000 == 0) 

Conversion of historic dates and time is surprisingly 
complicated! The year in medieval time started with Easter, 
whereas the year today starts January first. Time within a day is 
now measured from midnight, but a few centuries ago, each 
town had its own convention. For example, Venetian time in the 
18th century counted local hours from sunset onwards, which 
varies during the year.  

Fast and regular transportation with railroads made it 
necessary to abolish a different local time for each town and to 
establish time zones. Within a time zone the local time of the 
central meridian is the uniform time for the whole zone; the 
zones are extended to what would be geometrically necessary to 
keep areas of intense commercial connections in the same time 
zone. A time point measured must be marked with the time zone 
in which it was made to allow comparison with other time 
observations in other zones.  

Daytimes are influenced by the so-called Daylight Saving 
Time (in Europe called ‘summer time’), which is a change in the 
time of a zone to 1 hour earlier than the normal time. It is 
believed to reduce the energy consumption by shifting human 
activities further to the morning. The switch between normal 
zone time ("standard" time) and Daylight Saving Time is not 
everywhere at the same date; adding complexity to the 
conventional time measuring system. 

8.1 INTEGRATION OF TIMED MEASUREMENTS FROM DIFFERENT 
TIME ZONES 
GIS integrate data collected at different locations and with 
respect to different time systems; modern data collection in 
geodesy is using UTC routinely, but other data collection efforts 
may use local time. For example, the collection of benchmark 
data for water levels at the Danube River uses  2 time zones and 
different Daylight Saving Time schemes may apply.  

Difficult is to test if two events can coincide or not, if they 
happen in different time zones and the descriptions are not 
precise. For example, can an event that happened during May 25 
in Orono, ME and an event happened during May 24 in Vienna, 

The time indicated by a sun dial 
differs up to a 15 minutes from a 
uniform, mean local time! 
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Austria, coincide. Convert both days in intervals in GMT and 
then identify the common interval (Figure 107). 

Figure 107: Time points expressed in different time zones 

9. CONVERSION OF DATES AND ARITHMETIC 
OPERATIONS WITH DATES 

The conversion of dates must consider what the origins are and 
that the numbering of days starts with 1, not with 0 as in other 
measurement lines (Figure 108). The most general way to 
compute with dates is to count them from a fixed origin. 
Convenient are dates like Jan 1, 1900, but any other date would 
be as good. It is desirable that no dates before this origin are ever 
used.  

Once conversion from the customary date descriptions to a 
number of days since an origin has been accomplished, the 
computation with dates becomes simple additions or 
subtractions. How to add 17 days to Feb 24th? The result depends 
on the year—in leap years the result is March 12 and in other 
years it is March 13.  

toDays (24 Feb, nonLeapYear) = 55 
fromDays (55 + 17, nonLeapYear) = March 13 
using formDays ( toDays(x, nonLeapYear), nonLeapYear) = x  
 or fromDaysNL . toDaysNL = id 

Time points expressed as days or hours have granularity. 
They are converted to intervals for computation. The length of 
the interval between two dates d1 and d2 expressed in days is not 
d2 – d1 but the granularity g (=1 day) must be added: d2 – d1 + 
g(Tansel, Clifford et al. 1993), or subtracted -  depending if we 
want to obtain the longest or the shortest duration between the 
two dates (Figure 109). For banking, if you pay interest, the 
longest interval is used, if you receive interest, the shortest is 
used! 

 
Figure 108: Counting of days is different 
from length 

 
Figure 109: Duration between two dates 
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10. SUMMARY 
To define the operations on time we need: 
• A value of type time, which represents measurement of time 

intervals with the regular arithmetic operations for 
measurements. 

• A type to represent time points, measured from a conventional 
origin with operations to convert conventional days into this 
type and from this type. This time with fixed origin converts 
time points in duration from the origin and makes the 
arithmetic operations for measurements applicable.  

The UTC time would fulfill these requirements and makes – 
theoretically – calculation with time and dates simple. Various 
conventions on origin of a time scale and its subdivision in years 
and month, the granularity which applies to certain types of 
events etc. make integration of times on a global scale difficult 
and the problems become even larger if somebody constructs a 
GIS for historic times! 

REVIEW QUESTIONS 
• Why are time intervals defined as half-open? 
• What is the meaning of a negative data (minus July 7)? 
• How many years between 10 BC and 10 AD? 
• What are intervals, what time points? 
• What is the difference between point 3:15 and duration (3h 

15m)? 
• Determine the date 45 days after Jan 15th? 
• How long lasted an event, starting Aug 1 and ending Aug 12? 

What is the maximal and what the minimal duration? 
 
 
 
 
 
 
 
 
 



 

Chapter 9 SPACE: METRIC OPERATIONS FOR POINTS AND 
VECTOR ALGEBRA 

Geographic Reality: 
properties are observable for each point in 3d space and time:  
F (x, y, z, t) = a 

In this chapter the familiar concept of coordinates that describe 
points is introduced. A coordinate space is an intuitive model for 
space. Goodchild used it as a foundation for his definition of 
"geographic reality"(Frank 1990; Goodchild 1990). It is an 
example of the application of a functor. Scalars, e.g. real 
numbers,  are sufficient to describe points on a line – for 
example time points—but are not sufficient for points in 2d 
space. Points and operations with points form an algebra that 
captures essential properties of our concepts of space, namely 
transformations that form group and leave distance 
invariant(Klein 1872; Blumenthal and Menger 1970). This gives 
a treatment that is independent of the dimension, but the 
discussion and the examples here are for didactic reasons in 
terms of 2-dimensional  space.  

The introduction of vectors here follows the construction of 
a module from a group and a ring as described in any algebra 
text book (Gill 1976; Mac Lane and Birkhoff 1991; Reinhardt 
and Soeder 1991). Vector algebra and vector space are abstract 
concepts that are not dependent on a coordinate frame, only their 
analytic treatment is. The algebra of vectors as it represents our 
manipulation of the geometry of rigid objects is mapped to 
computational operations on coordinates; the geometric 
properties, for example distance, are preserved across this 
transformation.  

Vector algebra is used in a GIS in many ways, most of them 
not directly visible to the user. It is used when constructing a 
parcel from bearings and distances measured between the corner 
points (Figure 110); land surveyors have used such operations in 
computer programs called COGO (Coordinate Geometry) even 
before GIS(Miller 1963; DEC 1974). 

 
Figure 110: Example of a construction of a 
new parcel using COGO 

Reminder: 
only distances and angles can be 
measured, not coordinates (not even 
with GPS)! 
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1. GEOMETRY ON A COMPUTER? 
The Greeks did geometry with ruler (straight edge) and compass. 
Lines and circles—or rather approximations for these ideal 
figures—were drawn in sand. The reasoning however was not 
about the approximate figures, but the pure concepts of point and 
line, the so called Platonic ideals. 

Descartes described in the 17th century a mapping from 
geometric construction to computations: analytical geometry was 
invented! Mapping real space to the coordinate space—the 
domain of pairs of real values—allows computational operations 
with real numbers that correspond to the geometric operations 
with ruler and compass in the plane. For example: given two 
points, the point in the middle can be computed (Figure 111). 

All the basic geometric constructions with ruler and compass 
have corresponding analytical operations. Therefore, all classical 
geometry can be redone with numbers, such that a 
homomorphism exists between the geometric construction and 
the analytical computation (Figure 111). The mapping is not an 
isomorphism, because the operations are not total: for some 
configuration, the computation fails because division by zero is 
not possible. To overcome this limitation is one of the goals of 
the following chapter 10xx. 

2. DISTANCE 
Analytical geometry is based on coordinates, which describe 
points. Coordinates are distances for which a definition will be 
given here., Distance is the length of the shortest line between 
two points, it is finding the minimum. Distance is a function 
from two points to a positive real number, with three axioms 
(Figure 112):  
(1) zero if the point is the same,  
(2) symmetric: the distance is independent of order of the two 
points, and  
(3) the triangular inequality.  
 

 

 
Figure 111: Homomorphism between 
construction and calculation 

 
Figure 112: Distance relation 
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These axioms do not uniquely define distance; many 
different formulae are possible; some examples are given, in the 
left column for the 2d case and to the right, generalized for a 
space with n-dimensions. A circle is the geometric locus of all 
points with the same distance from a given point, different 
definitions of distance gives different "circles" (Figure 114). 

 
The Minkowski-Norm with n=1 gives d (dx, dy) = dx + dy 

and is called Manhattan or taxi-cab metric (Figure 113). It gives 
the distance between any two points on a grid and is independent 
of the path: 

Distance 
  dist (A, A) =0 
 symmetry dist (A, B) = dist (B, A) 
 triangular inequality dist (A, C) <= dist (A, B) + dist (B, C) 

3. THE ALGEBRA OF VECTORS 
Our experience with the manipulation of rigid bodies gives us 
some insight in the rules regulating operations with them: 
distance between points must be preserved; translations can be 
added, etc. From the formulation of such rules follow axioms for 
the operations with vectors. Vectors form an algebraic structure, 
called a vector space. We first give the algebraic structure in this 
section and then show in the following sections, how the axioms 
are justified by the geometric experience we have with rigid 
bodies.  

3.1 THE ALGEBRAIC STRUCTURE MODULE 
A vector space is a module over a field which consists of two 
kinds of things: vectors, which are a commutative group (M; +, 
0) and scalars, which form a ring with unit (Q; +; *, 0, 1). These 

 
Figure 113: Manhattan or taxi-cab metric 

 
Figure 114: Circles for different distance 
definitions(Minkowski Norm n) 

Group (M, +, 0) 
Operation: +, -  
Rules: associative 
(a+b)+c = a +(b+c) 
Existence of identity 
a+ 0 = 0 + a = a 
Existence of inverse 
(-x) + x = 0 

Ring (Q, +, *, 0) 
A ring is a group with an additional 
operation, usually described as * 
which is distributive 
 a * (b + c) = a * b + a * c 
(a + b) * c = a *c + b * c  
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vectors and scalars are combined with an external operator scalar 
multiplication “·”. 

Note: The term "module" describes an algebraic structure 
and has no connection to the use of the same term in software 
engineering. 

Module <.> with group <M, +, >) and Ring with unit <Q, +, *, 0, 1> 
for all q, p,.. from Q and all a,b,… from M 
 q . (a + b) = q . a + q . b 
 (q + p) . a = q . a + p . a 
 (q*p) · a = q · (p · a)    
 1 · a = a 

3.2 LEFT AND RIGHT MODULES 
The scalar multiplication above was q · v, which is a left 
module, because the multiplication with the scalar is from the 
left. A right module has the similar rules, but the scalar 
multiplication is v · q. The right and left module are dual to each 
other; if the multiplication of scalars is commutative (which is 
the case for real numbers!) then v.k = k.v. 

4. GEOMETRIC INTERPRETATION OF VECTOR 
OPERATIONS IN 2 DIMENSIONS 

Vectors are imagined as translation arrows in n-space. All 
vectors of the same length and direction result in the same 
translation, they are in one equivalence class. The zero vector 
has length 0. Vectors are added by joining them geometrically 
(Figure 115); this construction is commutative (a+b=b+a) and 
the zero is a unit, that is, they form a group. 

Multiplication of a vector with a scalar s extends the vector s 
times, keeping the direction (Figure 116). This multiplication is 
distributive over addition,  etc. (Figure 117, Error! Reference 
source not found., Figure 118). 

5. GENERALIZATION: THE MODULE OF N-TUPLES 
OVER R 

The figures above were all for 2-dimensional space, but the 
arguments are independent of dimension and valid for n-
dimensional space. For n-tuples of scalars, we define a pointwise 
addition and a pointwise multiplication with a scalar: 

 
Figure 115: Addition of vectors 

A vector space is a module where the 
scalars from a field (in practice: the 
real numbers)  

.= q.a + p.a 

 
Figure 116: Geometric idea of vmult 

 
Figure 117: Multiplication is distributive 
over addition 

Geometric vectors form a vector space, i.e. 
a module over a field (usually the real 
numbers). 
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(s + t)i = (si + ti) 
(s * k)i = (si * k). 

Pointwise addition is commutative and has as a unit the n-
tuple (0,0,…0). Scalar multiplication is distributive over sum. 
The next section shows that these pointwise operations 
correspond to the geometric interpretation. 

Note that this pointwise addition and multiplication with 
scalar for n-tuples is the same as the corresponding operations 
for polynomials. Polynomials form a module as well! 

p = p1 * x1 + p2 * x2 … pi * xi = Σ pi * xi 
p+q = Σ (pi + qi) * xi 
p * k = Σ (pi * k) * xi. 

6. SUBSPACES 
Vector spaces show an important experience we have with 
space: they have subspaces and these are orderd by dimension. 
Two dimensional space is a subspace of 3 dimensional space. 
Subspaces are closed under the operations, a 2 dimensional 
translation remains always in the same 2 dimensional subspace 
(e.g. the surface of the table).  

The dimension of a subspace is the minimal number of 
vectors which are necessary to span the space. The minimal set 
of vectors that span a subspace are linearly independent (as 
defined in the next subsection). Vector spaces with the same 
dimension are isomorphic, if we study one, we know them all! 

7. POINTS IN SPACE: POSITION EXPRESSED AS 
COORDINATES 

Coordinates are a mapping of points in n-dimensional space to n-
tuples of scalars. The space is spanned by n base vectors (e1, 
e2,… en) and each n-tuple of coordinate values (This is often 
done in text books). from the field of reals corresponds to the 
point when multiplying the base vectors pointwise with the 
scalars in the n-tuple and adding them: 

v = (vi) . (bi) where v = (v1, v2, … vn)  - the coordinate values 

 
Figure 118: q . (p.a) = (q*p) . a 

 
Figure 119: 2d base vectors 

  
Figure 120: 3d base vectors 
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ei = (n1, n2 .. nm) = (0, … , 1, … 0) with ni = 1 and all others 0.  
      – the base vectors 
p = Σ vi * ei   - the vector with coordinates v 

 The base vectors must be linearly independent. Linear 
independence means, there is no n-tuple of scalars si not all 0, 
such that sum si * ei = 0; this is equivalent to say that the 
mapping from scalars si to vectors v have kernel 0. The n-tuples  
will be called coordinates of a vector; the mapping is 
isomorphic, and we identify an n-vector with the corresponding 
n-tuple (for a given basis) (Mac Lane and Birkhoff 1991, 195).  

In general, the base vectors (unit vectors) need not be 
orthogonal and their length need not be the same. The 
orthogonal base for a vector space are the unit vectors (1,0), 
(0,1) or (1,0,0), (0,1,0), (0,0,1) in 2 respective 3-dimensions. 

The vector operations defined geometrically map to the 
corresponding operations on coordinates. Figure 123 shows how 
addition is done component-wise. Figure 124 shows that 
multiplication is equally component-wise. 

8. RIGHT HANDED SYSTEM OF VECTORS 
A vector space is called right handed, if the vectors x, y, z in the 
order given are in a configuration like the first three fingers of 
the right hand. Mathematically, locking down the positive z-
axis, turning the first coordinate axis towards the second axis in 

a positive direction, gives a right handed system. 
Surveyors often use a left handed system, with north axis 

and east axis (north and easting as coordinates) and z (height) 
upwards. They measure the angles clockwise from North axis to 
east axis as positive: 

9. VECTOR IS A FUNCTOR FROM SCALARS TO POINTS 
The construction of vectors as tuples of scalars, typically real 
numbers, is a functor. It maps the scalars to vectors (tuples) for 
which the new operations obey the same axioms as for the 
scalars. This mapping is a (group) morphism, because it 
preserves the axioms. The unit of scalars maps to the unit of 
vectors and composition is the composition of the mapped 
values. Consider the special mapping, which maps every real x 
to the pair (x,0). It is seen that this is a group isomorphism for 
plus and multiplication with a real maps to scalar multiplication.  

 
Figure 121: The mapping from (λ, μ) to a 
2d point 

 

Figure 122: The mapping from (λ, μ, ν) to a 
3d point 

 

 
Figure 123: Addition is component-wise 

 
Figure 124: Multiplication is component-
wise 

Figure 125: Right handed coordinate 
system 

 
Figure 126: Positive turning 

Positive turning direction: 
Mathematically defined 
(conventionally) as counterclockwise. 
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Unitary operations, e.g., +x, are mapped to +(x,0). The 
composition of an operation +y with another operation +z maps 
also and the identity operation is the mapping of +0: 

 

10. VECTOR OPERATIONS  
Our interpretation of vectors in space allows the expression of a 
number of geometric properties as operations on vectors. Three 
additional operations for vectors that have strong geometric 
properties are customary. They are useful to test for geometric 
properties and to give computational equivalent expression for 
geometric constructions(McCoy and Berger 1977, 433): 
• inner (dot) product, 
• cross product, and 
• triple product. 

This completes the program of analytical geometry: 
geometric properties are translated in algebraic properties and 
geometric operations are translated in algebraic operations. The 
defining axioms represent the geometric intuition and 
coordinates are not used for the definitions, but we show how the 
operations are translated to basic operations with coordinate 
values. 

10.1 THE INNER (DOT, SCALAR) PRODUCT OF TWO VECTORS 
The inner product of two vectors gives a scalar. Its definition is 
valid for all dimensions. For 2- and 3- dimensional space, it has 
interesting geometric properties. In geometry texts, the scalar 
product is written with a dot (but not the same dot as for 
composition of functions!), but sometimes it is written with 
brackets (<,>).  

Inner (dot) product . :: vector -> vector -> scalar 
 commutative  a· b = b· a 
 distributive  a· (b+c) = a · b + a · c  
 a sort of associative law  s (a · b) = (s * a · b)  
  a · 0 = 0 = b· 0 

 
Figure 127: Geodesist use often left handed 
coordinate systems 

 
Figure 128: Orthogonal vectors 
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For tuples (a1,.. an) the inner product is defined as pointwise 
multiplication 

(a1, a2, … an) dot (b1, b2, … bn) = (a1*b1, a2*b2, … an*bn). 
This gives for example for the 2-dimensional vectors previously 
introduced 

(x1 y1) · (x2 y2) = (x1*x2, y1*y2). 

Pointwise multiplication gives immediately the commutative and 
the distributive property from the corresponding properties of the 
multiplication in the ring of which the elements are formed from; 
associativity is also achieved. 

 

10.1.1 Norm: the length of a vector 
The inner product of a vector with itself is the square of its 
length and called norm |a|, which gives the ordinary Euclidean 
distance (Figure 129). It is easy to show that the norm satisfies 
the axioms for distances (a = 0, |a| = 0, |-a| = |a|, etc.)). 

norm a =  sqrt (a ·  a) 

10.1.2 Angels between vectors 
The inner product leads to the definition of angles between to 
vectors, which follows from the expression: 

a · b = |a| *|b| * cos (a,b)  
   where (a,b) denotes the angle between the two vectors 
cos (a,b) =  (a · b ) / | a |  * | b | 

One can interpret a cos (a,b) as the projection of the vector a 
onto the vector b (Figure 130), which links directly to the proof 
of the Cauchy-Schwarz-inequality (further reading on this 
important linkage between geometry and linear algebra see 
http://en.wikipedia.org/wiki/Inner_product_space). 

10.1.3 Test for orthogonality 
For two non-zero vectors, the inner product is zero if the two 
vectors are orthogonal (i.e., the angle between them is π/2), 
because then v1 = (x1, y1) and v2= (x2, y2) where x2= -y1 and 
y2=x1. Orthogonality depends on the orthogonality of the base 
vectors. 

 

 
Figure 129 

 
Figure 130: ab = |a| * cos (a,b) 
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Figure 131 

By definition, the 0 vector is orthogonal to every vector. 

10.1.4 Unit vector in the direction of a given vector 
It is convenient to compute a vector in the direction of a given 
vector but of known length (for example to compare the 
direction of two vectors).  

 unitVec :: m -> m -- a vector of unit length in direction of v 
unitVec v = vmult (1/norm v) . v 

10.1.5 Test for Parallel and antiparallel vectors 
The dot product can be used to derive a condition for parallel and 
antiparallel (parallel but in opposite directions): the inner product 
divided by the product of the norms is for parallel vectors 1, for 
antiparallel it is -1 (Figure 133). 

10.2 VECTOR (CROSS, OUTER) PRODUCT FOR 3D SPACE 
The operation cross product is defined only for spaces with 3-
dimensions. It takes two vectors and produces a vector. The 
vector product is a vector orthogonal on the two vectors and its 
length is the area of the parallelogram of the two vectors. The 
three vectors form — in a right handed vector space —a right-
handed system. 

A generalization for this operation available only in 3d space 
follows later to achieve dimension independent operations 
(chapter 20); the special case is useful for understanding the 

 
Figure 132 

 
Figure 133: Parallel and anti-parallel 
vectors 
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construction in chapter 19 and connects with high-school 
mathematics. 

Definition of Cross Product × :: vector -> vector -> vector 
  a× a = 0 
  anticommutative  a × b = - b × a  
 Distributive:  a× (b + c) = a × b + a × c, (a+b) × c= (a × c) + (b × c) 
 Sort of associative:  s (a × b) = (s a) × b 

10.2.1 Definition 3d vectors 
For coordinates, the computation is  

 (×) :: vec -> vec -> vec  
(x1 y1 z1) × (x2 y2 z2) = 
  (y1*z2 - z1*y2) (z1*x2 - x1*z2) (x1*y2 - 
y1*x2).  

This product derives from the regular multiplication of 
polynomials, if we assume the following equalities for products 
of base vectors: 

e1 × e2 = e3, e2 × e3 = e1, e3 × e1 = e2 and ei × ei = 0 for i= 1, 2 … 

10.2.2 Test for collinearity 
a × b is zero, when a and b are collinear, in particular is a × a = 
0.  

10.2.3 Area between two vectors 
The area between two vectors in 3d space is computed as (Figure 
135)  

area a b = norm (a  × b) /2. 

 

10.2.4 Collinear 
Two vectors are collinear if the vecProd is 0; this does not 
depend on the orthogonality of the base vectors. 

Collinear a b = varea a b == 0 -- or a× b == 0 
 Because sin α = 0 

The 0 vector is collinear with every vector. 

10.3 SCALAR TRIPLE PRODUCT (GERMAN: SPATPRODUKT) 
This operation combines three vectors yielding a scalar. It is a 
combination of a cross product and an inner product. It is only 

 
Figure 134 

 
Figure 135: Area between two vectors 
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defined for vectors in 3d space, but can be generalized for n-
dimensional vectors (see chapter 20).  

Triple Product Triple :: vec -> vec -> vec -> scalar.  
 Cyclic permutations Triple a b c = triple c a b = triple b c a 

The scalar triple product is the same as the determinant of a 3 by 
3 matrix (see chapter 10). It is signed. The triple product gives 
six times the volume of the parallelepiped of three vectors a b c. 
It is defined as:  

<a, b, c> = a · (b × c) = (a × b) · c  
The triple product is zero if the three vectors are coplanar. 

Coplanar a b c = triple a b c == 0 

11. COORDINATE SYSTEMS 
To establish a conventional (orthogonal) coordinate system 
requires an origin, a direction for the axis and a unit length for 
each dimension. the second axis is then orthogonal to the first 
and the unit vector has the same length (Figure 137). The values 
are of type length (meter in the SI system).  

The conventional geodetic system—WGS 84—takes the 
center of gravity of the earth as the origin, the direction of the 
rotational axis and the two orthogonal vectors are fixed such that 
one crosses the meridian of the old observatory in Greenwich 
(near London, UK). Most countries use local coordinate systems 
that are defined as projections from the earth surface to some 
convenient surface (cylinder or cones).  

12. SUMMARY 
The algebra for vectors is closed. The result of the operations is 
of the types other operations expect as inputs, which permits 
combinations of them in formulae of arbitrary complexity. This 
vector algebra for 2 and 3 dimensions generally used is the 
specialization of a vector a 2 or 3 dimensional subspace of a 
vector space. It is the result of constructing pairs or 3-tuples of 
real numbers with a functor. 

The operations added to the standard operations of a vector 
space have useful geometric interpretation: 

• Length of a vector is the norm ( sqrt (a · a)),  
• Area of between two vectors (1/2 norm (a × b)) 
• Construction of a vector orthogonal to two given ones (a × b) 
• Volume spanned by three vectors (1/6 triple (a,b,c)) 

 
Figure 136: The volume of a pyramid 

 
Figure 137: Definition of a coordinate 
system with origin, direction of axis and 
unit length.  
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• Collinearity and coplanarity (a x b = 0, triple (a,b,c) =0) 
The operations are total (with the exception of computing the 

angle between two vectors). 
Vectors form a vector space, which has a set of useful 

properties; geometric vectors provide a instructive example for a 
vector space, but the generalization is very fruitful and 
applicable in many situations which are not directly geometric. 
We will later use a vector space with functions (chapter 31) to 
describe movement of objects in time. 

REVIEW QUESTIONS 
• Demonstrate that pointwise multiplication of an n-tuple with a 

scalar s is distributive over addition. 
• What is the difference between a right handed and a left 

handed system? 
• Give definition of azimuth in geodesy? 
• Explain dot and cross product. What are geometric 

interpretations, how is it computed? 
• How do you determine if two vectors in a plane are 

orthogonal? 
• How to compute the area of a triangle with vector operations?  
• Why is the construction of vectors a functor? What needs to 

be demonstrated? 
• What is meant by stating that surveyors use a left-handed 

coordinate system? 
• What are the axioms for distance? Is the cost of a taxi ride a 

distance function? When is it? When not? 
• Show that the cross product has the desired properties. 
• Derive a formula for the computation of the area of a 2d 

triangle given by the two vectors AB and AC. 
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Chapter 10 LINEAR TRANSFORMATIONS OF COORDINATE 
SPACE 

Geometric transformation capture geometric 
properties(Blumenthal and Menger 1970); this chapter 
concentrates on linear transformations that transform straight 
lines into straight lines and preserve collinearity and incidence, 
that is, the intersection of two lines map to the intersection of the 
mapped lines. This is the geometry of projections. Linear 
transformations are part of linear algebra. 

These transformations are expressed as vector operations, 
and do not access the coordinates directly, which demonstrate 
that the operations are independent of the details of the 
underlying coordinate systems. The discussion here is using 
examples from 2d and 3d space, but the result is independent of 
the dimension of the space; it applies to situations in a space-
time continuum of 4 dimension or even higher dimensional 
spaces.  

Matrices describe transformations 

Matrices represent transformations of coordinate systems 
and a number of geometric problems can be expressed as 
transformations between different coordinate systems, including 
perspective projections. These are automorphism, they are 
morphism (mappings) from space to space.  The introduction of 
matrix operations is motivated by spatial transformations 
(rotations). The purpose of the chapter is to describe the general 
linear transformation, such that transformation can be combined 
by multiplication.  

Focus of chapter: 
Automorphism of space. 

The theory described here is applied when transforming or 
producing images in a GIS; for example the construction of the 
view of a landscape is using the projective transformation 
described at the end of the chapter. The inverse problem to 
construct a map given photographs is the domain of 
photogrammetry (Förstner and Wrobel Draft) and image 
processing; the material in this chapter is very similar to the 
foundations used today in modern treatment(Faugeras 1993; 
Hartley and Zisserman 2000). 

Linear transformations preserve 
collinearity and incidence. 

 
Figure 138: Incidence relations are 
preserved by linear transformations 
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1. LINEAR ALGEBRA—THE ALGEBRA OF LINEAR 
TRANSFORMATIONS 

Linear algebra is among the best explored algebraic structures. 
Transformations that preserve collinearity between different 
coordinate systems are represented as linear transformation and 
can be represented as matrices. 

Many geometric transformations are linear transformations. 
For example, stretching figures in one direction by a constant 
factor, reflection on a line through the origin, etc. are all linear 
transformations. They carry straight lines into straight lines, 
planes to planes, etc. or more generally, geodesics transform to 
geodesic, such that incidence is preserved: the transformed 
intersection point is the intersection point of the transformed 
lines. 

The composition of two linear transformations is again a 
linear transformation. This chapter shows, how composition of 
linear transformations can be computed as multiplication of the 
single transformations (Figure 140). This chapter shows the 
different transformation matrices that correspond to the typical 
linear transformations like translation, rotation, perspective 
projection, etc..  

Multiplicative transformations must leave invariant the 
origin of the coordinate system; it is not possible to combine 
translations—which move the origin of the coordinate system—
with rotations and other transformations directly. We extend the 
representation and go from n-dimension to n+1-dimensions. 
This chapter will introduce these so-called homogenous 
coordinates and we will see that the transformation from 
ordinary to homogenous coordinates is a functor. 

2. LINEAR TRANSFORMATIONS 
A linear transformation is any transformation t: R -> R’ which is 
an automorphism between R and R’, is additive and homogenous 
(k is a scalar, t is a linear transformation) 

t (a + b) = t (a) + t (b)  additive 
t (k * a) = k * (t (a))  homogenous 

The treatment here uses the right multiplication for the scalar 
(see chapter 9) alternatively a left multiplication with the same 
rules is possible and defines the dual algebra, which will be used 
later in chapter 19. For vector spaces over commutative rings, 
and the real numbers form a commutative ring, the left and the 

 
Figure 139: General linear 
transformations preserve collinearity 

 
Figure 140: Composition of Linear 
Transformation maps to multiplication of 
matrices 

Linear independence means that 
there are no scalars a,b,c not equal 
zero for which  
 a . u + b . v + c . w .... = 0 
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right module is isomorphic. We nevertheless stress this duality 
which maps directly to the duality between points and lines used 
in the next chapter. 

3. TRANSFORMATIONS OF VECTOR SPACES 
Linear transformations are usually seen as a transformation of a 
figure (Figure 141) but an alternative view  of the transformation 
as a transformation of space is possible: A vector describes a 
point as a list of scalars to multiply a list of base vectors with; 
selecting different base vectors a different vector results for the 
same point. This is a transformation of space to itself: to every 
point belongs a set of coordinates with respect to the first and to 
the second set of base vectors. This is difficult to visualize, 
because the point remains the same (Figure 142), but we can 
imagine that the base vectors remain fixed and then see where 
points are mapped (Figure 141). 

4. DEFINITION OF MATRIX 
Linear transformations are important enough to warrant an 
algebra, the algebra of matrices. A matrix represents a 
transformation between two vector spaces, each with a base. The 
columns of the matrix of a transformation are the transforms of 
the unit vector from the base (see Figure 151). 

A matrix can be seen as a function from indices to a scalar 
value (Figure 143): 

m :: Int -> Int -> Scalar. 
It is  written as A = [aij]. 
Matrices form a vector space, i.e. a special module (see chapter 
9xx). 

4.1 DIMENSION 
The dimension of a matrix is the number of rows and columns. 
Mind, that a matrix with dimension 1 by 1 is not the same as a 
scalar value. One is a matrix with one element, the other is a 
scalar!.  

4.2 POINTWISE DEFINITION OF ADDITION AND SCALAR 
MULTIPLICATION 
Addition of two matrices of same dimension is pointwise sum 
(like for vectors) and the multiplication with a scalar is the 
multiplication of each element by the scalar.  

 
Figure 141: The image of the same figure 
before and after transformation  

 
Figure 142: The same figure in two 
coordinate systems 

Think of a matrix as a 
transformation! 

 
Figure 143: A matrix 

[3.2] ≠ 3.2 
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Figure 144: Σ aij + bij 

Figure 145: Multiplication of matrix with scala: (s * a)ij = s * a ij 

4.3 UNIT MATRICES FOR ADDITION  
The zero matrices (the units for addition) are the matrices with 
all elements equal zero; they are written as 0 but there exist a 
different zero matrix for every dimension. 

4.4 MATRIX MULTIPLICATION 
The multiplication of two matrices producing a matrix is a new 
operation; written as "*", but often without a symbol, AB 
meaning the multiplication of A with B. 

matMult :: mat -> mat -> mat 

The multiplication of two matrices is defined as the inner 
product of the column and row vectors in all combinations; it is 
only defined if the number of rows of the first matrix is the same 
as the number of columns of the second one. This definition 
assures that the composition of linear transformation is 
multiplication of the corresponding matrices (Mac Lane and 
Birkhoff 1991, p. 225). 

Figure 147: Multiplication of two matrices 
This multiplication is associative, but not commutative A B ≠ B 
A.  

 

 
Figure 146: The zero matrix 



Frank: GIS Theory Draft V15                             Feb.05          128

 

4.5 UNIT FOR MULTIPLICATION 
The unit matrices for the multiplication are the a square matrices 
I with all ones in the diagonal and the non-diagonal elements 
equal to zero. Then A * I = A for any A (with the right dimension 
for I).  Unit matrices can be constructed for any dimension. One 
can think of the I matrix as a collection of the base vectors for 
this dimension. The unit matrix I can be defined with the 
Kronecker δ: 

iij = δij 
  where δik = 1 for i=k and 0 for i≠k. 
 

4.6 TRANSPOSE 
The transpose of a matrix is the matrix with rows and columns 
exchanged. The transposed matrix is the mirror image around the 
diagonal. 

AT
 ij = A ji 

For transposed matrices AB = BT AT applies 
A * v = t  vT * AT = tT. 

From these definition follows, that we can use a given a matrix 
multiplication to multiply vectors: If we think of vectors as a 
matrix of a single column, then we have to transpose the first 
matrix before the multiplication: a · b = AT B.  

 

4.7 RANK 
The rank of the matrix corresponds to the dimension of the 
vector space that is spanned by the matrix, taken the columns as 

 
Figure 148: One matrix 



Linear Transformations 129 

base vectors. It counts how many linearly independent vectors it 
consists of. The rank of a matrix and the rank of its transposed is 
the same; the rows can be considered to check rank as easily as 
the columns. The rank of a matrix is the same as the dimension 
of the vector space it spans.  

rank (A) = rank (AT) 

4.8 DETERMINANT 
The determinant is a multilinear, alternating form. It is zero if 
any two rows or columns are linearly dependent on each other. 
The determinant of a 2 by 2 or 3 by 3 matrix is computed as the 
sum of the products along the main diagonals minus the sum of 
the product along the minor diagonal. 

The determinant of larger matrices is by recursively 
expanding it to a column (row) to the alternating sum of the 
elements of this column times the smaller determinant of the 
matrix with this column and row crossed out (Figure 150).  

 
Figure 150: Determinant of 3 by 3 matrix 

The scalar triple product is the determinant of a 3 by 3 
matrix constructed from the joining of the three vectors.  

tripleProd a b c = (a . (b x c)) = det [a,b,c] 

Square matrices 
  det A = det (transp A) 
  det (A * B) = det A * det B 
  det k * A = kn * det A (where n is the dimension of A) 

4.9 COFACTOR AND ADJOINT MATRIX 
In general, a matrix such that each entry is the value of the 
determinant of the original matrix with the row and column of 
the element crossed out, is called the cofactor matrix.  

Figure 149Determinant as sum of products 
of main diagonal minus product of minor 
diagonal 
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Cof :: matrix -> matrix. 

 
The transposed of the cofactor matrix is called the adjoint. 

a · cof (A)T  = det A ·I 
adj A = transp (cof A)T. 

4.10 INVERSES MATRIX 
Square, non-singular, matrices have inverses, such that: 

A A –1 = I. 
A square matrix is singular if its rank is less than its dimension. 
The determinant of a singular matrix is zero. The inverse can be 
computed as the adjoint matrix multiplied with the inverse of the 
determinant of the matrix, which is a scalar (never 0 for a non-
singular matrix!) 

a-1 = (cof a)T * (1/det a) 

4.11 ORTHOGONAL AND ORTHNORMAL MATRICES 
Matrices where all the row vectors are orthogonal (i.e., the 
pairwise inner product equal zero) are called orthogonal. If all 
the vectors have length 1, then the matrix is normal. For 
orthonormal matrices, matrices with orthogonal and normal 
vectors, the determinant is either 1 or –1. The inverse of an 
orthonormal matrix is the transposed. The product of orthogonal 
matrices is again orthogonal. 

4.12 ELEMENTARY OPERATIONS AND EQUIVALENCE OF 
MATRICES 
Two m x n matrices A and B are equivalent if there is a sequence 
of elementary operations on rows and columns carrying A to B 
(Mac Lane and Birkhoff 1991, 225-229). Elementary operations 
are: 
• Exchanging two rows (or column) 
• Multiplying a row (or column) by a scalar 
• Adding a multiple of one column (or row) to another column 

(or row) 
Matrix 
 Not commutative A * B ≠ B * A 
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  (A * B) T = BT * AT 

The effects of elementary operations on the determinant are: 
• Exchanging two rows (or columns) multiplies the determinant 

by –1 (alternating form) 
• Multiplying a row (or column) by a scalar multiplies the 

determinant by the same scalar (multilinearity) 
• Adding a multiple of one column to another column (or row) 

leaves the determinant unchanged.  

5. TRANSFORMATIONS BETWEEN VECTOR BASES 
The problem of transforming coordinates (pu, pv) expressed as 
factors to a list of base vectors u, v… into the coordinates (px, py) 
as factors to a list of base vectors x, y .. , requires that we have 
the coordinates for the vectors u, v in the system given by x, y. 
These are u = (xu, yu) and v = (xv, yv). The transformation 
between coordinates expressed in different base vectors, but with 
the same origin, is for the 2d case: 

 

 
Given p in system uv 
Find p’ in system xy 
 1. find u', v' in system xy: (xu, yu), (xv, yv) 
 2. write them as columns T= [u’, v’] gives p = T 
* p'  
 3. invert matrix; this is the transformation 
matrix: p’ = T-1 p 
Proof: T [u,v] = [u’, v’]-1 [u,v] = I 

This is a linear transformation where the base vectors expressed 
as coordinates of the new base give the inverse transformation 
matrix. The multiplication of the matrix was defined as the 
multiplication of a sequence of vectors with the point vector to 
be transformed (dot product). The vectors in the matrix are the 
coordinates of the old base vectors in the new base. This justifies 
the definition for matrix multiplication introduced before. 

 
Figure 151: Transformation of a vector 
from x-y to u-v coordinate system 
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Note:  
The transformation of a vector v by a matrix M is 
written as M v, similar to the transformation of a value 
by a function (f x). The vector v is a column vector. 
Some texts use the alternative notation of vT MT, 
multiplying the row vector by a matrix from the right. 
In this case, the matrix is the transposed matrix to our 
notation. 

6. LINEAR TRANSFORMATIONS FORM A VECTOR SPACE 
Translations, rotation, perspective projections, etc. are linear 
transformations. We have seen before that these transformations 
form groups, but they also form a vector space! 

6.1 TRANSLATIONS 
Translation of a vector by a translation vector is vector addition 
(pointwise addition). The operations for translations are the same 
operations than for vectors and we can identify the translations 
and the corresponding translation vectors. Translations form a 
vector space. This can be ‘unified’ to an understanding of ‘Each 
vector represents the point, to which the origin is translated with 
this vector”. The operations are the same for both interpretations.  

A translation cannot be expressed as a matrix multiplication, 
because a matrix multiplication is a group isomorphism. The 
translation is a bijective mapping (see chapter 5) but not an 
isomorphism of vector space. Observe that the 0 vector is 
mapped by a translation F (t) to the vector t. This violates the 
condition for an isomorphism, where the 0 must be mapped to 
the 0 (the kernel of F (t)) must be the unit. 

f (a + 0) = f (a) = a + t 
f a + f 0 = a + t + t 

6.2 ROTATIONS 
Rotations are a group and they form, a vector space. The rotation 
of a vector by an angle alpha results in a vector:  

 
The composition of rotations is just matrix multiplication: R1 
(R2 v) = (R1 * R2) v. Rotation is a bijection, which is an 
isomorphism; it maps the 0 to the 0. We see here that in a vector 
space, the origin (the unit) plays a special role (Mac Lane and 
Birkhoff 1991). 

 
Figure 152: Addition of translation 

two different interpretations for a 
vector:  
as a point 
as a transformation (translation). 

Universal mapping property for an 
isomorphism: 
Kernel f = {units} 

 
Figure 153: Rotation 

Kernel R = {0} 
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6.3 SIMILARITY AND AFFINE TRANSFORMATIONS 
The general similarity transformation has 4 degrees of freedom, 
scale, rotation angle and two translation values. It can be written 
as a matrix followed by a translation with a vector t= (tx, ty). 

 
The affine transformation is composed of a non-uniform scaling 
by a non-singular 2 by 2 matrix followed by a translation and 
rotation. It cannot be expressed as a single 2 by 2 matrix. The 
similarity transformation has 6 degrees of freedom: 

 

7. GENERAL LINEAR TRANSFORMATIONS 
Can we unify all the transformations in a single framework? All 
transformations preserving collinearity should compose to form 
other transformations which again preserve collinearity. The 
general linear transformations form the ‘General Linear Group’ 
GL(n,F), where n is the rank and F the field over which the 
transformations are constructed; the field is in this case usually 
the field of real numbers. They are the invertible, non-singular 
matrices of size n × n. It is isomorphic to the group of 
automorphism of any n-dimensional vector space V over F (Mac 
Lane and Birkhoff 1991, 247). 

The general linear group for n does not include all the 
transformations in n-dimensional space preserving incidence we 
are interested in. A similarity transformation preserving 
incidence for a space of dimension v could be written as a 
rotation and a translation: x’ = A · x + b, where A is a matrix of 
dimension v * v, b a vector of dimension v. This transformation, 
expressed in the form of translation and rotation, cannot be 
composed through matrix multiplication, because they do not 
leave the origin at the same place. Composition of 
transformation by matrix multiplication means that a 
transformation composed of first t1 and then t2 is the single 
transformation t12= t1 t2, which can be applied to all points p. 
This is only possible, if t (0) = 0. 

In order to bring translations and rotations—and some other 
transformations—in a single system, we have to add a dimension 
(from 2d to 3d, from 3d to 4d) . We keep the origin of this higher 
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dimensional space fixed, but move the point to which the origin 
of the space of interest maps to. For these homogenous vectors, 
the transformations map the origin to the origin; this means 
going to the projective space. We map n vectors to the 
corresponding homogenous n+1 vectors with a functor.   

The 2d plane of interest is embedded into a 3d space as 
shown in Figure 155. A line through the origin and all its points 
are the equivalent representations of a point in the 2d plane (so 
called homogeneity). This is a interpretation of the projective 
plane, which we will introduce later (chapter 19). Adding one 
dimension w is sufficient to achieve the purpose of composition 
of linear transformations by matrix multiplication: 

N (M a) = (N matmult M) a. 

Consider the plane of the w axis and point p (Figure 156). 
The translation of p by t becomes a rotation followed by a 
change of scale—and scale transformation can be ignored, 
because p1 is (homogenous) equivalent to p'.  

7.1 HOMOGENOUS COORDINATE SYSTEM  
Homogenous coordinates were invented by Maxwell (1831-
1879) to have a well-behaved algebra for geometric objects, 
points, lines, areas, and transformations. Note, that 2d vectors do 
not behave nicely—remember that cross product is not defined, 
but 3d, 4d (so-called quaternions, often used in geodesy for 3d 
space and time) and 8d vectors allow definitions for a 
multiplication with (some of) the regular properties, in 3d space 
this is the cross product.  

Homogenous coordinates were used in computer graphics 
(Newman and Sproull 1981; Foyley and van Dam 1982) because 
they avoid divisions, which were with the hardware of the 1970s 
and 1980s much more time consuming than additions and 
multiplications. All divisions in a computation are collected in 
the scale factor that is applied only at the very end. This 
performance consideration is not important today, but the same 
property makes homogenous coordinates helpful to construct 
total functions: they avoid divisions, and divisions are an 
important place where functions become non-total! The purpose 
is to write equations for total functions in homogenous 
coordinates—that is, using the projective plane—where ordinary 
formulae would yield non-total functions.  

 
Figure 155: The point p and all points 
equivalent in homogenous space 

 
Figure 156: Translation becomes a 
rotation and a scale change 

Homogeneity: 
The algebraic entity a is called 
homogenous if a and λa, with λ≠0 
represent the same geometric entity 
(Förstner and Wrobel Draft) 
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7.2 MAPPING FROM REGULAR 2D TO HOMOGENOUS 3D 
COORDINATES 
The transformation of regular 2d coordinates to homogenous 
coordinates is by adding the homogenous coordinate with w = 1. 
The transformation from homogenous to Euclidean 2d is by 
dividing the x and y values by the (scale factor) w. 

Many texts add the 'homogenous coordinate' (the 1) at the 
end of the vector. To prepare for a dimension independent 
formalization, we have the first element in the vector represent 
the homogenous value. This mapping is a functor.  

7.3 TRANSFORMATIONS 
The transformations we have seen before can all be expressed as 
matrices in homogenous coordinates. Complex transformations, 
like similarity and affine are composed by multiplication. But 
now we can also include scale changes and translations and even 
perspective projection can be expressed  (as a mapping from 3-
dimensional space to a plane in 3-dimensional space): Assume 
that the optical plane of the lens is in the x1, x2 plane(Stolfi 
1991p. 74; Förstner and Wrobel Draft): 

 

 

 
Figure 159:Transformation of points in 2d 

8. SPECIAL CASE: SIMILARITY TRANSFORMATIONS IN 
2D 

The determination of a transformation of three points given in 
two coordinate systems (a,b,c and a', b', c') is  

 
Figure 157: Transformation from 2d to 
homogenous and homogenous back to 2d 
coordinates. 

 
Translation  

 
Rotation 

 
Scaling 

 
Figure 158: Affine transformation 

 
Figure 160: Perspective Transformation 
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A similarity transformation preserving angles is determined by 
only 2 points. The transformation matrix has the form: 

 
With a parameter for rotation, two for translation, and one for 
scale. The general approach in section 5xx does not work, 
because we have only 2 points. We can either add constraints to 
the system of equations or construct a third point C such that C – 
A – B is a right angle (Figure 159) and compute the coordinates 
of C in both systems. Then we have 3 points and can use the 
general formula.  

9. SUMMARY 
In this chapter the unification of different transformations were 
achieved using homogenous coordinates that are a representation 
of projective space. Adding one dimension to the vector space it 
was possible to achieve a simple, unified framework. 
Transformations form a category, where composition is defined. 
This is again the construction of a functor to expand a 
representation when it is insufficient to represent all cases. 

The chapter also showed how to overcome the limitations 
that some operations of vector algebra are restricted to 3-
dimensional spaces. The transformation formulae are using only 
matrix operations, which are valid for square matrices of any 
dimension.  

REVIEW QUESTIONS 
• Why are homogenous coordinates necessary? Give 

transformations between homogenous and orthogonal 
coordinates in both directions. 

• Explain the formulae for transformations (translations, 
rotation, perspective transformation) using homogenous 
coordinates. 

 
Figure 161: A lens with focal length f and a 
point with its image 
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• Why are homogenous coordinates allowing us to combine all 
different transformations into a single general linear 
transformation? 

• What is a general linear transformation? 
• Demonstrate that translation and rotation leave distances 

invariant.  
• Show that the transformation from ordinary 2 vectors to 

homogenous 3 vectors is a functor. 
 
 
 



 

PART FOUR  FUNCTORS TRANSFORM 
LOCAL OPERATION TO 
SPATIAL AND TEMPORAL 
DATA 

Observations produce measurement of different types which 
are combined in functions to produce values of interest (see 
chapter 6). Soil type, exposure, annual rainfall and similar 
locally observed values are combined, for example, in a formula 
to compute the agricultural value of land or the potential for soil 
erosion. These formulae express relationships between values 
valid at a single point in space and time. 

In this part in chapter 11 and 12, we show first how such 
formulae can be applied in a principled way to time series 
(Figure 162) and to spatial layers (Figure 163) of point data 
values. We use here the methods to represent points in space and 
time given in the previous part and treat the observed values at 
these points, which we call "point data". Time series of observed 
values can be combined to show how a computed value changes 
with time. A formula to compute the values for a point can be 
applied to a layer of similar measurements and produce a map 
showing how the value changes in space.  

Functors are the mechanism to expand local functions to 
apply to layers of spatial data and time series (chapter 6.4xx). A 
functor is a morphism, which preserves composition and 
identity. It is an often used method to construct new algebraic 
systems from given ones. The functors introduced here expand 
the domain of application of functions from local application to 
values observed in space or time, or even space-time.  

Map Algebra is a part of GIS theory that has survived for 
more than 20 years without much change(Tomlin 1983); it will 
be formalized and generalized in this part, but not altered in a 
substantial way. At the core of map algebra is a functor layer, 
but Map Algebra includes more operations than just the local 
operations produced by this functor. Tomlin identified  

 
Figure 162: Temperature in function of 
time 

 
Figure 163: The surface of the earth as a 
function of position 
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• local operations (chapter 12) characterize a location, 
• focal operations characterize a location within its 

neighborhood (chapter 13). 
• zonal operations characterize a location within the area of 

similar properties, its zone; they have a different structure and 
link towards the identification of objects in space or events in 
time (chapter 14).  

Focal operations are an example of convolution. 
Convolutions are mathematically well defined and extensively 
used in image processing(Horn 1986). They are not just useful 
for  image processing of remote sensing data, but are a method to 
analyze geographical situations stressing the concept of 
"neighborhood": the properties of the areas immediately around 
a location influence this location. For example, a lake influences 
the land in its vicinity—and this influence is important enough 
that we have a special word for it, namely "beach" (Figure 164. 
A local operation is not sufficient to find beach areas, it is 
necessary to have an operation that considers the neighborhood: 
a beach is where water and land meet. Tomlin called this Focal 
Operations and included in this class all operations which are 
considering values in the immediate neighborhood.  

In this part, the application of operations to time series and to 
spatial map layers is unified in the same conceptual framework. 
The treatment of time series is presented first (chapter 11), 
because the graphical presentation is simpler and the following 
generalization to 2- and 3-dimensional space and the 
combination to spatio-temporal data are straightforward.  
 
 
 
 
 
 

 
Figure 164: Beach is the zone where the 
lake influences the land 
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Chapter 11 FLUENTS: VALUES CHANGING IN TIME 

Values that change in time, for example the outside temperature, 
are common examples to demonstrate the treatment of data that 
represents observations varying with time. If we observe inside 
and outside temperatures, we can compute for any point in time 
the difference between them. The values changing in time can be 
seen as functions from time to a value, in this special case a 
function from time to a temperature value. Operations, e.g., 
difference, can be applied to such functions and return a function 
'difference between inside and outside temperature'.  

Functors apply to operations with values and produce 
functions which take time series of values as inputs and produce 
time series. With functors simple operations on values become 
polymorphic and apply equally to time series and map layers 
(see next chapter). 

1. CHANGING VALUES IN TIME  
Life is change; everything in the world is in flux. In this chapter 
we concentrate on point observations at the same location 
repeated in time, but change is also affecting the properties of 
objects, which will be discussed later. Observations that return 
different values varying with time are common and can be 
contrasted with values assumed to be constant. McCarthy and 
Hayes called properties that change fluent(McCarthy and Hayes 
1969). 

The values shown in Table 2 give the observed temperature 
at a fixed location inside and outside of a building during a day. 
Time Inside temperature 

° C 
Outside temperature 
° C 

7:00 18   5 
8:00 21   7 
9:00 21   8 
10:00 20 10 
… … … 

Table 2: Temperature readings inside and outside of a building 
Values describing properties of objects change in time, some 
rapidly, some very slowly. Only very few natural constants, e.g., 
the Boltzman constant, do not change. Some changes are so slow 
compared to the focus that they are not relevant (Figure 165) and 

 
All is flow 
Heraclites 

Fluent = value that changes with 
time 
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others are changing so rapidly that they appear as noise 
compared to the signal of interest. 

The treatment of values that change is difficult in first order 
languages: values in a formula are constants and the result of a 
computation is a (constant) value. To gain a handle on temporal 
data, we must use a second order language (see chapter 4.5), 
where variables can be functions. This approach is powerful and 
leads to a formalized treatment. The alternative is situation 
calculus(Lifschitz 1990), which is based on first order logic but 
still requires second order, extra-logical operations(Reiter in 
preparation). 

2. SYNCHRONOUS OPERATIONS ON FLUENTS 
Assume we measure the temperature inside and outside, then we 
may also compute the difference between inside and outside for 
any point in time (Figure 167). This difference exists for any 
point in time: d(t) = i(t) – o(t). 

We call such computation ‘synchronous’ because the values 
corresponding to the same time instant are combined in a 
computation. The computation d = i –o is inside a snapshot; the 
computation is not dependent on the time. Every operation inside 
a single snapshots can be extended to a calculation on the 
corresponding number of changing values. The functor fluent is a 
mapping from values of type Float to functions resulting in a 
value of type Float with the signature t -> Float.  

3. FLUENTS ARE FUNCTIONS 
A fluent is a function from time to a value. Operations for fluents 
are defined as the synchronous application of the operation for 
each time point. For example, the difference between the two 
functions inside and outside temperature is a function: 

it :: time -> temp  -- inside temperature 
ot :: time -> temp  -- outside temperature 
dt :: time -> temp  -- difference inside – outside  
 
dt (t) = it (t) – ot (t) 

The table above (Table 2) can be seen as a function, for each 
time point we measured a value on the temperature scale. Given 
that we have only discrete observations, the temperature between 
observation times must be interpolated(Vckovski 1998). 
Interpolation is meaningful here, as we know from physics that 
temperature is a continuous function!  

 
Figure 165: Slow changing, quasi constant 
phenomenon 

First Law of Time: 
Everything changes, but some things 
change slower (and are constant 
relative to the faster changing ones). 

 
Figure 166: Signal and noise 

Second Law of Time: 
Some changes are so fast that they 
appear as noise compared to slower 
changing things. 

  
Figure 167: a) Outside and inside 
temperature, b) difference 
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4. INTENSIONAL AND EXTENSIONAL DEFINITION OF 
FUNCTIONS 

Functions are defined as formulae, which permit to compute for 
any value x a corresponding function value f(x). This is an 
intensional definition (it is not 'intentional', but one can think that 
the formula gives the intention of the function). The alternative 
is an extensional definition: the function is given by a set of 
values, between which we may interpolate (Figure 169). 
Interpolation methods must be selected appropriate to the type of 
process that changes the value(Vckovski 1998; Vckovski and 
Bucher 1998). The table above (Table 2) gives an extensional 
definition for inside and outside temperature at a specific 
location and day. 

5. THE FUNCTOR FLUENT  
Fluent is a functor, a mapping from an ordinary value to a 
function from time to a value such that that categorical diagram 
commutes (Figure 168). The functor fluent maps a constant 
value to a constant function, which returns the same value. A 
function, like +, is mapped to a synchronous operation on the 
functions  

(a +'  b) t = a (t) + b (t). 
This mapping preserves identity (0 for the operation +) and 
composition 

 
Composition of functions: 

 
The transformation of an operation applicable to a single value to 
produce a function to work on a fluent is a second order 
function, which we will call lift. Different second order functions 
are necessary to lift a constant function, a function with one 
argument, a function with two arguments etc. These will be 
called lift0, lift1, lift2 respectively if it is necessary to 
differentiate them (note that lift1 is often called map(Bird 1998). 
A functor must preserve function composition and identity 
function, i.e.,  

lift (a . b) = lift a . lift b, 

 

Figure 168: Commutative diagram for 
fluent 
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lift 0 = 0. 
Composed functions given by formulae can be lifted by lifting 
each component of the function. For example the calculation of 
the percent difference between inside and outside temperature is 
obtained mechanically by first converting the infix notation in 
the formula in prefix functions with arguments. For example a – 
b becomes plus (a, neg (b)). Then these functions are lifted: 

 
This lifting of functions with a functor is so mechanical that it 
can be automated; for example the language Haskell (Peterson, 
Hammond et al. 1997) includes a mechanism that automatically 
lift functions from working on a single value to a series of 
values. 

Fluents can be constructed from any data type. Güting has 
proposed a second order operator τ with the same 
intention(Martin Breunig, Can Türker et al. 2003), but not 
considered it in the context of category theory as a functor. 

type Fluent v = Time -> v 

6. DISCRETIZATION OF OBSERVATIONS TO OBTAIN A 
FINITE NUMBER OF MEASUREMENTS 

Discretization is a form of approximation, namely sampling a 
continuous signal by a finite number of measurements. 
Observations must necessarily be for points in time, they sample 
the continuous value, which is called the signal. To replace a 
continuous function with a discrete approximation reduces the 
information content—something is lost in the discretization. 
Unfortunately, sampling can also make appear signals that were 
originally not there (called aliasing) (Figure 171). 

The sampling (or Nyquist) theorem says: If a signal is 
sampled with a frequency f then the signal must first be filtered 
to exclude all frequencies higher than f/2. If the signal is not 
limited and high frequencies not excluded, aliasing can occur. 
Aliasing is the effect that a signal of a low frequency appears in 
the sampled data where only higher frequencies where present 

 
Figure 169: Functions with different 
interpolation schemes 

Figure 170: Discretization of signal 
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(Figure 171). Methods to filter are discussed later in this part 
(see chapter 13). 

The converse is that if we sample a function that is 
sufficiently smooth no information is lost. If no frequency higher 
than f in the signal occurs, which means no detail smaller than 
d=π/f , then sampling with an interval of d/2 is faithful. Real 
sensors are not point sensors but have physical extension and 
integrate over a time interval; this has the same effect than a 
filter that reduces higher frequencies(Horn 1986 p. 149).  

7. TRANSFORMATIONS OF FLUENTS 
Imagine that a time series has been observed, for example the 
temperature in Table 2: Temperature readings inside and outside 
of a building, and later we determine that the clock used was not 
set correctly, but was 10 minutes late or was correct at 7:00 but 
then was running fast, such that it showed 8:00 when it was only 
7:55, etc. (Figure 172). Similar transformations may be 
necessary to change the temperature values if the 0 point and the 
scale of the thermometer were not correct. These are 1-
dimensional linear transformations.  

o = f (t)  -- the original observations 
k (t) = c + l * t -- the correction 
t' (t) = t + k (t) 
o' = f (t' (t)  -- o' = o . t' 

8. SUMMARY 
This chapter has shown how observations of changing values, for 
example the outdoor temperature during a day, can be seen as 
functions, in this case a function from day time to temperature. 
Values changing in time are called fluents.  

Functions and operations with functions are well-understood 
in mathematics. Operations defined for a single point in time can 
be lifted to work on time series, combining values 
synchronously. This systematic lifting is part of the functor, 
which maps from measurement values to observations in time, 
which are functions from time to measurement values. The next 
chapter uses the exact same approach for spatial data. 

REVIEW QUESTIONS 
• What is a fluent? 
• Why is fluent a functor? 
• Give an example how to use a synchronous operation. 

 
Figure 171: A low frequency signal results 
from improper sampling of a high 
frequency signal 

 
Figure 172: Time correction as a shift and 
a scale 
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• What is the sampling theorem? What does it say? 
• What is meant by aliasing? 
 

 



 

Chapter 12 MAP LAYERS 

In this chapter we focus on space and observations of properties 
in space, which result in measurement values related to locations 
in space. Sensors, for example areal photographs and remote 
sensing data captured from satellites produce such 
measurements. This chapter focuses on the processing of 
representations of properties of locations in images. 

Space is continuous and we can observe properties at any 
location at any time. In this chapter, we focus on snapshots with 
time fixed. This is sometimes called the field view. It answers 
questions like "what is here?"; the alternative object view 
answers to the question "where is this object" (Couclelis 1992) 
and will be treated in the next part. 

Map layers are used, for example, to find an area that is 
suitable for building a new home, given data sets describing 
exposition, zoning and current land prices (Figure 174). The 
focus is on homological operations that are the most often used 
operations from Dana Tomlin’s map algebra(Tomlin 1991; 
Tomlin 1994); other operations are discussed in the next 2 
chapters. 

Figure 173: A remote sensing image  

A (x, t) = f (x,y,z, t)  
Goodchild’s geographic reality 
(Goodchild 1990; Goodchild 1992) 
 
S (x) = f’ (x,y,z)   
a snapshot of space, time fixed 



Map Layers 147 

1. INTRODUCTION 
Space is continuous and varies continuously. Our observations of 
properties at points are related to points in 2 or 3 spatial 
dimensions and in 1 temporal dimension. The discussion in this 
chapter is restricted to snapshots with time fixed and 2d space, 
which means a projection from the real 3 dimensional world to 
the projection plane. The remote sensing images from space are 
good examples. They are raster images, where values are 
recorded for a regular grid dividing space in equal cells, but the 
principles discussed here apply equally to irregular subdivision 
of space (Tomlin 1991; Eastman 1993) but applies as well to 
other representations (see later chapter 30).  

The extension from 2 to 3 dimensions and the combination 
with the time varying values discussed in the previous chapter 
are trivial. The limitation to 2 dimensions in this chapter is 
didactic and does not limit the generality of the results. 

2. TOMLIN’S MAP ALGEBRA 
One of the original ideas that lead to the development of GIS 
was the manual map overlay procedures used by planners and 
geographers for a long time(McHarg 1969; McHarg 1992). Maps 
are drawn on translucent paper and overlaid on a light table. 
Visual interpretation allows then to find solution of questions 
like "where is a south-exposed area zoned residential and 
reasonably priced" or “find the area where logging of pine trees 
is permitted, avoiding areas closer than 100 m to a water body”. 
Dana Tomlin, then a student of Joseph K. Berry at Yale 
University, saw in the late 1970s that such questions can be 
computerized. It is possible to express them as an algebra of 
operations on raster. This algebra is closed: the result of one 
operation is again a map layer and can be used as an input in the 
next one(Tomlin 1983). He defined Cartographic Model and 
Map Layer as follows: 

2.1 CARTOGRAPHIC MODEL 
A cartographic model is a ‘collection of maps that are organized 
such that each of these layers of information pertains to a 
common site’(Tomlin 1983, 4). The elements of the cartographic 
model are the layers and these are already ‘registered’, which 
means that they cover the same area, have the same orientation 

 

  

 
Figure 174: Three data sets to help identify 
an area where I want to build my new 
home 
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etc. (Figure 175). Linear transformations and map 
transformations may be used to achieve this registration. 

2.2 MAP LAYER 
The notion map or thematic layer is used to describe a 
description of one property with respect to its spatial distribution. 
A map layer is one theme from a cartographic model, it is ‘more 
like a map of just one of an area’s characteristics’(Tomlin 1983, 
6).  

The metaphor layer is used because a GIS is sometimes seen 
as a ‘layered cake’ of thematic layers, which are stacked one 
above the other (for a discussion of effects of this metaphor 
see(Frank and Campari 1993). Molenaar has used the term 
'single value map' to differentiate it from maps that contain more 
than one variable(Molenaar 1995; Molenaar 1998). This is an 
unnecessary differentiation; technically they are single values, 
namely tuples consisting of several values.  

We will use the word field for the concept of continuous 
space and raster for the square grid discretization of it. This use 
of ‘field’ should not be confused with the algebraic structure 
field, encountered in chapter 5.  

2.3 OPERATIONS ON MAP LAYERS 
Map layers can be ‘overlaid’ and areas where some combination 
of values from one and the other layer occur identified. Planners 
and cartographers used to trace such areas on a new sheet laid on 
top of the pile (Figure 176). The overlay shows where the three 
properties apply and this can be traced on a new sheet(McHarg 
1969; McHarg 1992). This new sheet can then be used in another 
overlay operation, meaning that these operations form a closed 
algebra. 

The manual operations on a light table limit the number of 
layers that can be combined and the tracing of new layers is a 
time consuming operation. Photographic processes were 
occasionally used, but give little additional flexibility. Only the 
computerization opened the door for a flexible combination with 
more operations than the manual overlay. 

2.4 CLASSIFICATION OF OPERATIONS 
Tomlin differentiated operations in map algebra into three 
groups: 

 
Figure 175: Coordinated layers are 
combined homologically 

Field = continuous space 
Raster= a regular (square) 
discretization of a field 

 
Figure 176: Overlay of the three layers of 
Figure 174: Three data sets to help identify 
an area where I want to build my new 
home 
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• Local operations, which combine the value from the same 
location 

• Focal operations, which combine values around a focal point 
to a single value 

• Zonal operations, which combine values from a single zone. 
A local operation is looking at a single point and the resulting 
value is the combination of values from this point; focal 
operations consider the area around the point of interest; and 
zonal operations consider values from an area within an 
irregularly formed zone (Figure 177). Tomlin's definition of a 
zone is an area where the same value obtains, but not necessarily 
connected. The three layers in Figure 174 are showing each a 
zone before a background of null values. 

Tomlin’s book gives a wonderful collection of functions that 
can be used to transform and combine layers that are meaningful 
in a planning application(Tomlin 1990). In this part, his ideas are 
reviewed from a mathematical (categorical) point of view. 

3. LOCAL OPERATIONS ARE HOMOLOGICALLY 
APPLIED OPERATIONS  

Homological operations combine values from one or several 
layers for one location at a time. They cut the values from each 
input layer at the same location and produce from this set of 
values a single result, which is the value in the result layer. The 
vertical "pin" in Figure 175 indicates this connection between 
homologous values. 

Local operations are given as functions that take one or 
several values as inputs and compute a single value as a result. 
For example, given the function g to compute a new value from 
values a, b, and c from Layers A, B, and C is c(x,y) = g (a(x,y), 
b(x,y)). We combine the values for corresponding 
(homological—same location) points with the given function. 

The number of values that are combined is arbitrary; 
functions that take one layer and transform it into another layer 
are called classifier or reclassifier. These and functions that take 
two values and combine in a single new value are the most used 
ones; functions with more values occur occasionally. A simple 
example: given the two layers of male and female average 
population per areal unit, we need to compute the average 
population per areal unit. This is simple addition of the value for 
each location. The result can then be classified for areas with an 

 
Figure 177 Local, focal, and zonal 
operations: area of support to compute a 
single new value  

A zone can be defined as a 
geographic area exhibiting some 
particular quality that distinguishes it 
from other geographic areas.(Tomlin 
1983 p.10). 

Homological means at the same 
location. 
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average population higher than 5 (Figure 178). This is similar to 
adding two time series (previous chapter). 

4. MAP LAYERS ARE FUNCTIONS 
Map layers can be seen as functions from a location to a value. 
Observations will be available only for specific points and other 
locations must be interpolated(Vckovski 1998). 

layer: location -> value 
Operations on layers are defined as homological application of 
the function to each location in the layer. If the values a and b 
are available for each point in space, i.e., if they are functions a 
(x,y) and b(x,y) and we are interested in the values v = g (a,b), 
then we can construct a function v (x,y) = g (a(x,y), b(x,y)). 
Tomlin's description of Map Algebra is not typed and most 
implementations today do not apply a type concept to the map 
overlay operations. The combination of layers can be checked 
for correct types: the operation must apply to a layer or layers 
that produce the correct types for the operation; then the 
resulting layer is a function from location to the result type of the 
operation. The types for the above operation g combining two 
layers must be: 

g :: type1 -> type2 -> resultType 
a:: location -> type1 
b::: location -> type2 
v :: location -> resultType. 

5. THE FUNCTORS LAYER 
The map layer is a functor; it converts operations on single 
values to operations on a function from a location to a value. It is 
similar to the construction of fluent, which is also a functor (see 
previous chapter).  

Understanding that layers are functors gives us access to the 
same second order function lift used to combine time series 
(chapter 11). Lift takes a function on values and produces 
functions on layers of values. Any operation with the right type 
can be used to transform a layer or to combine layers. Often used 
operations are: 
• Classification: the values in a layer are classified according to 

some criteria; such operations transform a layer with floating 
point values to a layer with ordinal or nominal values. 

• Boolean operations used to combine layers and find areas 
where two attributes apply (AND) (Figure 179) or where 
either of two attributes applies (OR). 

 

 
Figure 178: Adding to layers and then 
reclassify the result 

Combine layers m and n to give layer 
l with formula l = f (m, n)  
l(x) = f (m(x), n(x)) 

 
Figure 179: Boolean AND gives 
intersection 
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• Arithmetic operations on values: +, -, *, /. 
• Operations using order: min, max. 
• Statistical operations: sum, average, median, most frequent 

value. 
• Other functions: square root, sine, cosine, tangent, arc sine, 

arc cosine, arc tangent(Tomlin 1990, 65). 
Homological operations are used in combinations: firstly, values 
are changed through some formula and then a classification is 
applied and last, the result then combined with some other layer. 
Because layer is a functor, composition of functions is mapped 
correctly and it is possible to simplify such operations using the 
formulae about distribution of lift1: 

(lift1 f . lift1 g) l = lift1 (f.g) l 
If the functor layer is defined, then all operations on single 
values can be lifted and used to combine layers as they would 
combine single values. This can be used to construct new 
formulae or new rating methods and lift them to apply to layers.  

For some operations, specially constructed layers are useful. 
For example, a layer that contains the coordinates of the points 
(or its discrete equivalent), is a function id (f (x,y) = (x,y)). With 
such layers, it is, for example, possible to calculate the distance 
from a given point p, lifting the function dist (p,_). 

6. MAP LAYERS ARE EXTENSIONALLY DEFINED 
FUNCTIONS 

Layers that are defined intensionally as functions and given as a 
formula are seldom in geography. Most often, values are 
recorded for points and interpolated between them or regions 
where the same value obtained are identified. Other 
representations are possible for continuous functions. For 
example, Waldo Tobler has computed the coefficients for an 
approximation of the population density of the world using a 
series of spherical harmonics(Tobler 1992). This gives for world 
population an intensionally defined function. 

The restrictions on discretization discussed in the chapter on 
fluents (chapter 11), applies in 2 or 3 dimensions as well. It may 
be surprising to think of frequencies in space, but it opens the 
conceptual framework of signal processing (Horn 1986) for 
application to geography, which will be explored extensively 
when discussing approximations.  
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REVIEW QUESTIONS 
• What is meant by the expression ‘homological operations’? 

Give an example. 
• Define layer. 
• What is the notion ‘field’ meaning here? What other meanings 

do you know? 
• What are local, focal, and zonal operations? How are they 

differentiated? 
• In what sense is map algebra closed? 
• How would you calculate in a discrete raster representation a 

layer that contains the distance to a given point p? 
• Give a local function that classifies a layer with the height in 

meters, such that areas below zero, between zero and 500, 500 
and 1000, etc. are separated. 

• Give a small part of a layer as an extensional definition. 
• How does the sampling theorem apply to space? 
 

 
 
 



 

Chapter 13 CONVOLUTION: FOCAL OPERATIONS FOR 
FLUENTS AND LAYERS 

Map algebra does not only contain operations that work on a 
single location using data from one or more layers, but includes a 
number of methods to work on neighborhoods around a location. 
Focal operations apply to a point and the immediate neighbors 
around it. Similar operations are known in image processing for 
smoothing time series and images. They are called convolutions 
(German term: Faltung).  

In this chapter the concept of focal operations is first 
explained for time series (fluents) because the explanations are 
simpler and then applied to layers. The chapter first concentrates 
on the convolution operation that is defined for continuous 
functions and generalized this concept in the last part of the 
chapter to other focal operations that are not immediately 
expressed as convolutions. Convolution operations have a fixed 
size of the kernel and introduce a scale dependency in their 
result; an extensive discussion will later relate them to error 
treatment. 

1. INTRODUCTION 
A large class of interesting operations on layers computes a new 
value using all the values in the field but using a weighting 
function to give more influence to the neighbors than to locations 
further away. According to Waldo Tobler’s first law of 
geography, in most cases influences of far away things are 
negligible and we can restrict the area of influence to a small 
neighborhood around the point of interest, the focal point (Figure 
180). This general principle is powerful and has wide 
applicability; it is used in signal processing and remote sensing 
to smooth or enhance images, and it can also be used in GIS.  

 
Figure 180: Rate of influence decreases 
with distance from focal point 

First law of geography:  
All things influence all other things; 
nearby things influence more.  
Waldo Tobler 
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2. CONVOLUTION FOR FLUENTS 

2.1 EXAMPLE: SLIDING AVERAGE 
Consider the practical problem of measurements in a time series; 
for example the water height at a water gauge station in a lake. 
Waves, random errors and noise may produce rapidly varying 
readings when we know that the water level varies only slowly. 
A sliding average to smooth the time series is routinely used; 
this is computed with a formula that takes 1/4 of the value 
before, 1/4 of the value after and 1/2 of the current value—and 
this formula is applied to every value in the series (Figure 182). 
The smoothing effect of the sliding average is visible (Figure 
181)! 

 

2.2 CONVOLUTION FOR CONTINUOUS FUNCTIONS 
Convolution is defined as the integral of the product of two 
functions; one is the signal f(t), the measured value, the other the 
weighting function h(ξ), which determines how much influence 
the values have. The result at the point t is the integral of the 
product of these two functions: 

 
Convolution is commutative and associative. The sliding average 
worked with discrete values and used a weighting function that is 
0 everywhere except 1/4 for -1 and 1 and 1/2 for 0. The 
following computation shows how convolution works as a 
multiplication of two functions given as polynomials (Figure 
183): 

Figure 183: Convolution of functions given as polynoms 

 
Figure 181: Original and smoothed values 

 
Figure 182: Sliding average  
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2.3 CONVOLUTION IS LINEAR AND SHIFT INVARIANT 
The convolution operation has two properties that are important 
for temporal and spatial problems: it is linear, which means that 
twice the input gives twice the output: 

 
It is shift-invariant, which means that it is invariant under 
shifting of the coordinate system: 

 
It can be shown that all linear and shift-invariant transformations 
can be described as convolution with some function h(Horn 
1986, 109).  

2.4 CONVOLUTION FOR SERIES WITH DISCRETE VALUES 
Convolutions can be discretized. The fluent is given by a 
sequence of equidistant values v1, v2, … vn and the weighting 
function is given by a stencil (sometimes called the convolution 
kernel) w1, w2, .. wm. The stencil to compute the sliding average 
before was (1/4, 1/2, 1/4). The length of the stencil indicates the 
size of the neighborhood that influences the result; usually the 
stencils are small, three or five values are usually sufficient. The 
computation consists of sliding the stencil along the time series 
and multiplying the values with the corresponding weight in the 
stencil and to sum these products (Figure 182).  

The discrete form of convolution appeals to intuition and is 
easy to compute and visualize. It contrasts in this respect sharply 
with the abstract definition of convolution as an integral of the 
multiplication of two functions. 

2.5 CONVOLUTION FOR SMOOTHING A FLUENT 
The best weighting function to smooth a fluent is a Gaussian 
function (Figure 184): 

 
The stencil in Figure 182 is a length three discrete form of a 
Gaussian: 1/4, 1/2, 1/4 or 1/4 (1, 2, 1). 

2.6 CONVOLUTION TO DETECT EDGES 
The derivation of a signal function accentuates the edges. The 
derivation of a signal can be computed as a convolution, because 
derivation of a function is linear and shift-invariant. To identify 

Functions which are linear are 
independent of the units used for 
measurements. 

 
Figure 184: A Gaussian function 
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the function that is the equivalent convolution to the derivation is 
not simple, given that derivation is not an ordinary function f(x). 
Intuitively, the values for the weighting functions must give a 
high value to the center and negative values to the neighbors 
(Figure 185). For discrete values, the stencil is for example: (1/2, 
-1, 1/2).  

2.7 TREATMENT OF TIME SERIES WITH NOT EQUIDISTANT 
VALUES 
Understanding convolution as the multiplication of two functions 
permits the generalization of the operation to time series where 
the values are not equidistant. The weighting function h is a 
function of the distance to the focal point x as was shown in 
Figure 183.  

3. PROBLEM WITH EDGES 
The values at the points along the edge of the area treated are 
computed from values around this point—but part of this 
neighborhood is not available (Figure 186). This is a practical 
problem for computation. Several solutions are possible: 
• The area of interest is inserted in an infinite area with value 0. 

This allows computation up to the edge, but values near the 
edges are not correct. 

• For the area around the edge where not enough data is 
available, no values are computed. This produces correct 
values, but the area covered becomes smaller with each 
convolution. 

• The image is mirrored at the borders (Figure 187); this gives 
not correct values for the cells along the edge, but the values 
are at close. 

4. CONVOLUTION IN 2D FOR LAYERS: FOCAL 
OPERATIONS WITHIN NEIGHBORHOODS 

Convolution can be extended from one dimension to multiple 
dimensions. It is used to process images, including remote 
sensing images, and geographic data processing. Convolution in 
2-dimensions is generally useful for spatial analysis, to smooth a 
surface or to detect edges, etc. 

Convolution for layers in 2-dimensions is defined like 
convolutions in 1-dimension, except that both the signal and the 
weighting function are in 2-dimensions.  

 
Figure 185: Laplace operator used as an 
edge detecting convolution (Mexican hat) 

 
Figure 186: Values missing to compute 
convolution along an edge 

 
Figure 187: A layer with additional values 
around its boundary to permit convolution 
with a 3 by 3 stencil 
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Convolution for layers is linear and shift-invariant. Shift-
invariance for images has intuitive meaning: an image of an 
object taken from a position and the image taken from a slightly 
shifted position should be very similar (Figure 188)! 

A transformation in 2 variables is bi-linear, if a linear 
transformation of any or both of the inputs produces a linear 
transformation of the result. A transformation is shift-invariant if 
it produces the shifted output g (x-a, y-b) when given the shifted 
input f (x-a, y-b)(Horn 1986 p. 105); this is verified by inserting 
in the formula above.  

4.1 SMOOTHING OF A LAYER  
Convolutions can be used to filter an image to exclude high 
frequencies (detail); a Gaussian filter that attenuates higher 
frequencies is often preferred over a sharp low pass filter, that 
cuts frequencies at a precisely defined limit(Horn 1986, 127). 

A convolution to smooth a layer uses a Gaussian function in 
2-dimensions (Figure 189). The effect is the same as we found 
for smoothing time series (Figure 182), applied to 2 dimensions. 
The Gaussian function is rotationally symmetric and its effect in 
the convolution is also rotation invariant. This means that the 
convolution of an image is the rotated convolution of a rotated 
image: R (conv a b) = conv (R a) b. A stencil with discrete 
values for this function is given in Figure 190. 

 

4.2 EDGE DETECTION IN LAYERS 
For the detection of edges, another rotational symmetric 
function, namely the Laplacian operator can be used: 

 
Given that any shift-invariant and linear system is a convolution, 
such a function must exist. Horn gives a function that is the limit 
of a sequence of functions(Horn 1986, 122): 

 
From this we can deduce a piece-wise constant function, which 
then leads to a stencil (Figure 191): 

 

Figure 188: A picture and a second one 
from a shifted position 

 
Figure 189: An example for H (Gaussian) 

 
Figure 190: Convolution Stencil for a 
Gaussian 
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4.3 ISOTROPIC AND NON-ISOTROPIC CONVOLUTIONS 
Convolution of multi-dimensional fields is isotropic, treating 
space in all directions the same, if the functions used for the 
convolution is rotationally symmetric, i.e., invariant under 
rotation: R (f a) = f (R a) where R is a rotation matrix. The 
Gaussian and Laplacian convolutions are examples for 
rotationally symmetric convolutions. Convolutions applied to 
raster require symmetry only for the directions where the raster 
itself has symmetry; for square rasters, these are quarter turns. 

Convolutions can be anisotropic. Most are detection of edges 
in a specific direction (Figure 192). For this a function is used 
that is not rotationally symmetric nor are the stencils. 

5. OTHER FOCAL OPERATIONS 
Many of the focal functions described by Tomlin (Tomlin 1990) 
can be constructed as convolutions. For example, the local sum 
operator is a convolution with a function that is constant for 
some distance (Figure 193). The focal average is the result of 
local sum divided by the area in the convolution function, which 
is π * c2. The corresponding stencils are easy to derive. 

Functions useful for applications are composed from a focal 
operation and other, local operations. Any combination of values 
in the stencil can be computed in 2 steps: first apply stencils, 
which have only a single 1 in one of the cells: this is a shift 
operation for the layer (Figure 194). Then these shifted layers are 
combined with local operations. 

Some focal operations provided in GIS include the central 
value (v22 in Figure 195), some do not (and sometimes it is 
unclear, if it is included or not). Many useful functions are 
essentially statistics of the 9 (or 8) values cut out by the stencil. 
This includes focal maximum and focal minimum, which apply a 
max or min function to the values returned, focal sum and focal 
average, but also focal variety, focal majority, focal minority, 
focal median. 

  
Figure 191: A stencil to detect edges 
(Laplacian) 

 
Figure 192: An anisotropic stencil to detect 
edges in north-south direction 

 
Figure 193: Function constant in an 
interval 

 
Figure 194: Convolution that is a shift 
right and down by one cell 



all v15a.doc 159 

Other focal functions compare the environment with the 
central value (v22). For example, local percentile gives the 
percentage in the environment (v11… v33, but not v22) that is less 
than v22. Tomlin shows how this function can be used to compute 
how prominent a place is from the height data, depending how 
much of its environment is at a lower altitude. 

With focal operations it is possible to compute the gradient 
(terrain inclination, angle of the terrain with the horizontal 
direction) and the aspect (direction of the maximum gradient). It 
is also possible to determine the direction of water-flow over the 
area, which may lead to a determination of streamlines(Frank, 
Palmer et al. 1986).  

The cost of traveling from a given point over an anisotropic 
surface, i.e., a surface where travel cost are different for each 
point, given as a layer travelCost:: x -> c, is computed as a fixed 
point of a convolution. Regular convolution operations calculate 
a new layer from a given one in a single sweep; the new values 
derive from the given ones only. To compute the traveling cost 
requires spreading the cost of reaching a location from the 
starting point over the surface; it is a repeated application of a 
convolution till a fixed point f (xi+1) = f (xi) is reached. 

There is a tradeoff between offering a large number of 
specialized operations and providing only a small set of building 
blocks from which others can be constructed. I prefer the 
building blocks because the effort to understand what the given 
prefabricated operations do requires often more effort than 
constructing new ones; and one finds at the end, that the given 
function is not what is required to solve a problem. 

6. CONCLUSIONS 
The focal operations are defined without reference to a 
representation. Convolution is explained in terms of continuous 
functions and applies to any form in which a function f: (x,y) -> 
v can be represented. The implementation as operations on arrays 
for the discrete case – regular raster (Figure 197) – is offering 
itself, but it is just a convenient implementation (some of the 
specialized focal operations suggested by Tomlin seem to 
assume a raster representation). 

Continuous functions avoid the problems of discretization 
and guarantee that the results are not dependent on the resolution 
selected (but still depend on the size diameter of the kernel 

 
Figure 195: The values cut out by the 
stencil 

 
Figure 196: An example layer and the 
computation of a new value 
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function). Understanding focal operations as convolution leads 
towards the generalization of focal operations from raster to 
other irregular tessellations (Figure 198).  

A method to compute convolutions for subdivisions 
represented as irregular tessellations is to convert the integral 
into a finite sum and to sample the layer at the appropriate 
points; this is essentially a conversion of the subdivision in a 
raster representation of a suitable resolution, which can be 
achieved without storing the raster.  

In signal processing  a different approach is often selected: 
transform the signal from the temporal (or spatial) dimension 
into the frequency domain by a Fourier transformation. A 
convolution in the time domain is a multiplication of functions in 
the frequency domain. This can take advantage of the Fast 
Fourier Transformation algorithm. It would be useful to explore 
its usefulness for geographic data processing.  

I feel that a careful analysis of the functions required to solve 
practical problems is warranted and expect that some generality 
is found. Tomlin also includes visibility based on line of sight 
from a given point as a focal operation and an operation to 
identify connected areas with the same values. These two 
functions seem not to fit within the framework of convolution 
and need further study. 

REVIEW QUESTIONS 
• Demonstrate by computing the linearity and shift-invariance 

for (1-dimensional) convolution. 
• Detect the time when temperature dropped or increase most in 

the time series: 10, 11, 12, 15, 16, 16, 17, 12, 10. What 
operation are you using? What is the stencil? 

• Give a stencil for a 2d local average.  
• Why is it that convolution (and other functions in GIS) are 

linear? 
 

 
 

 
Figure 197: A regular subdivision 

 
Figure 198: Irregular subdivision 

A convolution is a multiplication in 
the frequency domain.  



 

Chapter 14 ZONAL OPERATIONS USING A LOCATION 
FUNCTION 

We can focus our attention in a layer on all areas that have the 
same value: we can look at all the wooded or all the urbanized 
area in a map, we can look at lakes, etc. (Figure 201). Tomlin 
calls such a selection of areas with the same value a zone and 
Map Algebra contains a number of functions operating on zones. 
Zonal operations compute a new value for a location based on all 
areas that has the same value as this one; zonal operations 
combine in a geometrically varying way a location with other 
similar locations.  

Zonal operations are used to compute the area of zones, for 
example, how much area is forest in Figure 199? They can be 
used to determine the center of gravity of a zone, the average 
distance of the zone from a given point, the average height above 
sea level of a zone, etc. 

Zones are an intermediate step towards the focus on objects, 
which is the second half of this book. It is to differentiate zones 
from objects—zones are all areas with a value, they are a layer; 
the zone wooded area is different from the two objects "wood" in 
Figure 201. 

1. DEFINITION OF ZONES 
Zones are defined as all areas that have the same value. This is 
immediately meaningful for layers that are functions from space 
to discrete values (e.g., integer, nominal). For layers that map to 
continuous values (e.g., real numbers), it is usually necessary to 
classify the layer first into a small number of classes. 

Image processing thresholds images obtains images with 
Boolean values that are called binary images; these are similar to 
zones. The image as a function is then called a 'characteristic 
function'(Horn 1986, 47).  

2. CLOSEDNESS OF ZONAL OPERATIONS 
Tomlin assigns to each location a value from the zonal operation. 
This is different from operations in image processing, where 
functions applied to a zone (a characteristic function) produce a 
single value. The result of a zonal operation is the same for all 

 
Figure 199: A land use map with wood, 
water and street use 

Definition: 
Zone = Area with the same value. 

  
Figure 200: The zone 'wood' 

 
Figure 201d:  The water zone  
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locations in the zone and is filled in all cells of the zone. For 
example at the end of a zonal operation "area of zone" all cells 
of a zone contain the value for the total area of the zone. 

This duplication of values is necessary to make zonal 
operations produce a layer and assures that map algebra is 
closed.  

3. COMPUTATIONAL SCHEMA OF ZONAL OPERATIONS 
Zonal operations are combinations of local operations and a new 
'integrate over layer' operation. Take a simple example, namely 
the computation of the area of the 2 zones forest and water of 
Figure 201:  

Assume a classified layer M :: x -> {f, w}. 
1. Create two Boolean functions lf, lw :: x -> Bool, where 

true means that the location is in the zone and false outside. 
2. Classify the layer M with these two functions lf, lw; this 

gives two layers :: x -> {0, 1} (characteristic functions). 
3. Integrate over layer: aggregate all values in each layer to 

compute a value v for the zones vf and vw. 

 
4. classify the zones in the layer M with a map f -> vf, w -> 

vw, s -> vs, l -> vl; this fills back the computed values in all cells 
of the zone. 

This is not a description of an implementation but it 
describes the logic of zonal operations. Special operations differ 
in the function f which is used and  the function to aggregate the 
values across the area.  

Note that the operation 'integrate over layer' is independent 
of the representation. For a raster representation, the integral 
becomes a sum (Figure 202), in the simplest case just a count. 
For other representations, a method to sum a function over a 
layer must be given. 

4. NUMBER OF ZONES IN A LAYER 
The number of zones in a layer is less than or equal to the 
cardinality of the set of values of the layer. In the limiting case, 
each location is a zone by itself, but then zonal operations are the 
same as local operations.  

 

 

 

Figure 202: Aggregate the values in the 
zone 

 
Figure 203: The result of the zonal area 
operation 

Values in a set are always different! 
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5. ZONAL OPERATIONS WITH MEANINGFUL SECOND 
LAYER 

Some of the operations on a zone use a second layer, a layer 
different than the layer used to form the zone. The zonal 
operation then obtains values from this layer that are combined 
to give the value for the zone. For example, one may ask "what 
is the average height of the forested land". Forest land means a 
zone, formed on land use, but the average is then for the height, 
which comes from a second layer. 

Operations using a second layer can compute arbitrary 
functions that combine the values of this second layer in the zone 
in a single value. It is not necessarily the function 'integrate over 
layer' with addition, but the + operation in the aggregation can be 
replace by other operations. Functions that are used are sum, 
max, min, mean, product, variety, majority, etc.  

Tomlin introduces Partial zonal operations: The values in a 
zone can be compared with the value at the given location. For 
example one asks for a point in a zone, how much area of the 
zone is higher than the given point. Such operations can be 
composed from the basic operations and I doubt, that it is 
worthwhile to include such special operations into a GIS for the 
few cases they are used. 

Figure 204: Mean Center of population of 
USA (source: 
http://upload.wikimedia.org/wikipedia/en/2
/27/Mean_ctr_pop_US_1790-2000.png 
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6. CENTROID AND OTHER MOMENTS 
The center of gravity is a geographically meaningful concept. It 
is instructive to draw, for example, the movement of the center 
of gravity for the population of the USA over the past 200 years. 
The movement of the center of gravity for the population shows 
in a nutshell the movement first towards the west and later in the 
20th century to the south (Florida, Arizona). 

In statistics, the centroid is just a moment, it is the first 
moment divided by the area (which can be seen as the zeroth 
moment), and the second moment is the standard deviation. The 
second moment has a physical interpretation as the inertia 
against rotation around an axis. This can be used to determine 
the orientation of the object as the axis which has least (or 
maximum) inertia(Horn 1986). Higher moments can be 
constructed but are seldom meaningful. 

Moments are characteristics of a zone that are additive. If 
two disjoint zones are combined to form a single one, the 
moments add: M a + M b = M (a + b). This means, that the 
moment of a collection of objects and the moment of the 
composed object is the same. For computation it means, that 
moments can be computed for parts and the results for the parts 
combined. The center of gravity of a figure is the center of 
gravity of the parts, each part represented by its center of gravity 
multiplied with its mass. 

Disjoint = no common part 

6.1 CENTROID 
The centroid is the center of mass of an object. It is computed as 
the first moment of the object divided by the area, because the 
moment—physically the force to turn the object around this 
point—must be zero for the centroid. The same computation 
applies to zones. 
We sum the contribution of each part of the object to turn around 
the origin in direction of negative y (respective negative x) 
(Figure 205). This must be equal to the total area (mass) of the 
object times the distance of the centroid from the origin  

X  * m0 = m1x. 
 The coordinates of the center of gravity is the first moments 
divided by the zeroth moment (Figure 206). 

X  = (m1x / m0, m1y/m0) 

Moments are additive 

 
Figure 205: Sum the contribution of each 
element in the object 
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To calculate the center of gravity a second layer which gives the 
first or second coordinate is necessary. The formulae for these 
layers, which are used for all calculation of moments, are  

f (x,y) = x 
f (x,y) = y. 

6.2 HIGHER MOMENTS 

6.3 ORIENTATION OF THE AXIS 
The axis of an object can be found as the direction for which the 
second moments are minimal, i.e., the axis around which the 
object is easiest to turn. To find the axis, the integral  

∫ r2 f(xy) dx dy 
 must be found, where r is the distance of any point to the axis. 
Expressing r as a function of the axis as Normal Form  

x sin α – y cos α + c = 0  
and integration leads to the solution of a quadratic equation in 
sin 2 α. 

 

 
The usual solution formula for quadratic equations gives the 

minimum for the solution with the + and the maximum for the 
solution with the -. The same result is obtained when computing 
the eigenvectors and the eigenvalues for the matrix. What we are 
looking for is a rotation α that makes the 2 by 2 matrix of second 
moments diagonal. This leads to an eigenvalue problem. 

 
Figure 206: Object in equilibrium 

 
Figure 207: Axis of an object 

 
Figure 208: Contribution of a mass 
element  
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If m2b ≈ 0 or m2a ≈ m2c then the zone is too round to 

determine an orientation. The roundedness of the zone can be 
evaluated as(Horn 1986, 53): 

 
Note that these values are derived for zones but also apply to 
simply connected regions. 

7. SET OPERATIONS ON ZONES 
Local operations can determine whether two zones intersect or 
not (Figure 209). A zonal operation determines the intersection 
area, computing the area in the zone "intersection zone". The 
intersection of two zones is the logical and of the values which 
qualify for membership in the zone: 

 
The use of set operations to determine topological relations 

is restricted to complement, union, intersection (which are lifted 
not, or, and and) (Figure 210). The inclusion of A inside B is 
computed as A ∩ B = A, if A is disjoint from B then A ∩ B = 0 
(Figure 211). It is not possible to determine touching directly 
with set operations, but one can determine inclusion and 
disjointness (a more detailed treatment of topological relations 
follows in chapter 22xx).  

8. SUMMARY FOR ZONAL OPERATIONS 
Zonal operations are selecting areas based on similar values and 
then compute a value for the whole zone using a second layer. 
This computed value is then the value for all location of the 
zone. The operations used for combining the values in the zone 
are operations that can be used to combine a set of values to a 
single characteristic value: sum, average, etc.  

Zonal operations are defined independent of the 
representation and apply equally to raster representation or to 

 

 

 
Figure 209: Two zones and their 
intersection (as Boolean raster) 

 

 

 

 

  

 

 
Figure 210: Two figures and their 
intersection, union and complement of one 

Zones are equivalence classes! 
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irregular subdivisions. For continuous representation the sum of 
discrete values becomes the integral, respectively the appropriate 
finite aggregation operation for this representation(Bird and de 
Moor 1997). 

Many practically useful functions are listed by Tomlin. 
These functions are only shortcuts for a combination of other 
functions—and one might argue how the additional cost of 
learning these functions compares to a building the same 
functions from few generally useful building blocks. Tomlin 
gives an example on how several simple and easily understood 
operations are combined(Tomlin 1990, 163). 

We may retain that zonal operations derive a single 
characteristics of a zone; in the continuous case, this is an 
integral over the zone (Figure 212), for the discrete case it is the 
sum over the zone. Zones can be seen as objects and zonal 
operations as a method to obtain summary properties of an 
object: area, centroid, axis, etc. The operations given here for a 
2d case can be extended directly to 3d volumes. They can also 
apply to 1d (temporal) data or to the combination of spatial and 
temporal data.  

REVIEW QUESTIONS 
• Review: when is each location a zone by itself? Draw a 

simple example! 
• Proof that the center of gravity of a set of objects is the center 

of gravity of the parts, each represented as a point mass at its 
center of gravity. 

• Thesis topic: reformulate map algebra with strict mathematics 
and show what the minimum number of functions is to 
construct a useful and computationally complete system. 

 

 
 
 
 

 
 
 

 

 

 

 
Figure 211: Two figures disjoint and one 
inside the other 

Figure 212: Integral is the sum for an area 



 

PART FIVE  OBJECT DESCRIPTIONS 
STORED IN A DATABASE 

A GIS consists of observations of the properties of objects in the 
world. People identify objects and observe properties that 
characterize them and that remain invariant under occurring 
transformations. A GIS is used to store descriptions of such 
objects. The first part of this book has concentrated on 
observations of properties of points in space and time. The 
second part of the book has a focus on objects, their position in 
space and time and other properties. New in this part is that 
objects are not isolated, but related to other objects. 

The GIS stores facts describing objects. Facts can be the 
measurements from a surveying operation, where distances and 
angles between points are observed, it can be the recording of 
temperature at a location, but it can be the results of derivation 
from primary facts, like the number of people living in a town, a 
social index describing the population, or the cadastre, recording 
ownership relations between people and land. 

This part five starts with the database concept: methods to 
represent measurements and relations between objects and 
permanently store them. In this part, four issues are considered: 
• Generalizing and centralizing storage: the data in a GIS are 

stored only once and are available to many different 
applications (database concept). 

• Representation of objects and the relation between them and 
the quantities describing them, together with functions to 
access the data (data model). 

• Permanence of storage: the data is stored such that it is 
preserved after the close of a program and is available to be 
processed by the same or other programs concurrently or later 
(transaction concept). 

• Logical consistency of the facts stored in the database. 
 
 

Objects are related to other objects. 

First half of book:  
a continuous world:  
measurements and derived quantities 
describing points in space-time. 
Second half of book:  
a world of objects: 
Representation, manipulation and 
storage of objects, their properties 
and the relations between them. 



 

Chapter 15 CENTRALIZING STORAGE: THE DATABASE 
CONCEPT 

Information systems are computational models of the world (see 
chapter 3). They consist of data and rules connecting the data 
(Figure 213). Databases serve as central repository of data, 
which controls the resource data (Figure 214). The development 
of databases was initiated by commercial applications and the 
terminology is influenced by administrative data processing. 
Administration stores ‘records’ of relevant administrative 
decisions and facts; the records in a GIS are descriptions of 
observations of the real world and I prefer the notion fact. 

1. INPUT-PROCESSING-OUTPUT IN THE EARLY YEARS 
OF ELECTRONIC DATA PROCESSING 

Databases were invented in the 1960s(ANSI X3/SPARC 1975). 
Data processing then was following an Input-Processing-Output 
paradigm (IPO) in which programs depend on each other (Figure 
215). Computations required so many steps and connections 
between the steps where so numerous that any change in one 
dataset propagated through all the others. The flow graphs for 
the data processing in a Swiss Bank in 1968 covered a wall! 
Changes were costly and eventually impossible. The bank 
initiated a project to build a communication network and a 
central repository, but this was too ambitious a project for the 
1970s and failed. The principles they followed were valid and 
are the concepts of today’s data processing: central repository for 
data and networked access; unfortunately, the effort was 
premature and the technology not ready! 

2. DATABASE CONCEPT 
Organizations, like government agencies, corporations and 
companies, but also towns rely on large collections of data for 
their operations. The database centralizes storage and controls 
access to all the data in an organization (Figure 216). The 
database concept assures that all data is potentially available to 
all parts of the organization and that all programs used the same 
routines for access and writing to the data. This makes the 

 
Figure 213: Computational models are 
data and rules 

 

Figure 214: Data storage and programs 
managing the data serve many users and 
are a valuable resource 

 
Figure 215: The Input-Processing-Output 
paradigm for file based data processing in 
the 1960s. 

A large number of interdependencies 
make programming difficult and will 
eventually bring maintenance to a 
standstill generalizes:  
Complexity is the enemy! 
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valuable resource that the data are available for the whole 
organization! 

To use a database for programming a large, complex data 
processing system is a substantial conceptual change from the 
previous Input-Processing-Output model(Bachman 1973; Codd 
1982). The linear flow of data through processing units, where 
data was transformed a record at a time (Figure 215), is replace 
with a central repository for all data and all programs access the 
data from this central repository (Figure 216). This has 
consequences for the structure of data processing in an 
organization. It changes the way application programs are 
written.  

2.1 CENTRALIZATION 
The centralization of data in a single unit makes programs 
independent from each other and only dependent on the database 
(Figure 216). A database is a single logical unit. The data stored 
is available to all programs through the same interface. It is not 
necessarily stored in a single unit—storage can be decentralized 
and even duplicated, but for the programmer this distribution is 
transparent and managed automatically by the database (Figure 
216).  

2.2 UNIFORM MANAGEMENT OF DATA 
A database is not just a collection of records! Compare with a 
bank or a library: these are not just collections of money or 
books, like the money jar in the kitchen or the book shelf in the 
living room (Figure 217). Banks and libraries have guards that 
follow rules that control the flow of money or flow of books in 
and out of the bank or library (Figure 218). Without control of 
the flow, a bank or library would deteriorate and could not fulfill 
its function. Similarly for databases: substantive efforts are 
necessary to guarantee that the data will be always available. The 
database management system controls the central repository of 
data.  

2.3 REDUCTION OF DUPLICATE STORAGE 
It was observed in the early days of GIS, that the same date 
elements were stored multiple times in different files and wasted 
storage space, which was, at that time, expensive. Today, saving 
in storage is not the primary justification for the organization of 
a database. Databases are necessary to achieve sharing of data. It 

 
Figure 216: Centralized data as a resource 

Data that are centralized and 
independent from the programs are a 
resource for an organization. 

 
Figure 217: Money box 

 
Figure 218: Bank  
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was also found that much of what on first sight looks like 
duplicate storage are just data collections that use very similar 
definitions, but slightly different definition and have therefore 
slightly different contents. Subtle differences in definitions in 
laws and regulations are usually the cause.  

2.4 DATA SHARING AS MAJOR REASON FOR CENTRALIZED 
DATABASE 
When multiple users need the same data, why do we not simply 
provide everyone with a copy of the data? This works well if the 
data are not changed or changes slowly: a digital terrain model, 
for example, can be distributed as a copy. If data changes, copies 
do not automatically reflect the changed situation and lead to 
errors, if the users depend in their decision on the current state. 
For example, only one copy of cadastral records should exist and 
all changes inserted there. If multiple copies are updated 
independently, a fraudulent owner can sell his property twice, 
once by recording the sale in one registry, and a second time, 
recording it in another registry! Sharing of data gives instant 
access to the changes somebody else has applied(Bachman 
1973). 

Having the data stored once and accessible for all potential 
users (Figure 216) assures that the data used is up to date: there 
is only a single copy and anybody using or updating this data 
must access the same copy. Confusion in the organization 
resulting from copies representing the same facts in different 
ways is impossible. 

2.5 ISOLATION 
The database management system isolates the management of 
the data from the processing of data in the programs (Figure 
219). The database concept integrates the management of the 
data in a single unit and separates it from application programs. 
These programs access data through a standardized interface—
no program can directly change the physical storage, but all must 
pass through the database manager (Figure 216). All 
programmers see the same logical view independent of the 
organization of the storage and their view remains the same even 
when physical storage changes. 

The sharing of updated, “life”, data 
is the major reason for logical 
integration of data in a database 
management system. 
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2.6 A GENERAL DATABASE MANAGEMENT SYSTEM (DBMS)  
To construct integrated and consolidated repositories for data of 
an enterprise is a complex task. It is encountered in similar form 
and it is effective to produce a generalized program. The 
database management system (DBMS) is a commercially 
available software that is adapted (Figure 219) to the task of 
managing the data collection of an enterprise. The development 
of generalized DBMS has led to a systematic accumulation of 
knowledge and solutions are documented in an extensive 
literature in Journals, like ACM Transaction on Data Systems 
(TODS), and Conferences like the Very Large Database 
Conference (VLDB) or the Principles of Data Symposium 
(PODS). Specialized for GIS is the SSD and now SSTD 
conference [ref missing xx]. 

2.7 DATA DESCRIPTION LANGUAGE AND DATA MANIPULATION 
LANGUAGE 
The database is constructed from a general set of routines that 
are specialized in a compilation like process to work with the 
data of an organization (Figure 220). A description of the data—
the logical and physical schemata— are written in the Data 
Description Language (DDL) using a data model (see next 
chapter). These descriptions list the object types and the 
properties the database should store. The compiler translates 
these descriptions in programs that are then used to store and 
retrieve the data.  

The application programmer accesses the data in his 
program text with statements of the Data Manipulation 
Language (DML) based on the same data model as the one used 
for the data description. An augmented compiler for the 
programming language then compiles the program text with 
these statements and generates the code that accesses or changes 
the stored data.  

2.8 THREE SCHEMAS (VIEWS) 
The data descriptions are separated in three schemas, each 
describing different aspects of a data collection. These views 
were standardized early (ANSI X3/SPARC 1975) : 

 
Figure 219: Database consists of Database 
Management (DBMS) and Data 

DBMS = Database Management 
System 

DDL = Data Description Language 

 
Figure 220: Data Description Language 
and Data Manipulation Language 

DML = Data Manipulation 
Language 
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• Logical schema: A comprehensive, but abstract description of 
all data in the database. It lists all the data for the whole 
enterprise and the consistency constraints for them. 

• Application schema: It represents the programmer's view, 
which requires only those data elements that are visible and 
used by an application. It is a sub-set of the logical schema. It 
can hide data from a program to enforce privacy rules. 

• Physical schema: describes how the data is physically stored. 
This separation relieves the application programmer from the 
need to know the physical storage structure or about data he is 
not using. Only the relevant part of the logical structure of the 
data, as presented at the application programmer interface, is 
included in the programmers view. Compare this to a library: a 
user has only to give the 'call number' of the book he desires, it is 
not necessary to understand the organization of the stairwells, 
elevators, rooms, and shelves where the books are located.  

2.9 PERFORMANCE OF DATABASES 
The storage and retrieval of data seems a relatively simple task, 
but to manage data collections for many concurrent users is 
difficult: 
• Databases are so large and valuable, that they are stored on 

permanent storage—hard disks. Access to data on a hard disk 
is slow compared to the access to data stored in main memory. 

• Many parallel users must access and possibly change the same 
data, but maintain consistency (see chapter 17).  

Performance is influenced by: 
• (spatial) access methods(Samet 1990; Samet 1990),  
• buffer management(Reuter 1981), 
• query execution strategies, and 
• transaction management(Gray and Reuter 1993). 
These performance topics are not further discussed here but they 
influence the design of commercially available DBMS. 

3. DATA MODELS 
A data model describes the tools to describe the world, more 
precisely, the representation of the subset of the world of 
concern in the application area (which is a system in the sense of 
chapter 3). The data model lists the concept available to describe 
the representation and limits indirectly what aspects of reality 
can be carried over into the computer representation of reality. 
This applies to all three levels of the schema, but our focus is on 

 
Figure 221: 3 schemas 

Access to data stored on hard disk 
takes 10 milliseconds. 
Access to data stored in main 
memory 100 nanoseconds. 
Accessing data on disk is 108 times 
slower than in RAM; this is the same 
ratio as between one second and one 
year! This ratio seems constant and 
not affected by changes in the 
technology; it was about 107 two 
decades ago. 
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the logical and application schema. Two questions must be 
answered by a data model: 
• How to construct representations of objects? 
• How to model the relations between objects? (see next 

chapter) 
In the early ‘80s it was observed that the same concerns 

appear in the database community—where they were called data 
models —but also in the artificial intelligence and programming 
language research community. A conference documented the 
different points of view(Brodie, Mylopoulos et al. 1984):  
• Administrative (DB) programming: few types, many 

occurrences; permanence of data. 
• Artificial Intelligence: many types, with few occurrences per 

type. Limited lifespan of data. 
• Programming languages: few types, few occurrences, limited 

lifespan of data.  

4. HISTORIC DATA MODELS 
Admiral Grace Murray Hopper was one of the pioneers of 
electronic data processing and promoted the use of computer 
data processing in the US Navy for administration and logistics 
in the 1950. She was instrumental in the development of the 
programming language COBOL designed for administrative data 
processing, which organized data in logically connected pieces, 
called records, which consists of hierarchically nested fields.  

record Person 
 field Name 
  field FirstName 
  field FamilyName 
 field Address 
  field StreetName 
  field BuildingNumber 
  field Town 

The CODASYL network data model extended these 
structures for data and introduced connections between records, 
so-called 'CODASYL sets'(CODASYL 1971; CODASYL 1971). 
It was widely used for administrative applications (Figure 222). 

Data models give the tools we use to 
model reality—they are not models of 
reality.  
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The relational data model (Codd 1970; Codd 1982) 
dominates database applications since the 1990s. The schema 
describes these tables (Figure 223). Data is arranged in tables 
and the schema gives the head of the table (Table 3). Researchers 
introduced object-oriented concepts (Atkinson, Bancilhon et al. 
1989; Lindsay, Stonebraker et al. 1989; Stonebraker, Rowe et al. 
1990) and proposed object-oriented data models, which 
overcome some of the limitations of modeling with the relational 
data model(Codd 1979; Deux 1989; Bancilhon, Delobel et al. 
1992; Tansel, Clifford et al. 1993). 

The development in GIS followed similar lines of 
development as the commercial applications. Data storage in 
GIS started as independent files, with proprietary structures 
optimized for the application programs used. Later database 
systems were used for storage of the administrative data, but the 
geometric data continued in proprietary file structures because 
the computer systems and databases of the time were not fast 
enough(Frank 1988). Only in the late 90s standard database 
systems were extended to include methods for special treatment 
of spatial data, which were proposed earlier(Frank 1981; Samet 
1990). This permits today the integration of all the geographic 
data of a GIS in a single standard database. 
FirstName FamilyName StreetName BuildingNumber Town 
Peter Artner Hauptstrasse 13 Geras 
Susi  Artner Hauptstrasse 13 Geras 
Karl  Artner Hauptstrasse 13 Geras 
Sabine  Artner Hauptstrasse 13 Geras 
Max Egenhofer Grove St 28 Orono 
Andrew Frank Vorstadt 18 Geras 
Stella Frank Vorstadt 18 Geras 
Astrid Frank Vorstadt 18 Geras 

Table 3: Example Data 

5. CONCLUSION  
A database, builds a model of reality representing the 
"knowledge" an agent has about the world. The data description 
for a database is expressed in a data model, which is a sort of 
data language. If the data model is closer to the conceptual or 
cognitive models, it is easier for the designer to produce an 
appropriate database schema(Booch, Rumbaugh et al. 1997). The 
translation of her view of reality to a formal description is more 
direct and requires fewer steps. It is likely that the model 
contains fewer errors. If the modeling language is closer to a 
computer implementation, the database is more likely achieving 
acceptable performance. In the past, modeling tools were more 

 
Figure 222: Two CODASIL sets with 
records for town with their buildings 

Figure 223: Relational Schemas 

Models that are close to the 
application but not formal make the 
translation difficult. 
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influenced by implementation consideration, the object model in 
C++ (Stroustrup 1986) is perhaps the most recent and extreme 
example.  

Only solutions that have a convincing, simple algebraic 
structure endure: good theory remains for decades or centuries. 
The relational DB theory, which has a mathematical foundation, 
remained for more than 20 years and we will present in the next 
chapter a mathematically inspired simplification of it. Ad hoc 
solutions are rapidly superseded by ‘new and improved versions’ 
produced by companies or standardization committees. 

Three aspects to retain: 
• a language to describe data and how it can be accessed, 

independent of programming languages (see chapter 16); 
• consistency of the data can be controlled by the database 

through the transaction concept; (see next chapter 17); 
• a logical data description is separated from the description of 

the physical storage (ANSI SPARC). 

REVIEW QUESTIONS 
• What is a data model? 
• What are the 3 levels in the ANSI/SPARC/X3 model? 
• DML and DDL—what are they? 
• Explain the difference between logical and physical 

centralization. 
• What is meant by the expression 'sharing life data'? Why is it 

important? 
• Why centralization of data storage? What is achieved? 
• What is the reason that DBMS are technology dependent? 

What is the performance issue in a database management 
system? 

 
 
 
 
 

Models, which are close to 
implementation make the task of the 
analyst difficult and contribute to the 
'software crisis'.  



 

Chapter 16 A DATA MODEL BASED ON RELATIONS 

Data stored in a central repository must be accessible in a 
uniform way for all programs. Data structures built for special 
programs can be optimized for particular uses, but this cannot 
work, if data is centralized and used by many programs. A 
uniform method of access must satisfy the different requirements 
of all programs alike. To achieve flexibility a mathematically 
clean data model is necessary.  

"A data model is a combination of at least three components: 
(1) A collection of data structure types … 
(2) A collection of operators or rules of inference… 
(3) A collection of general integrity rules" (Codd 1982, 
395/396) 

The relation data model described here is based on the 
concept of function, generalized to ‘relation’. It is a further 
development of the classical Data Models, like the relational 
(Codd 1970; Codd 1979; Codd 1982) or Entity-Relationship 
(ER) data model(Chen 1976).  

1. RELATIONS  
Figure 224 shows two regions A and B which overlap; this is a 
relation between them. The geographic relations in Figure 225 
are numerous: the lake of Zürich overlaps with the Kanton 
Zürich, Kanton Schwyz and Kanton St. Gallen; we see that 
Kanton Zürich and Kanton St. Gallen are neighbors, another 
relation, etc.  

overlap (lake Zürich, Kt. Zürich) 
overlap (lake Zürich, Kt. Schwyz) 
overlap (lake Zürich, Kt. St. Gallen) 
 
neighbor (Kt. Zürich, Kt. St.Gallen) 
neighbor (Kt. Zürich, Kt. Schwyz 
neighbor (Kt. Schwyz, Kt. St.Galle 

We will write relations as predicates, that is, functions with two 
arguments yielding a Boolean result (many texts use a R b for 
the predicate R (a,b)). Relations can have several arguments, but 
relations with more than two arguments can be split into binary 
relations. For example the relation  

parents (Andrew, Irja, Stella) 
is split in two relations  

father (Andrew, Stella) 
mother (Irja, Stella). 

 
Figure 224: A overlap B 

 
Figure 225: Kanton Zürich overlaps Lake 
Zürich 
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It is thus sufficient to develop the theory for binary relations 
only. We will here always understand ‘binary relation’ when we 
use the term relation. Relations have a converse: r: A -> B has 
the converse  r': B -> A. This is the major difference to 
functions, which have not always an inverse. The relations which 
are functions are called simple: if the relation rel: A -> B is a 
function, then 

rel (a,b) = True <=> rel (a) = b. 

2. FACTS AND RELATIONS 
The representation in a data model conceptualizes the world as 
entities and facts that describe the entities and the relations 
between the entities.  
• Entities are the conceptual units, the "objects" in a broad 

sense. We collect information about these entities. They are 
represented in the database by identifiers (abbreviated as ID) , 
which are unique like entities are unique. There are no copies 
of me!  

• Facts assign some properties to an entity, for example a 
measurement value as the result of an observation. My weight 
is 80 kg. Facts are a (generalization) of a measurement; 
prototypically they are the result of an observation of an 
aspect of an entity, but they can also describe some derived 
properties of the entity. A fact links a value to an entity in a 
relation. Facts describe not only properties of entities, but also 
relations between entities.  

This is a most general approach to recording the knowledge we 
have about the world. In this relation (not relational) data model  
the database is a collection of relations, which consists of facts 
(Figure 226). Identifiers (ID) represent the entities. The database 
manages the ID and assures that they are unique in the context of 
the database. This data model is a refinement of the ordinary 
relational model(Codd 1970): it is restricted to binary relations 
and system controlled IDs are used to identify the entities. 

Die Welt ist, was der Fall ist. 
(Wittgenstein 1960) 

An entity is anything conceptualized 
as having an independent, permanent 
existence  

Entities are represented by 
identifiers.  

Facts describe entities. 
 
Relations are collections of facts of 
the same type. 
 
A database is a collection of 
relations. 
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Because we model facts describing entities, all relations have 
the form ID -> value (remember: ID is a special case of value, 
ID -> value includes relations with the signature ID -> ID). A 
fact makes a statement about an entity and a relation it has to 
some value or to another entity (which is a relation ID -> ID). 
Many of the relations used to describe real world entities in a 
GIS will be functions, but not all; relations give the generality to 
cover all cases uniformly. For example, one might think, that 
ZIP -> townName is a function (or perhaps townName -> ZIP), 
but neither is the case in any country I know of, and we can only 
give a relation ZIP -> townName) (Table 4 for an Austrian 
example). 

3. OBSERVATIONS AS RELATIONS 
The data in a GIS represent measurements. These are 
observations of some property of the real world. For example, 
we observed this morning at 07:12 the exterior temperature at 

the airport Vienna-Schwechat and the result was 15.4 °C. 
The entity is the space-time point at which a set of 

observations were made. This space-time point has the 
properties: 
• the type of observation: temperature  
• the location: Airport Vienna-Schwechat (outside) 
• the time: July 9, 2004, 07:12 
• the value: 15.4 °C 

These measurements are all facts that describe properties of 
entity temperature this morning. These relations are all 
functions, because only one value belongs to a single space-time 
point for each of these observations. Assume that the space-time 
point entity at which the observations were made, has the ID 
23411 then we can construct four functions: 

observation_Type (23411) = exterior temperature 
location (23411) = Airport Vienna-Schwechat 
time (23411) = July 9, 2004, 07:12 
value (23411) = 15.4 °C 

4. EXAMPLE RELATIONS 
The example data introduced in Table 3 of chapter 15 is broken 
into tables, each representing a single function. We have to 
introduce entities and the corresponding entity identifiers. We 
select P1, P2, P3, and P4 for the person's identifiers, H1, H3, 

 
Figure 226: Relation Database 

1010 Wien 
1040 Wien 
1050 Wien 
2093 Geras 
2093 Fugnitz 
2093 Pfaffenreith 

Table 4: Part of the  relation between ZIP 
and name of town in Austria 
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and H4 for identifiers for homes, S1, S3, S4 for the street 
identifiers, and finally T1 and T2 for the town identifiers. 
 
Person -> FirstName 
P1  Peter 
P2  Susi 
P3  Max 
P4 Andrew 
P5  
 
Person -> Home 
P1  H1 
P2 H1 
P3 H3 
P4 H4 
Home -> Street 
H1  S1 
H3 S3 
H4 S4 
 
Street -> Street-Nr 
S1  Hauptstrasse 
S3 Grove Street 
S4 Vorstadt 

Home -> StreetNumber 
H1 13 
H3 28 
H4 18 

 
Street -> Town 

H1 T1 
H3 T2 
H4 T1 

 
Town -> Name 

T1 Geras 
T2 Orono 

 
Town -> ZIP 

T1 2093 
T2  04469 

Table 5: The Example Data as relations 

5. RELATION ALGEBRA  
Knowledge about the world is stated as the existence of relations 
between entities and logical rules are used to combine such 
relations. Predicate calculus can be used (chapter 4). The tables 
above each represent such a relation: for example  

personName (P1, Peter). 

An algebraic treatment was suggested by Schröder in the late 
19th century (Schröder 1890) and Tarski gave relational calculus 
is present form (Tarski 1941). This is the mathematical 
foundations for the relation data model presented here cast into a 
categorical framework(Bird and de Moor 1997). 

5.1 INTENSIONAL AND EXTENSIONAL DEFINITION OF A 
RELATION 

Like functions (chapter 11), relations can be defined 
intensional with a general rule, a formula. For example: the 
relation square is all value pairs (x, x2), but also equal, lessThan, 
etc. are relations. More common and the situation for which 
databases are requires is to store facts by enumeration in tables. 
This is said to define relations by extension (extensional 
definition, Table 5). 

Relations in a database are usually 
defined extensionally by tables. 
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5.2  THE CONVERSE OF A RELATION 
If a relation R relates a to b then the converse relation C relates b 
to a. The domain of the converse of a relation is the codomain of 
the relation; the codomain of the converse relation is the domain 
of the relation. 

a R b < = > b C a C = conv R 
conv . conv = id 
dom R = codom C dom . conv = codom 
codom C = dom R  codom.conv = dom 

Relations are a generalization of functions; they have a converse. 
This makes relations different from functions, which have not 
always an inverse; only functions that are injections have one 
(see chapter 5xx). Relations and its converses are dual categories 
to each other. 

Rel :: a -> b -> Bool 
ConvererseRel :: (a-> b-> Bool) -> (b -> a -> Bool) 

For example, the relation inside between an island and the lake is 
a function, because an island is in exactly one lake. The 
converse, the relation contains between the lake and the islands 
are not a function: the lake of Zürich contains two islands, 
Ufenau and Lützelau, and functions must always have a single 
element as the result (Figure 225). 
 
Contains: Lake -> Island  
Lake Zürich Ufenau 
Lake Zürich Lützelau 
 
converse: isContainedIn : Island -> 
Lake 
Ufenau Lake Zürich 
Lützelau Lake Zürich 
 

Person -> FirstName 
P1  Peter 
P2  Susi 
P3  Max 
P4 Andrew 
  
The converse: FirstName -> 
FirstName 
Peter P1  
Susi P2  
Max P3  
Andrew P4 

 Table 6: Relations and their converse 

5.3 ORDER BETWEEN RELATIONS 
The definition of a relation as a table, which is a set of pairs, 
gives an order relation by inclusion. A relation r is included in 
another one p (r ⊆ p) if all the values of p are also values of r. 
For example, in a table representing a relation one just deletes a 
few rows and gets a smaller relation, which is included in the 
first one (Table 7).  

This order relation is only a partial order (see next section), 
because not every relation can be compared with any other. 
Order relations induced by ⊆ have a dual, namely the order 

 
Figure 227: Two relations S ⊇ R (S 
includes R) 

  
Figure 228: Partial order; elements that 
are comparable are connected, the larger 
one above the other 
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induced by ⊇. To be precise this can be called the "order dual" 
and must be differentiated from the categorical dual of a relation 
and the converse (Mac Lane and Birkhoff 1991, 145). Inclusion 
is distributive with respect to composition: 

(s1⊇ s2) and (t1 ⊇ t2) => (s1.t1) ⊇ (s2.t2). 
 

p: Person -> FirstName 
P1  Peter 
P2  Susi 
P3  Max 
P4 Andrew 
 

r: Person -> FirstName 
P1  Peter 
P3  Max 
P4 Andrew 

Table 7: A relation p ⊇ r 

For relations we have a minimal element, namely the empty 
relation, and a maximal element, namely the relation that is true 
for all entries. Consider the relation neighbor (Figure 225) 
between the Cantons Zürich, Luzern, Schwyz, and St. Gallen. 
The cardinality of this maximal relation is the product of the 
cardinality of the domains; in this case the relation neighborAll :: 
Kanton -> Kanton has cardinality 4 * 4 = 16. The relation 
neighbor is much smaller and has only 10 entries: neighborAll ⊇ 
neighbor ⊇ empty. 
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neighborAll  

• Zürich • Zürich 

• Zürich • Schwyz 

• Zürich • St Gallen 

• Zürich • Luzern 

• Schwyz • Schwyz 

• Schwyz • Zürich 

• Schwyz • St.Gallen 

• Schwyz • Luzern 

• Luzern • Zürich 

• Luzern • Schwyz 

• Luzern • St.Gallen 

• Luzern • Luzern 

• St. Gallen • Zürich 

• St. Gallen • Schwyz 

• St. Gallen • Luzern 

• St. Gallen • St.Gallen 

neighbor 

6. PARTIAL ORDER AND LATTICE 
Assume a set of objects L with a partial order ⊇. The maximal 
element is the top (┬) and the minimal element is the bottom (┴), 
if they exist. Partial orders and lattice are highly regular theories 
that expose duality, which will be used here and later. 

Poset (partially ordered set) ordered by ≤ 
 Reflexivity l ≤ l 
 Antisymmetry l ≤ m & m ≤ l => l == m 
 Transitivity l ≤ m & m ≤ n => l ≤ n 
 Units (if exist) l ≤ ┬, ┴ ≤ l 

• Zürich • Schwyz 

• Zürich • St allen 

• Zürich • Luzern 

• Schwyz • Zürich 

• Schwyz • St.Gallen 

• Schwyz • Luzern 

• Luzern • Zürich 

• Luzern • Schwyz 

• St.Gallen • Zürich 

• St.Gallen • Schwyz 
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6.1 UPPER AND LOWER BOUND 
The elements above an element x (e.g., in Figure 229 for D it is 
D and ┬) and the element lower than x (e.g., in Figure 229 for D 
it is G and ┴) are sets. Elements that are not connected by an 
arrow are not directly comparable; they may be indirectly 
comparable, using transitivity of the order relation. These sets 
contain all the elements that are directly comparable with a given 
element and are larger (smaller).  

"In many posets (partially ordered sets) one can define two 
operations somewhat resembling multiplication and addition" 
(Mac Lane and Birkhoff 1991, 144). The upper bound of two 
elements is the set of elements that are above both of them and 
correspondingly for the lower bound (by duality): 

upper bound (x,y) = {m | m ≤x, m ≤ y} 
lower bound (x,y) = {m | m≥x, m ≥ y}. 

The upper bound may have a unique least element (least 
upper bound, lub) and the upper bound a unique greatest element 
(greatest lower bound, glb) (Figure 229). The operation that 
gives the greatest lower bound for two elements is called meet ∧ 
and the dual operation that gives the least upper bound for two 
elements is called join ∨.  

a ∨ b = least upper bound (a,b) 
a ∧ b = greatest lower bound (a,b) 

6.2 MEET AND JOIN 
A partial order in which for every two elements a least upper 
bound and a greatest lower bound exist, is a lattice (German: 
Verband). A lattice <L, ∧, ∨> is an algebraic structure on a set L 
of partially ordered elements (by <), where for each pair of 
elements l1 and l2 in L exist unique elements meet (l1, l2) and 
join (l1 l2) (Gill 1976, 144; Mac Lane and Birkhoff 1991).  

Lattice <L, ∧, ∨> 
 idempotent  r ∧ r = r   r∨ r = r    
 commutative r ∧ s = s ∧ r  r ∨ s = s∨ r 
 associative r ∧ (s ∧ t) = (r ∧ s) ∧ t = r ∧ s ∧ t 
    r ∧ (s ∧ t) = (r ∧ s) ∧ t = r ∧ s ∧ t 
 absorption r ∧ (r ∨s) = r ∨ (r ∧ s) = r  
 consistency r ∧ s >= r    r ∨  s <= r 
 isotone r <= s  then r ∧ t <= s ∧ t r ∨  t<=s ∨  t 

Lattices with additional rules are often used; a lattice is called 
distributive, if the following distributive law holds. 

distributive  r ∨  (s ∧ t) = (r∨  s) ∧ ( r ∨  t) (r ∧ s) ∨  t = (r ∨  t) ∧( s ∨  t)  

 
Figure 229: Upper and lower bound for D 
and E (with lub D E = d join E = A and glb 
D E = D meet E = ┴) 

join ∨ 
meet ∧ 
lattice = partial order with unique 
lub and glb for every pair of elements 
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A lattice may contain elements 1 and 0,  such that: 
top, bottom l <= 1,  l >= 0 
identities  l ∧ 0 = 0   l ∧ 1 = 1 
  l ∨ 0 = l   l ∨ 0 = l 

The rules for meet and ∨ are dual; one could think of a lattice as 
a combination of two semi-lattices,(L, ∨) and (L, meet), each 
with one operation, which is idempotent, commutative and 
associative, combined(Mac Lane and Birkhoff 1991475).  

6.3 POWERSETS 
For a given set of elements, one can consider all possible sets 
that can be formed from these elements, starting with the empty 
set, then all the sets with one element (singletons), then the sets 
with two elements, etc. till one reaches the set with all the 
elements. The set of all possible subsets is called the powerset 
and expressed for a set of elements U as 2U.The empty set and 
the set S are both elements of the power set. The power set is 
closed with respect to the operations union and intersection (in 
this context sometimes denoted as sum and product).  

Example: S = {1,2,3}, 2S = {{}, {1}, {2}, {3}, {1,2}, {1,3}, 
{2,3}, {1,2,3}} 

Powerset 
  a ∪ b ∈ powerset s,  
  a ∩ b ∈ powerset s. 
  a ∪ b = a if and only if a ∩ b = b 

The powerset with the subset relation is partially ordered and is a 
lattice. In a powerset, the join is the union and the meet is the 
intersection of sets. 

Relations are elements of the powerset of the Cartesian 
product of the domains. The maximal element, the ┬ of the 
lattice, is the relation with all entries, the minimal element, the ┴ 
of the lattice is the empty relation.  

7. RELATION CALCULUS 
Relations can have properties(Bird and de Moor 1997, 89): 

Reflexivity  a R a 
Irreflexivity not (a R a) 
Symmetric  a R b => b R a 
Assymetric a R b => not (b R a) 
Antisymmetric a R b and b R a => a == b 
Transitive  a R b and b R c => a R c. 

 
Figure 230: The lattice of the powerset of 
{a,b,c}, subsets are linked upward to the 
superset. 

 
Figure 231: Simple relation  
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A relation is called simple, if for any b there is at most one a—
the converse relation returns one or no element; it is a partial 
function. 

f.R < s = r < f'.S  
r.f' < s = R < S. f 

A relation is called entire, if for any b there is at least one a—
the converse relation returns one or more elements.  
If a relation is simple and entire, then it is a total function and 
has an inverse function. 

f . g = f . g’ => g = g’. 
The relation child is irreflexiv and asymmetric. From the 
examples above, neighbor is symmetric, contains is transitive. 

8.  ALLEGORIES: CATEGORIES FOR RELATIONS  
An allegory is a category with some additional properties. From 
categories we get composition and identity. Allegories are 
categories to treat indeterminacy—to an argument there may be 
several results: Consider the example data in figure xx in chapter 
xx: who lives in Geras? Possible answers Peter, Susi, or Andrew. 

Allegories assume the additional operations: 
• partial order  
• complement 
• intersection  
• converse  
• meet and join  

8.1  COMPOSITION  
Composition of relations is like function composition; it chains 
two relations together. It is traditionally written as “;”, given that 
it is equivalent to the function composition in category theory we 
write “.” (Note: A;B = B.A) 

Traditional:    a R b ; b S c < == > a (R;S) c = a T c, where T = R;S 
Allegorical:    S (b,c) . R (a,b) <==> (S.R) (a,c) = T (a,c), where T = S.R 

For example, the relations p: Person->Home and h: Home -> 
StreetName can be composed p.h = ph to give a relation ph: 
Person -> StreetName. Composition of relations is only defined 
when the types correspond, i.e., the type of the codomain of the 
first relation is the type of the domain of the second one (this is 
like function composition!).  

 
Figure 232: Relation that is not simple 

 
Figure 233: Entire relation  

  
Figure 234: Relation that is not entire 
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8.2  IDENTITY 
The identity relation, which is true for any a: I (a,a,) is the unit 
for composition.  

R = I . R and R = R . I  
The identity relation can be imagined as a table, which has for 
each ID the same ID in the second column (Figure 235). 

8.3 MONIC AND EPIC RELATIONS 
In the category of relations the concept of injective (see chapter 
3) can be generalized. A function or relation f is said to be monic 
if for any g, g': f . g = f . g' implies g = g'.. For the category of 
sets, a function is monic if it is an injection.  

A relation e is epic, if  for any g, g': g. e = g' . e implies g = 
g'. For the category of sets, a function is epic if it is a surjection. 
A bijection is monic and epic 

8.4 DUALITY IN CATEGORIES: OPPPOSITE CATEGORY 
A category C has an opposite category Cop, in which all arrows 
are reversed, that is, for every function A -> B in C, there is a 
function fop B -> A. The opposite category for relations is dual to 
the original one. Duality in categories maps monic to epic and 
epic to monic: if f is monic in C, then fop is epic; if e is epic in C, 
then eop in Cop is monic. The dual of an isomorphism is an 
isomorphism. 

8.5 TABULATION 
The relations we consider here have tabulations, they are defined 
extensionally by enumeration as a table; already Codd pointed 
out, that tables are at a special case of relations(1982).  

This can be expressed mathematically: given the relation R : 
A -> B and a pair of functions f: C -> A and g: C -> B then R is 
tabulation  
if R = g . (conv f) and (conv g . g) ∩ (conv f. f) = id 
Intuitively, we can see the functions f and g as functions from 
the index in the table enumerating the relation r to the first and 
second column (Table 8). 
 
 

 

8.6 PROPERTIES OF RELATIONS EXPRESSED POINTLESS 
The properties of relations can now be expressed pointless (see 
subsection 7.1): 
Reflexive  id < R 

 
Figure 235: The identity relation 

 
Figure 236Monic Relation 

 
Figure 237: Epic Relation 

Injection: every element from the 
source maps to a different element in 
the target domain 
Surjection: no two elements from the 
source map to the same element in 
the target domain.  

 
Figure 238: Condition for tabulation 

C -> Person  
1 P1  
2 P2  
3 P3  
4 P4 C -> FirstName 
1 Peter 
2 Susi 
3 Max 
4 Andrew 
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Transitive  r . r < r 
Symmetric  r < conv r 
Antisymmetric  r meet conv r < id 
Simple  s . conv s < id 
Entire  id < conv r . r 

9. ACCESS TO DATA IN A PROGRAM 
Programs access data values at different times during their 
execution. This translates to access functions in the program text; 
at that place, a variable name pointing to the data is inserted in 
the program text. For example to calculate the circumference of 
a circle with radius measured as 1.5 cm, where the circle radius 
is contained in the variable r and a constant π is defined, a 
formulae like 2 π r is used and then assigned to a variable c in a 
program statement like (Pascal notation(Wirth 1971; Jensen and 
Wirth 1975)): 

c := 2.0 * pi * r 

The use of the variable name r on the right side of the 
assignment statement is accessing a data value, whereas the 
variable name c on the left side of the statement is an assignment 
of the computed value to the variable c. It changes storage such 
that the variable c can be used to access this new value later 
(Figure 240). Working with variables in a program assumes—
transparent to the programmer—that the variable name serves as 
two different functions: one to get (read) a value and one to put 
(write) a value, depending on which side of the assignment it is 
used.  

If a program is database-oriented, it must get data from the 
database and write updated values back to the database. Local 
variables are replaced with functions retrieving the value from 
the centralized storage and all assignments (in Pascal the “:=” 
operation) result in storing the new value in the database. One 
could replace the retrieval with a function get and the assignment 
with a function put, which changes the storage. In a language 
where variables cannot change—like ordinary mathematical 
notation—the update must create a new value for the database 
that has all the same content except for the element changed. The 
above program would then change memory to a new value 
memory':  

memory'= put (memory, c, (2.0 * pi * get (memory, r)) 

In a program we have a variable name for each value (above r); 
in a database the data is accessed based on identifiers. For 
example, the birthday of a person is found by first finding the 

Table 8: Two Functions to demonstrate 
tabulation 

 
Figure 239: Condition for tabulation 

 
Figure 240: Effect of the execution of the 
statement X on storage location r and c 



all v15a.doc 189 

identifier the database uses for this person given her name and 
then find the birthday related to this identifier. Codd has coined 
the expression 'relational complete' for access methods that 
permit to find all data using the internal relations between the 
data(Codd 1982).  

10. DATA STORAGE AS A FUNCTION 
Data storage can be seen as a function, which produces for an 
identifier a value:  

get (i) = d 
or more detailed including the environment, in which the values 
are stored: 

get (memory, i) = d.  
If we want to update the value associated with an identifier we 
produce a new state of the storage (written above as memory') 
with the function put. Memory is seen as the extensional 
definition of the get function; put is producing a new function. 
Extending the function with an additional value is adding a tuple 
(x, f(x)) to the table stored in memory. The axioms are: 

Memory 
  get (put (memory, i, v), j) = if i == j then v else get (memory, j) 
  get (new, j) = undetermined. 

The hardware used for storing data—hard disk or RAM—have 
interfaces to read and write data, which can be used to 
implement such a get and put function. The concern here is the 
structure of the access function, specifically the arguments 
necessary. 

Historical comment: the idea to consider database access as a 
function was first introduced by Shipman (Shipman 1981) and 
later adapted to the then new programming language Ada(ADA 
1983). It did not find much attention, despite its attractive clean 
structure; the concern for performance and skepticism against 
functional approaches convinced the database community that it 
would not lead to a usable implementation. 

11. FINDING DATA IN THE DATABASE 

11.1 SELECTION AND PROJECTION IN RELATIONS 
Operations to select and project values from relations are the 
building blocks to construct access functions to find data 
elements stored in the database. A selection on a relation takes 

 
Figure 241: Data storage and retrieval is 
like a store room! The clerk translates the 
locker number into a location and retrieves 
the contents. 
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some condition and returns the relation that contains only the 
tuples that fulfill the given condition. 

select :: cond -> rel -> rel 
select c r = { t | t ∈ r & c (t) = true} 

To select all tuples that have as a first value a given value v 
use a condition like (v==).fst, which composed of a function to 
get the first value out of the tuple (respective the second one) and 
then compare it with the given value.  

The projection on a relation produces from a set of tuples a 
set which contains the entire first (respective the second) part.  

Examples: consider the relation pfn: Person -> FirstName. 
A selection to find the relation of persons with name Peter is 

select ("Peter"==).snd) pfn  result:  {(P1, Peter)} 
A projection to the second part in the tuples of the whole relation 
is: {Peter, Susi, Max, Andrew}. Note, that the result of selection 
and projections are sets; selection produces a set of tuples, which 
is a relation, projection a set of values. 

11.2 ACCESS FUNCTIONS FOR DATABASE 
To find data in a database we need functions, which select some 
elements from a relation, for example, all persons with name == 
Susi (gives P2) or all persons living in Geras (gives {P1, P2, 
P4}).  

The database maintains that IDs are unique and many 
relations are functions from ID to a value, we have for relations 
which are simple (ie., are functions):  

toValue :: ID -> relationType -> db -> value. 
This function returns the value of the tuple with the given ID; it 
is a selection applied to the relation as a table and projects from 
the result the ID. For the general case, when the relation is not a 
function, the selection returns a set with possibly more than one 
tuple and the projections give a set of values: 

toValue' :: ID -> relationType -> db -> [value]. 
This is a selection on the first part and then a projection on the 
second part of the tuple.  

The converse relation is not a function and could be 
transformed into a function where the result is a set of IDs (this 
is the power transpose(Bird and de Moor 1997, 103):  

fromValue :: value -> relationType -> db -> [ID]. 
This is a selection on the second part and a projection on the first 
part; it is the operation toValue' applied to the converse relation 
(i.e. fromValue = toValue'. converse) 
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Complex queries are composed from elementary queries, but 
the toValue and fromValue functions do not compose, fromValue 
produces a set of ID whereas toValue or toValue' needs a single 
ID as input. Similar problems poses the composition of toValue' 
and fromValue. Composition is only possible if the result type of 
all functions and the input types are the same. We achieve this 
by making both functions take sets of values as inputs: 

to :: db -> [ID] -> [val] 
from :: db -> [val] -> [ID]. 

As the IDs stand for the facts, we can say, we may want to find 
the ID from some value, or to find the value to a given ID. This 
corresponds for to follow the direction of the arrow in the 
diagram (Figure 242) and for from to go in the direction opposed 
to the arrow.  

11.3 AUXILIARY FUNCTIONS 
These access functions have sets of values as inputs and outputs. 
Two functions are used to convert sets to single value and back:  
• Singleton—converts a single input value into a set 
• Unique—converts a set of one element in Just this element 

and Nothing otherwise. It is the partial function  
converse . singleton,  converted to a total function with the 
functor Maybe. It returns the value Just v for queries where 
the result is – as expected – a single value, and Nothing if 
there is no or multiple values in the result. 

12. STORING DATA IN A RELATION DATABASE 
In a database with a relation data model, updates in a database 
consist of inserting or deleting a fact to a relation; a change is a 
delete followed by an insert, no particular operation is necessary.  

These two operations have the signatures: 
insert:: relation -> ID -> value -> db -> db 
delete: relation -> ID -> value -> db -> db 

DB 
 toValue' (i, r, new) = [] 
 toValue' (i, r (insert (r, j, v, d)) =  
  if i==j then v ++ vs else v'  
  where v' = toValue' (i, r, d) 
 toValue' (i, r, (delete (i, r, v, d)) =  
  if i==j then v' \ [v] else v' 
  where v' = toValue' (i, r, d) (\= set difference) 
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13. EXAMPLE QUERIES 
The data given before is described in a diagram, similar to an 
Entity-Relationship diagram (Figure 242). Arrows indicate 
relations of a 1: n type, of which there are two types: one 1:1 
leading from an entity to a value, where the tail of the arrow is 
anchored at the entity, and one 1:n between entities, where the 
tail of the arrow is anchored on the side with 1 element. 
Relations with n:m would be shown with a simple line. 
The person has the attributes name, year of birth, the buildings 
have a number, street name and number, and the towns have the 
attributes ZIP and name.  

13.1 FIND NAME OF PERSON, GIVEN ID 
To find the name of a person to a given ID, means converting the 
single ID to a list of IDs, then move from this list to the list of 
Person names (which must be one, or none) and convert it to a 
maybe value 

findPersonName id db = unique . to db personName . 
singleton $ id 
For an input of P3 the result is (Just Max). 

13.2 FIND NAME OF TOWN, GIVEN ZIP 
To find the name to a given ZIP code is more involved: we have 
first to find the town from the given ZIP and then take the result 
(which is a list of IDs) and get the names to this list. Last check 
that the result contains only a unique value. 

findTownNameFromZip zip db = unique. to db townName  
    . from db townZip . singleton $ zip 
To an input of 2093 the result is (Just Geras). 

13.3 FIND ALL PERSONS LIVING IN A TOWN, GIVEN BY NAME 
Four steps are necessary to find the names of all persons that live 
in a town, given by its name: 

 
Figure 242: The schema for the example 
data 

 
Figure 243: Person to Name 

 
Figure 244: From ZIP to name of town 
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findAllPersonNamesIn name db =  
    to db personName  
   . from db personBuilding  
   . from db buildingTown  
   . from db townName . singleton $ name 

We first find the town ID from the given name and then find all 
buildings in this town (which is also a list of IDs) and then find 
the ID of the persons living in the buildings, and last, we find the 
names of the persons involved. 

For an input of Geras, we find [Peter, Susi, Andrew]. 

14. OTHER DATA MODELS 

14.1 RELATIONAL DATAMODEL 
The relational data model uses tables as the major structuring 
element. A relational table collects tuples of arbitrary arity. Each 
table has a key and the relational table can be seen as a function 
from key to tuple: key -> (A × B × ..  × M). The relational data 
model is based on relational algebra, for which a substantial 
theoretical literature exists(Codd 1991).  

Operations on relational tables are:  
• Select all tuples with a given condition 
• Project: retain only some columns of the table 
• Join: compose two relational tables using equal values 

(comparable to the composition of binary relations) 
The inputs and result of these operations are tables. This makes 
relational algebra closed. Closedness was a substantial 
improvement over previous methods to structure 
data(CODASYL 1971; CODASYL 1971), which were not 
explained algebraically and were not closed. Closedness has 
certainly contributed to the success of the relational data model; 
we have seen that closedness is also obtained for the relation 
algebra with from and to. 
FirstName FamilyName StreetName BuildingNumber Town 
Peter Meier Hauptstrasse 13 Geras 
Susi  Meier Hauptstrasse 13 Geras 
Max Egenhofer Grove St 28 Orono 
Andrew Frank Vorstadt 18 Geras 

 
Figure 245: Names of person living in a town given by name 
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14.2 NORMALIZATION RULES 
Codd in the original proposal for the relational database model 
suggested that relations (tables) should be normalized(Codd 
1970), to avoid inconsistencies introduced by updates, so-called 
anomalies in updating(Vetter 1977). Normalization forces a 
break-up of relational multi-column table if there exist functional 
dependencies between columns other than the key columns.  

Every relation in the relational model represents a Functional 
Dependency. A functional dependency states that there is a 
function from the key to the tuple: for each value of the key, 
there is only one tuple. The key can be a single column or a 
combination of columns. Functional dependencies describe the 
intended semantics of the model and are crucial for 
normalization in relational database theory(Zaniolo, Lockemann 
et al. 2000). Normalization assures that the functional 
dependency from key to tuple is the only functional or multi-
valued dependency in the relational table. 

14.3 ASSESSMENT OF RELATIONAL DATABASE  
The currently available relational databases are the best solution 
available for databases. It took more than 10 years between the 
original publication of Codd’s ideas (Codd 1970) and the first 
viable relational database management systems. Only late in the 
1980s the relational database achieved acceptable performance 
for use in commercial applications. 

The available relational database management systems are 
highly standardized. Applications written for one DBMS can be 
transferred with not too much trouble to products of other 
manufacturers. The clarity of the theory with formally defined 
semantics has contributed enormously to the popularity of 
relational database. The query language SQL with Mult-Media 
Extensions—including spatial and temporal extension—is 
currently are standardized (ISO/IEC 13249-3:2003).  

15. ADVANTAGES OF THE RELATION DATA MODEL 

15.1 BASED ON ENTITIES WITH ID 
The ontological difference between objects and values is 
fundamental and must be included in the data model. The object 
“Antares” (the horse I often ride) exists only once and has 

Table 9: A relational table for person data 

SQL is intergalactic data speak 
(Stonebreaker) 

Occam—make things as simple as 
possible, but not simpler.  
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permanence in time. We can have many references to it. Values 
are ideal concepts and many copies exist.  

Codd suggested 'surrogates'(Codd 1979), I use here the term 
identifier and abbreviate to ID. These IDs are managed by the 
database and are only used to connect values to entities. The use 
of database managed identifiers is necessary to manage time 
varying data: the IDs are the only way to identify an entity 
through time; other identifiers can change! For example, in many 
cultures women change their name when marrying. 

15.2 CONNECTION BETWEEN ENTITIES 
The operations of a relational database allow the connection 
between any values that has comparable type. Relations are not 
maintained by the database and the connection between tuples is 
only based on equality of values in both tuples. This connection 
is easily lost: The building contains a street address, and the 
street name relates the building to the street. The connection is 
broken, if the name of the street is changed and one has not 
updated all the building records. Similarly, buildings are not 
found if the name of the street is not spelled correctly. For 
example, real addresses may contain a “B. Pittermann Platz”, a 
“Bruno Pittermannplatz”, a “Dr. Bruno Pittermann-Platz”, etc. 
etc. all referring to the same plaza in Vienna. 

The relational database schema does not contain the 
information that these two tables are linked—it only contains the 
information that the field streetName in one and strName in the 
other are of the same type and therewith a join is possible.  

The relation based data model connects only through IDs, 
not values of properties. If a link must be constructed from 
values, a new relation with a new ID must be introduced (Figure 
246, Figure 247) 

16. ALTERNATIVES 
It is difficult to find agreement on viable solutions to overcome 
the disadvantages of relational database. Some proposals 
addressed the syntactic restrictions of First Normal Form: NF2, 
Not First Normal Form database (Schek 1982; Schek and Scholl 
1983; Schek 1985) allow repeating groups and generally 
groupings within a value in a table.  

Currently, databases are offered that are called 'object 
relational'. They are similar to the relation model using 

Objects exist only once, 
representations(values) can be 
copied. 

Relational tuples contain values only 

 
Figure 246: Two relations with the same 
codomain 

 
Figure 247: The two relations linked 
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identifiers to represent objects, but allow multi-valued 
relations(Stonebreaker 1993). 

17. SUMMARY 
Relations are an elegant calculus to deal with collection of values 
not objects; this creates conceptual difficulties for temporal 
databases, where IDs (surrogates(Codd 1979)) are necessary to 
maintain the continuation of an object in time(Tansel, Clifford et 
al. 1993). The commercially used Relational Databases are based 
on set theory and values. The extensions and improvements 
added since the initial design have made them powerful, but 
added also to conceptual complexity. 

The major advantage of the relation data model is the full 
generality. Commercial data models, primarily the relational data 
model, but also the entity-relationship model and the older 
network data model imply rules, which are reasonable in most 
cases but not always. These rules and the special situations in 
which they do not apply are difficult to identify and then to avoid 
(see chapter 18). The relation data model leads also to an 
intuitive query language and a simple data manipulation 
language. 

Last, but not least: The relation data model is a special case 
of the relational data model. It can be used with any relational 
DBMS—it uses only binary relations. Composition becomes 
join, projection is one of the operations domain or codomain.  

REVIEW QUESTIONS 
• What is an entity? What is a tuple? 
• What does the relational data model consist of? What the 

relation model?  
• What is the data model for relations? 
• What is a fact?  
• Explain the difference between categories and allegories? 
R, S, T are relations: 
• What is meant with R;S—give an example. 
• What is a lattice? In what sense do relations form a lattice? 
• Explain why we can say that relations are ordered? Give an 

example. 
• When is a relation symmetric, when transitive?  
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• What does it mean to state, that a relational database is value 
based? Give an example where this becomes visible. 

• What is the meaning of a statement like ‘connections between 
tuples are value based’? Give example. 

• Given two relations from Clients to ZIP and Stores to ZIP. 
Transform them to proper relation form and link Clients to 
Stores. 

 



 

Chapter 17 TRANSACTIONS: THE INTERACTIVE 
PROGRAMMING PARADIGM -  

Storing the data in a central repository makes them available for 
many programs; the data remains after the end of the program 
that collected them and is available and valid in the future. An 
example application for the use of a database with GIS is the 
land registry, where the long-term permanence of entries is of 
vital interest to all land owners! 

Making data permanent is the essential architectural step 
towards interactive computing as we know it today(Bachman 
1973). In the age of batch processing, data was printed and the 
lists were distributed to who ever needed the information. This is 
not acceptable today: we want to use the computer to search for 
the data we need now and present the latest information at our 
screen. The database concept made interactive computing for 
many applications possible.  

1. INTRODUCTION 
Programming under the Input-Processing-Output paradigm starts 
with a sequence of input records that are transformed or merged 
and results in an output sequence of records (fig. 270.01xx 
earlier). This processing was batch oriented, that is, all inputs are 
collected and treated at once, for example once per day or month 
and the result are distributed to the users in form of a listing.  

Figure 248: Database in a network with many users 
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Modern computing is interactive, where the user starts 
arbitrary operations—some of which result in updates other are 
simply requests for information—and expects immediate 
responses on her terminal or connected personal computer. This 
paradigm of interactive computing is only possible with a central 
repository of data that is available for all users, and that can 
perform updates and queries for many users concurrently. This 
central repository of data is connected through a network to the 
workstations of the users (Figure 248). 

2. PROGRAMMING WITH DATABASE 
Programming with the Input-Processing-Output (fig 270-01 in 
chapter 15) paradigm is dominated by the structure and sequence 
of elements in the input files. It is a transformation of the 
sequence of records in the input, one by one, or it is a merge of 
two sequences of records (Figure 249). The output file is 
produced in nearly the same order than the input. Occasionally 
input files are sorted to achieve a faster processing. If something 
goes wrong, the process is stopped, the error corrected and the 
process started afresh. This translates to programs that read input 
files sequentially, record by record, and write output files in a 
similar manner. 

Users expect today immediate answers from their computers. 
Changes in the world are observed and recorded in the database 
as they occur. For example, we can access maps showing the 
actual traffic conditions on the highways in some metro areas of 
the USA (Figure 250). 

This interactive paradigm means that a client process 
interacts with the database process. Changes are processed one at 
a time. The client processes access data randomly in a pattern, 
which is not predictable. The result of an interaction is an 
updated state of the database. Many users interact with the 
database at the same time. 

3. CONCURRENCY 
Database must be prepared to deal with concurrent users. 
Sequential processing would restrict the access to the database to 
a single user at a time (Figure 251). It is not acceptable that other 
users must wait till the first user has finished and thus 
concurrency (Figure 252) is required for a GIS data server. 

 
Figure 249: IPO processing: Merging two 
sequential files 

Figure 250: the traffic situation in the Bay 
Area 

 

Figure 251: Sequential Processes 

 
Figure 252:Concurrent Processes 
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A single computer cannot really execute several programs at 
the same time, but the results of several processes executed in a 
single time-sharing system appear as if they were progressing in 
parallel. Real parallelism of operations is only possible if several 
processors cooperate as shown in Figure 248. Single processors 
simulate parallel processing using time-sharing: they execute 
some operations for a first process, then stop this process and 
advance another process, then go to another one, etc. till 
returning to the first one and advancing this one. 

4. THE TRANSACTION CONCEPT  
The consistency of a database is threatened during updates—just 
accessing values for reading does not change the database and 
will not change a consistent database into an inconsistent one. 
Concurrent update processes have the potential for destroying 
the integrity of a database. The transaction concept is a logical 
framework in which we can discuss methods to assure 
consistency during an update.  

Designing a database transaction system requires 
imagination of what are all the possible ways a system or the 
people using it can fail such that the integrity of the database is 
threatened. Then we must design methods that guard against 
these mishaps. This will never achieve a hundred percent 
security, but an acceptable level of security with acceptable cost. 
More security has a higher cost and there is somewhere a 
balance between what is achieved and what it costs.  

4.1 DEFINITION 
The transaction concept postulates: 
• All changes to a database occur in a transaction,  
• A transaction transforms the database from a consistent state 

to another consistent state.  
• The database is initially in a consistent state. 
With these rules a database remains always in a consistent state. 

The initial database is assumed consistent.  
A transaction changes the database from a consistent state to 
another consistent state. 
All changes are in transactions. 
The database is always consistent. 

The transaction concept is crucial to maintain the database 
usable over long periods of time. The transaction concept is the 
framework in which all possible problems that result form the 

Definition of concurrent: More than 
one process is started before all other 
are ended. 

Murphy’s law: anything that can go 
wrong will go wrong. 
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interaction of multiple updates in an interactive, multi-user 
environment are resolved.  

4.2 TRANSACTION PHASES 
A database transaction is started by a process that intends to 
update the database. A series of retrievals and updates to the 
database are performed. Finally the process request termination 
of the transaction—either asking to commit the changes to the 
permanent record or to abort the transaction and to delete all the 
changes. The database then confirms the end of the transaction, 
either asserting that the changes were committed, or indicating 
that a failure occurred and the changes could not be retained and 
the transaction was aborted by the database management system. 
If the transaction is aborted either by the user or the DBMS, no 
change to the database occurs. 

 
Figure 253: Phases of a Transaction 

5. ACID: THE FOUR ASPECTS OF TRANSACTION 
PROCESSING 

A transaction has four properties: 
A  Atomicity: transactions are atomic operations.  
C Consistency; any transaction must leave the DB in a 

consistent state. 
I Isolation: Concurrently applied changes must not interact. 
D Durability: If a transaction has completed, then the result of 

the transaction must never be lost! 
This gives the mnemonic ACID. 
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5.1 ATOMICITY 
Atomicity means the logical isolation and indivisibility of 
concurrent operations. Each transaction transforms the database 
from a consistent state to a next consistent state. The transaction 
is completely done or nothing of the transaction is executed. 

db2 = doTransaction args db1 
doTransaction args db = if consistent db’ then db’ 
else db 
 where db’ = changeDB args db 

How to achieve atomicity? By creating a copy of all the 
changed data and then replacing the pointer to the original data 
with a pointer to the new data (Figure 254). It is assumed that 
changing a single pointer value in the database is atomic—it 
cannot be done half (even if electric power fails in the moment 
of changing the pointer). 

5.2 CONSISTENCY CONSTRAINTS 
At the end of the transaction, the database is checking the new 
state of the database against the consistency rules stated. These 
rules are expressed as logical constraints on the data stored and 
will be discussed in the next chapter. Most relational databases 
allow only a limited set of checks.  

5.3 ISOLATION 
If the database is changed by multiple users at about the same 
time, we must avoid all interactions between the changes of 
these users: the resulting database must be in the state it was, 
after the different transactions had been processed sequentially 
(i.e., one after the other). Any sequence is acceptable, but it must 
be a sequence, not an interference (Bachman 1973, 277) between 
two concurrent changes. It may well be that the result of the 
sequence of f before g is different from f after g (f.g ≠ g.f), but 
both are acceptable solutions for a transaction management.  

5.3.1 Danger of concurrent processes  
An example from banking demonstrates the need for transactions 
in concurrent update situations: 

Three accounts, A has $100; B has $100, C has $100 
Two concurrent processes: 1. Put $20 from A to B 
   2. put $50 from B to C. 
Consistency constraints: the sum in all three accounts 
is always $300. 

Concurrent processes have the potential to interfere, when 
one process reads data that the other process has read before and 
will change later. With the execution shown in Figure 255 the 

Definition: A transaction is either 
completely done or not at all. 

 
Figure 254: Atomicity achieved by 
changing only the main pointer 

Concept: guard against unintended 
interference and contamination 
between programs; correct execution 
is equivalent to serial execution of all 
committed transaction. 
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clients lose money without justification: the three accounts 
together contain only $280. A correct solution is one, which is 
obtained by sequential processing of the two requests; in this 
case, the result is the same, independent of the order of these two 
processes. This problem is not restricted to banking, but can 
occur in GIS as well (Figure 260)! 

5.3.2 Concurrency of read and update processes 
Transaction management is also necessary to protect programs 
that only read data if other concurrent users change the data. The 
rule is that no intermediate state of a transaction can be observed 
by another user; during a read transaction, the data seen must be 
from a single state of the database and not changed during the 
read transaction by another update transaction, and no data 
written by an aborted transaction must become visible to other 
processes. Bachman called this contamination(Bachman 1973). 

Example of contamination: Process A records that Mr. Smith 
has moved from X to Y, both communes in county Clare. At the 
same time process B sums the population of all communes in 
county Clare. If the process B is not protected by transaction 
processing to see only a single consistent image of the database, 
the count can be wrong by one person, either counting Mr. Smith 
twice or never. 

5.3.3 Concurrency control 
Do we conclude from the example that all transactions must be 
executed sequentially? This is a safe solution, but not optimal 
and not acceptable in today’s world. Could one imagine that the 
large databases that hold all the flight reservations for an airline 
could only be updated one request at a time? Consider again an 

 
Figure 255: Two concurrent update 
processes 

 
Figure 256: Interaction of two concurrent processes 
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example from banking: if we have to transfer money from M to 
N and from P to Q, the two processes can read and write in any 
order without causing problems. Technically we say that the read 
and write sets of the two processes are disjoint. 

The examples above demonstrate that problems occur when 
two concurrent transactions access the same data elements. 
Technically, we consider the set of data elements read and 
written by the transactions (the so-called read set and the write 
set of a transaction). Two transactions can progress concurrently 
if their read and write set does not intersect (Gray, Reuter 1993). 

Two different strategies to avoid interference between 
concurrent transactions are known:  

Locking: a transaction locks any piece of data it reads or 
intends to write; another transaction cannot access a locked piece 
of data and must wait till the first transaction has concluded and 
released all locks. With a two-phase locking protocol, all locks 
must be obtained before any unlocking happens; this is achieved 
by releasing all locks at the end of the transaction. It guarantees 
that concurrent processes remain isolated, but cannot prevent 
dead-lock(Ullman 1982; Haerder and Reuter 1983; Gray and 
Reuter 1993). 

Optimistic strategy: all transactions are permitted to proceed 
and at the end of a transaction we check if any of the items the 
process wants to write has been written by a concurrent 
transaction since it was read by the first one; if this is detected, 
the transaction is aborted and starts with reading the now current 
values, otherwise it can commit.  

The two strategies allow the same amount of concurrency 
and have in the general case the same cost. With the locking 
strategy there is a potential for a deadlock: process A waits for a 
lock that process B currently holds; but B waits to obtain a lock, 
which A currently has—a deadlock has occurred and none of the 
two processes can advance further. A database may check 
occasionally for such deadlocks and abort one of the two 
processes to break the deadlock. 

 
Figure 257: Deadlock:  A waits for B and 
B waits for A 

In the presence of updating 
processes, transaction management 
is necessary even for processes that 
only read data. 
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5.4 DURABILITY 
Data can be lost when computers or the storage medium fail 
("disk crash") and stored values are lost. With Input-Processing-
Output processing, data security was achieved by making copies 
of the inputs, which permits to repeat the processing later again. 
This is not possible with databases and interactive computing in 
general. With the interactive computing paradigm, the input data 
is not available for reprocessing a second time. It is necessary to 
find a way to assure that data that were entered and the 
transaction committed to the database is not lost by accident.  

The durability rule states that the changes committed to a 
database must not be lost ever. A naïve answer would be to copy 
the database before each transaction to another medium, such 
that it cannot be destroyed all at once. This is not possible, 
because copying a complete database takes more time than is 
available between transactions. 

It is sufficient, to have a copy of the initial database and then 
preserve the changes applied to it over time. Assume that a copy 
of the database was produced Jan. 1 (Figure 258). During every 
transaction, all the changed values are written to a file before 
they are applied to the database. In this file, the state of a 
database part is saved in the state it was after the update (so-
called ‘after images’). This file is stored off-line (e.g., on a 
magnetic tape)(CODASYL 1971; Gray and Reuter 1993). 

Recovery is possible: assume the third state of the database 
is lost, but the copy of the database in state 1 is available from 
the archive (Figure 259). The changes of transaction 1 and 2 that 
are stored in another file are then played against the database and 
step by step, the state of the database after transaction 1 and 2 
reconstructed. 

The same method can be used to reconstruct a previous 
database state from the current one. This is called to roll-back the 
database to the beginning of a transaction: before a part of the 
database is changed, the state it had before the change is saved in 
a file (so-called 'before images'). 

Arbitrary high level of security can be achieved, but never 
hundred percent. The more security, the more cost. Compare the 
risk of a threat with the cost to guard against it: 
• Disk crash—recover the database from backup magnetic 

tapes; 

 
Figure 258: Two Transaction against a 
database 

 
Figure 259: Database recovery 
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• Fire in the computer room—recover the database from 
magnetic tapes stored in a secure storage vault outside of the 
computer room; 

• Burning down of building—recover the database from tapes 
stored in secure storage system at a different location. 

One can see higher security against loss of data requires more 
and more effort; the more devastating an accident is, the less 
likely the threat usually is, but the more costly the method to 
secure against it. Truly dangerous and difficult to prevent is 
human error—either due to incompetence of personnel or even 
evil intentions of e.g., disgruntled employees. 

6. LONG TRANSACTIONS IN GIS 
Discussions and implementations of transaction management 
assume that transactions are short, that is, complete within 
seconds or minutes. Prototypical examples are reservation 
systems. Conflicts are resolved or at least detected and one user 
is made to wait till the other has finished his changes. This is 
acceptable in many administrative and commercial processing 
environments: when a client requests a reservation for a seat in 
an opera performance and the same seat is sold in a concurrent 
transaction while the client is making up his mind, then the 
transaction can be stopped (aborted) and a new transaction for 
another seat can be initiated and the client informed that the seat 
available a few seconds ago has been sold in the meantime to 
somebody else. 

This does not work for GIS: Assume a collection of maps 
about public utilities in a city: There is a map for each street, 
including the water and the electricity lines. Updates are not 
randomly distributed (as one may assume in an administrative 
context) in space. Actions in the real world are correlated: 
constructing a new building will require changes to the 
electricity, the water, the sewer, and the telephone lines—all in 
the same street with possible conflicts and concurrency 
problems. Consider the following sequence of actions: The 
electricity group requests a copy of the map for the 
Bräuhausgasse to perform some changes. The water group 
requests a copy of the same street to update the water lines. The 
changed map from the electricity group is copied back into the 
archive and a little later the changed map from the water group is 
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also copied back—effectively wiping out the changes entered by 
the electricity group (Figure 260). 

Figure 260: Updates are lost because no concurrency control 

In GIS—but also in other applications—transactions may be 
complex and require substantial preparation. It is not acceptable 
to demand that such work is started again all over. Transaction of 
this kind last too long for other users to wait for their completion 
before they can access the same data. 

Consider a complex transaction of parcels: a road is widened 
and all parcels on this side of the road must contribute under 
eminent domain laws a strip of land to the widening of the road. 
This can be seen as one big transaction including all the parcels 
along the road and the road parcel as well (Figure 261): In a case 
in Schlieren (Switzerland), the road was several kilometers long 
and included literally hundreds of parcels; the transaction was 
pending for several years due to court cases. Such a transaction 
requires substantial preparation for the geometric situation and 
may be delayed for years. Neither ‘restarting’ the procedure nor 
locking all the parcels involved is acceptable. More intelligent 
schemes of transaction management must be found at the level of 
the application domain. In software engineering, similar 
problems are solved with concepts of versions and branching of 
development streams, which are merged later. 

 

 
Figure 261: A Transaction locking many 
entities 
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7. GRANULARITY OF TRANSACTIONS AND 
PERFORMANCE 

The transaction management has serious impact on the 
performance of a database. When assessing a DBMS it is 
customary to test functionality and observe the speed with which 
some operations are executed. It is advisable to check that 
transaction management is switched on; vendors will ‘forget’ 
this, because a DBMS without transaction management runs 
much faster (twice the performance or better). 

Transaction management—especially the concurrency 
control—can be established at different levels of granularity. 
The simplest solution is to use the full database as the unit of 
interaction: all transactions interact and must be executed 
serially; this gives least concurrency and the simplest 
implementation. The most difficult solution is to select a field in 
a record or a single entry in a relation as the unit of transaction 
management: only few transactions will be in conflict, because it 
is unlikely that two programs need to change the same data field 
in the same record at the same time; many concurrent actions are 
possible—but the cost for this fine granularity transaction 
management in terms of performance may be higher than what is 
achieved. Effective solutions are selecting physical storage units 
(disk pages or multiple disk pages) that can be read and written 
to disk as the units of granularity. 

8. SUMMARY 
Knowledge is a resource in today's enterprises. Data is 
centralized to make it available to many parts of the 
organization. If many users interact at the same time with the 
data, safeguards must be in place to avoid negative interferences 
between concurrent updates. The transaction concept achieves 
this. It consists of four parts: 
A  Atomicity: transactions are done completely or not at all. 
C Consistency; any transaction must leave the DB in a 

consistent state. 
I Isolation: Concurrently applied changes must not interact. 
D Durability: If a transaction has completed, then the result 

must never be lost! 
Atomicity of transactions excludes intermediate states of a 

transaction to become ever visible to any user except the one 
executing the transaction. The database visible to other processes 
is in a state of consistency achieved at the end of the transaction. 
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Intermediate states, which are inconsistent, cannot be completely 
avoided, but these must never be visible to another transaction.  

REVIEW QUESTIONS 
• What are the four parts of the transaction concept? 
• What is the definition of concurrency? Why is it so detailed? 
• How to achieve long term usability of a DB using the 

transaction concept? 
• Explain an example, in which data is lost by incorrect 

concurrent processing. 
• What is interference between transactions? What is 

contamination? 
• What is a correct execution of several concurrent 

transactions? 
• What is the difference between an optimistic and a locking 

strategy for concurrency? 
• What is excluded by the atomicity principle? 
• How is durability achieved? 
• Why is a transaction mechanism necessary for readers (in the 

presence of concurrent users who change the data)? 
• When does interactive data processing require a database? 
• Explain for each of the four components of transaction 

concept what they prohibit. What is not allowed to happen? 
 
 
 
 
 
 



 

Chapter 18 CONSISTENCY  

Databases are created to maintain data useful. The database can 
check consistency after each update and abort updates that would 
lead to inconsistent states. In this chapter we discuss the methods 
to express the consistency constraints. The simplest and most 
effective method to achieve consistent data is to reduce 
redundancy. 

Redundancy breeds inconsistency! 

Consistency can only be discussed in a formal framework. It 
needs a data model and the rules that are implied by it. Using the 
relation data model introduced (chapter 16), consistency rules 
are set in the general framework of logic (chapter 4). 
Consistency means that the data together with the formalizable 
rules about the world are not containing contradictions. The 
expressive power of the language used for the description of the 
consistency rules determines how much or how little of world 
semantics can be carried over into database: What rules can be 
stated and checked at the end of the transaction?  

1. INTRODUCTION 
A data collection is only useful if the deduced information is 
correct, that is, the isomorphism between the real world and the 
model world in the information system obtains. This cannot be 
demanded and checked within the formal framework assumed 
for the discussion of formal systems (see chapter 3). 

Within the context of the information system, we can only 
check that the data stored is consistent, that is, free of 
contradiction (see 022xx). The integration of methods to assure 
consistency in a database allows to detect errors during data 
entry and to correct them immediately. 

The importance of consistency in databases has been one of 
the driving forces behind the development of the field. In the 
early days numerous ad hoc attempts were made to identify 
practical rules useful for the design of database schemas. It was 
driven originally by a hope that consistency of data could be 
described by syntactic rules. It culminated in the collections of 
rules about Normal Forms, from 2nd to 4th, 5th, and higher 
Normal Forms (Ullman 1982; Date 1983) 

 
Figure 262: The Banana Jr. Computer 
checks for correctness of color of flower 
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Parallel to the development of relational database theory by 
Codd and others, investigations into a logical interpretation of a 
database were pushed. The seminal paper by Gallaire, Minker, 
and Nicolas (Gallaire 1981; Gallaire, Minker et al. 1984) and the 
corresponding book (Gallaire 1981) opened a new way to 
understand a database and the methods to express consistency 
constraints using logic. 

2. THE LOGICAL INTERPRETATION OF A DATABASE 
Standard database theory gives the semantics of the operations in 
terms of algorithms, which deduce values from a given database 
by a search method. Codd has shown that relational theory is 
database complete; all facts stored in the database can be 
retrieved with the operations given. This is—from a 
mathematical point of view—a model: the operations are 
explained in terms of their effects on a model—possibly a very 
simplified model of it, represented in computer storage (chapter 
4xx).  

A logic view considers the database as a set of facts and a 
query as a proof: demonstrate that the query result follows from 
the stored facts. Gallaire, Minker, and Nicolas (1984) have 
pointed out that searching a database is like doing a logical 
proof. The database can be seen as a set of axioms—which is an 
extensional definition of relations—and the query as a proof. The 
query can be a question ‘what x fulfills the properties p’ and the 
result gives a value for x (see example of backward chaining in 
chapter 4xx). 

The logical framework is more general than a data model 
with its corresponding algorithms for computing the result of a 
query. The relation framework is equally powerful to the logical 
framework. Bird and deMoor (1997) show that for unitary, 
tabular allegories (as used above in chapter 16), everything that 
can be proven in a set theoretic framework is also true for 
relations. 

The framework of logic and the concept of "query as a 
proof" allow the classification of different collections of 
knowledge. Relational databases have a simple structure, namely 
collections of tuples that describe facts (which means Horn 
clauses with m=1 and n=0, see chapter 4). In such systems, 
proof reduces to search. A trivial algorithm to find an answer is 
to start with the first element and to check this and any following 
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one till one reaches the end—the answer to the query is then 
‘there is no such element’ — or till a tuple is found that fulfills 
the condition. More performant algorithms are just faster 
arriving at the same result. 

The logical interpretation of the database is promising, as it 
helps to discover: 
• What are the logical rules assumed and built into the database 

without being stated? 
• The expressive power of the database: what kind of facts can 

be expressed in the database and specifically what cannot be 
expressed? 

3. LOGICAL ASSUMPTIONS WHEN QUERYING A 
DATABASE 

With the adoption of a logical viewpoint, database theory can be 
compared to logic. In particular, one can ask what the deduction 
rules are and what axioms are implied in query processing. 
Reiter has identified a number of assumptions, which are 
automatically and tacitly made in relational data 
processing(Reiter 1984). The implied rules in databases follow 
from the ontological commitments appropriate for 
administration, but they are not always applicable for 
information systems about physical reality. 

There are three assumptions invoked: 
• the closed world assumption says, that we know all what is 

there and what we do not know is false; 
• The domain closure assumption says that all the individuals 

are known; and  
• The unique name assumption says that distinct names relate to 

distinct individuals. 

3.1 CLOSED WORLD ASSUMPTION 
The assumption that all facts about the world are known allows 
in database query processing concluding from the absence of 
facts that something is not true. This rule is known as ‘negation 
as failure’ (e.g., in the Prolog language(Clocksin and Mellish 
1981; Colmerauer, Kanoui et al. 1983)): the negation of a fact is 
expressed by its absence, and thus by failing when one searches 
for it without success. Negated facts are not stored explicitly—
which is effective: Consider how many things are not true in the 
world and how much storage space would be needed! 
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This is effective in administration, where the database is the 
ultimate arbiter on questions like ‘is Z a client of this bank’ or ‘is 
A student at UCSB’. If Z or A are not in the respective database, 
they are not a client or student there! 

For a GIS database, this is not as simple: we have never 
complete knowledge of the world, thus from an absence of 
knowledge one must only conclude ‘we do not know f’, but not 
‘f is not the case’. If a piece of land does not show a building, we 
should not conclude that there is none. We only know that there 
was none of the kind considered relevant when the data was 
collected. Land on a map without trees is at best a statement that 
no trees were on the land when it was surveyed, but one must not 
conclude that this land is currently not tree covered—trees could 
have grown since (Figure 263 and Figure 264).  

The use of the closed world assumption in a GIS must be 
selective and each relation should be labeled for completeness, 
thus indicating if absence can be interpreted as negation. 

3.2 UNIQUE NAME ASSUMPTION 
The relational database query methods assume that all 
individuals have unique names. One can thus conclude that one 
name always means the same person and those two individuals 
with different names are not the same. 

Again, this is a dangerous assumption—even in 
administrative processing. For example, I had once a student, 
Kevin L. Johnson, who had the exact same first name, middle 
initial, and last name as another student at the University of 
Maine. The other Kevin L. Johnson student was dismissed, 
because he had failed some courses and our student found 
himself dismissed, because for the administration, the two were 
only one. The billing however seemed to have worked 
independently and both paid their tuition… 

In a GIS, we may have the situation, that the same object is 
entered with two different names (Milan and Milano for the 
northern Italian city), or two times the same name appears, but 
describes different things—Calais, Maine and Calais, France—
just the pronunciation is different! 

3.3 DOMAIN CLOSURE ASSUMPTION 
Domain closure states that all the individuals that exist in the 
world—and could appear in the proof—are known in the 

Closed Word Assumption:  
What we do not know is false! 

 
Figure 263: A map with a wide meadow 
between a road and a forest 

 
Figure 264: The same area in reality, the 
forest has grown to the brook and a 
building was constructed 
Unique Name Assumption:  
All entities have one and only one 
name. 
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database and no other individuals exist. Unless we assume 
domain closure, we could never answer questions like: find all 
cities with more than 100’000 inhabitants in Antarctica. The 
response is, of course ‘none’, but only if we assume that we have 
a complete inventory of all cities in Antarctica. Or, even more 
tricky: ask whether two individuals ever went to the same 
university; if we cannot assume that we have a complete list of 
all universities, there could exist one, of which we do not know 
anything and the two individuals both went there.  

4. INFORMATION SYSTEM: A DATABASE PLUS RULES 
In an information system, the database is augmented with rules 
(chapter 15). If the rules cannot be expressed in a form that can 
be stored in the database, then the rules are included in the 
application programs, but not in a format that makes it easy to 
see what the rules are and where they are expressed. Rules in 
programs are not used by the transaction management to check 
consistency at the end of all transactions. 

The database schema must contain as many of the 
consistency rules as possible—initially, it was hoped that all the 
consistency rules can be expressed in the form proposed in 
database schema languages. This is not possible and will not be 
possible, unless the language to express the constraints has full 
computational power (i.e., a full programming language).  

The difficulty is aggravated by interaction of rules between 
transactions: assume there is a constraint stating that either A in 
table X or B in table Y exists. In a routine to introduce A we 
check for the absence of B in table Y—but how can we lock the 
absence in table Y? It is possible, that a concurrent process is 
inserting a B in Y while the transaction to insert A in X is 
underway and the conflict is not detectable (unless the first 
process locks all of table Y). 

5. REDUNDANCY 
Data is stored redundantly if it is stored repeatedly. Redundancy 
is desirable to guard against data loss: we archive copies of the 
database. The database however should not contain duplications, 
because duplication permits contradictions: if a fact is stored 
twice it is possible that only one of the two copies is updated and 
then they have different values, which is a contradiction.  

Closed Domain Assumption:  
All individuals are known. 
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Redundancy is a more subtle concept than just duplication of 
storage: a logical system contains redundant clauses if we can 
delete a clause and still derive all the same conclusions as we 
could from the whole system (compare the discussion of Euclid's 
five axioms, chapter 7). In logic, we say that the clauses are 
independent; dependent clauses indicate some form of 
redundancy. Of course, if clauses are not independent, changing 
one without the other can create an inconsistency.  

Consistency considers data and rules. Even data that does not 
duplicate directly the same measurements can contain 
redundancy and inconsistencies. Take a simple case of storing 
the noon temperature of a day for several cities of the world in a 
table; to accommodate different cultures, we store temperatures 
in °C and °F: 

City Temperature°C Temperature °F 
New York  35 95 
Berlin 29 84 
Vienna 26 79 
Rome 32 32 

The table itself has no redundancy, but with the knowledge of a 
conversion formula from Centigrade to Fahrenheit (see chapter 
6) redundancy becomes obvious: one of the two temperature 
columns is superfluous and can be deleted and reconstructed 
when needed using the conversion function. 

6. EXPRESSIVE POWER 
In a logic view, one can investigate the expressive power of a 
database and the rules it allows. The most general case of a proof 
system accepts arbitrary collection of first order formulae and 
deduces the result like a mathematical proof. No effective 
method is known so far to find automatically a proof for the most 
general logical system. The simplest case is a set of facts and 
only simple queries that can be answered with a sequential 
search. A wide spectrum of expressive power and performance is 
available (see figure 300-02 in chapter 4).  

Relational database allows only ground facts; it does not 
allow rules or negated facts ("Peter does not live in Vienna"). 
This is a limitation in the expressive power of the storage of 
facts. Another shortcoming of relational databases query 
languages is that they are not computationally complete. This 
means that there are things that can be computed, but cannot be 
computed with relational algebra. In relational algebra recursion 

Famous example:  
The proof that the fifth (parallel) 
axiom in Euclid's elements is 
independent of the others. 

Observe the contradiction in the 
temperature for Rome (correct 90ºF! 
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is missing; this seems not of much use in administration—except 
for the processing of bills of components, which have 
components themselves. It is however necessary for GIS, where 
operations that require closure are common: 

Example: Find the connected wood area, given a set of plots 
(some wooded) and their neighborhood connections (Figure 
265). Starting from a given wooded plot, say A find all 
connected wooded plots and then all the connected ones to those, 
etc., till no more are found (this is called the fixed point: f a = a). 
This is not the same result as to find all the wooded area in 
Figure 265, which would be a zone (see chapter 14xx)! 

7. CONSISTENCY VS. PLAUSIBILITY RULES 
Databases add rules to check the plausibility of the data: the age 
of a person cannot be more than 100 years, the number of stories 
of a building must be less than 100, a birth year must be in the 
range of 1900 till 1999, etc. 

As the last example shows, for all these plausibility rules, 
exceptions are possible. Plausibility rules are useful to check 
data and ask for confirmation if values outside the plausible 
range are entered, but they must not make it impossible to enter 
such values, e.g., my grandmother was 101 when she died. 

8. SUMMARY  
A database is consistent, if the collection of data and the rules 
are logically consistent. The framework of logic applied to 
databases reduces database consistency to logical consistency—
and makes clear, that consistency is only meaningful for rules 
together with the data. Most database management programs do 
not provide a language expressive enough to capture all 
consistency rules and these are hidden in application programs. 

8.1  REDUNDANCY BREEDS INCONSISTENCY 
Redundant storage means to store something twice; and then, the 
two copies can differ. The redundancy can be in the data or 
result from the combination of data and rules, which make it 
possible to construct stored data or deduce data in more than one 
way. Redundancy is to be avoided, not because it wastes storage, 
but because it can lead to inconsistence. 

 
Figure 265: Find all connected wood 
parcels 
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8.2 REDUNDANCY DEPENDS ON RULES  
The observation whether some facts are redundantly stored or 
not depends on the rules and the facts, not the facts only. If there 
is a rule that says that the relation between ZIP code and name of 
town is a function (i.e., a simple and entire relation—see chapter 
16), then the relation table in the previous chapter contains 
redundancy.  

The difficulty is that the world is not simply cut and does not 
follow the rules we make to simplify our conceptualization. 
There are few rules that have no exceptions.  

8.3 EXPRESSIVENESS OF DATA MODEL AND QUERY LANGUGE 
Data models restrict what facts can be included in a database; the 
relation (and the relational) data model restrict facts to positive 
statements. Negative knowledge cannot be inserted in the 
database.  

Query languages like SQL are not computationally 
complete; they lack recursion or a fix point operation, which 
hinders computations that need some form of closure. If the 
query language is also used to express consistency constraints, 
the same limitation applies there. 

REVIEW QUESTIONS 
• Explain Functional Dependency? What is different in a 

Multivalued Dependency? Give examples for both. 
• Why is redundancy considered harmful? 
• What is lossless decomposition? 
• What are the logical assumptions built into the query strategy 

of a relational database? What is the Closed World 
Assumption? Why is a domain closure assumption necessary? 

• What is meant by ‘negation by failure’? 
• How to represent negative facts in a database? Give an 

example for a negative fact? 
• Why and how can a query be viewed as a proof in a logical 

system? 
 
 
 
 

The world is more complex than 
examples in (database) text books. 
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PART SIX  GEOMETRIC OBJECTS 
Part three introduced coordinates to represent point locations. 
Our conceptualization of the world uses complex geometric 
objects: parcels are defined by corner points that are connected 
by straight lines. In this part, a first step towards the 
representations for geometric objects is made, namely the 
representation of straight lines and similar infinite geometric 
objects. The part consists of two chapters only: the first discusses 
straight lines in 2d space and presents a solution for the 
calculation of the intersection. The second chapter then 
generalizes the approach n dimensions and m-dimensional 
geometric objects.  
A corresponding discussion of temporal objects is not needed: 
there is only a single infinite time. Only bounded temporal 
objects, namely intervals, are of interest. These will be 
discussed in part 6 together wit the corresponding bounded 
spatial objects. 

The computation of intersection of two lines is an example 
why geometric computations are complicated: besides the 
simple case where the two lines intersect, there are numerous 
special configurations that do not lead to a solution. The two 

lines can be parallel or even collinear (Figure 266). The 
approach used here—using homogeneous coordinates and 
projective geometry (see chapter 10)—leads to an operation that 
is total, i.e., produces a meaningful result for all inputs. The 
same approach then gives also a dimension independent solution 
for the general case—the intersection of planes with lines, planes 
with planes, etc. This is one of the building blocks from which a 
GIS is constructed. The application of the theory in this chapter 
are methods to construct geometric objects, as included in CAD 
and GIS programs(Kuhn 1989). For example, construct a parcel 
with a boundary parallel to another one of 15 m width from a 
given one, which requires the computation of numerous line 
intersections (Figure 267).  
 
 

 
 
 

 
Figure 266: (a) Simple case for line 
intersection, (b) parallel lines l and k do 
not intersect, and (c) collinear lines m and 
n have infinitely many intersection points 

 
Figure 267: Geometric construction with 
conditions 

Line intersection p of two lines given 
by 4 points:  
p = (a x b) x (c x d) 



 

Chapter 19 DUALITY IN PROJECTIVE SPACE: INFINITE 
GEOMETRIC LINES IN 2D 

Points can be represented and stored in the database (see part 5), 
but we have not yet seen how to represent lines and higher 
dimensional infinite geometric objects. In this chapter a 
representation for infinite straight lines is presented that are the 
geometric objects most often used to delimit spatial objects.  

Straight lines in the plane and their intersection are studied 
since the Greeks investigated geometry(Heath 1981). The 
analytical solution for intersection of two linear equations works 
only for the 'normal' case of lines that have real intersection 
points. Computations must separate the treatment of special 
cases, e.g. parallel lines, because computations with parallel lines 
lead in many formulae to divisions by zero  

Homogenous coordinates were introduced to achieve a 
general solution for linear transformations. They are founded in 
projective geometry where all lines intersect (no special case for 
parallel lines)! Using the same embedding of the plane into the 
projective space we used to generalize transformations (see 
chapter 10) a formula which works for all situations is found. 
This chapter concentrates on straight lines in 2-dimensional 
space; the next chapter will discuss the general case in 3- and 
higher dimensional spaces. 

This chapter is using duality. Duality (introduced in chapter 
5.3xx) is a method to reduce the number of axioms, theorems, 
and proofs by half: statements with the two terms X and Y 
remain true when systematically all terms X are exchanged for Y 
and all Y for X(Stolfi 1991). Duality is based on a morphism 
(duomorphism) and can even be used for implementation(Guibas 
and Stolfi 1987).  

We have encountered duality before:  
• Boolean algebra is dual: the axioms of Boolean algebra are 

valid when one exchanges systematically and for or and T for 
F.  

• A set partially ordered by ≥ is dual to the same set partially 
ordered by≤.  

Note: Duality links a primal space to 
a dual space. 



Frank: GIS Theory Draft V15                             Feb.05          220

• In set theory we can exchange the union and intersection 
operation and exchange the null set against the all set.  

• For lattices join and meet are dual. 
• The duality between a right and a left module, which we have 

encountered in chapter 10xx discussing the construction of a 
vector space as a (right) module.  

• A category and the category with all the arrows reversed (the 
opposite category) is dual; this was used when discussing 
relations (in chapter 16xx). 

1. REPRESENTATION OF LINES 
Assume that points are stored in relations point :: ID -> coord, 
where coord are 2 tuples (general case n-tuples) from R x R. 
What is a suitable representation for infinite lines? Several 
methods are used to suit particular applications.  

1.1 VECTORS 
A line given by two points p, q can be represented in vector 
notation as (Figure 268): 

p = a + λ . v = a + λ . (b – a) = a (1-λ) + b (λ). 
The last form can be read as a weighted mean from the two 
points. The above formulae in vectors can be separated in 
corresponding formulae for x and y coordinates.  

1.2 FUNCTION 
In coordinate space, the most often used representation is  

y = m * x + c, (Figure 269)  
but this cannot represent lines parallel to the y axis (Figure 270). 

1.3 NORMAL TO THE LINE 
For lines in the plane, a line is the locus of all vectors from a 
given point and orthogonal to a vector on the line (Hesse Normal 
form). This gives the representation (with Ф the direction of the 
normal on the line): 

x cos Ф + y sin Ф – d = 0  where Ф = v + π/2 =b-a+ π/2. 
This can be generalized to a representation of any line in the 2d 
plane by three homogenous values t,u,v: t x + u y + v = 0. This 
representation is homogenous, because the line  

λ * t * x +λ * u* y +λ * v = 0   λ ≠0  
is the same line; a line has only two degrees of freedom and a 
representation with 3 values is necessarily homogenous. The 
Hesse Normal Form (Figure 271) is the one for which sqrt (a2 + 
b2) = 1. Because the vector from any point of the line p to a 

Similarity in symbols:  
∪ -> ∨, ∩ -> ∧ 

 
Figure 268: Line in vector representation 
with parameter λ 

Figure 269: y = m * x + c 

 
Figure 270: Line parallel to y axis 
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given point a of the line must be orthogonal to the vector n, all 
points p of the line must fulfill  

n . (p – a) = 0.  
The equivalence can be used to compute the values for t, u, and v 
when two points a and b of the line are given: 

 

 

 

1.4 LINE DEFINED BY COLLINEARITY 
An argument in 3 dimensional space gives a formula for the line 
l such that for any point p 

 l . p = 0.  
Any point p of the line must be collinear with the two given 
points a and b, such that triple (a, b, p) = 0.  From triple (a, b, p) 
= (a x b) . p = 0 and l . p = 0 follows l = a x b. The same result 
is obtained when using homogenous coordinates and the relation 
triple (a, b, p) = det [a,b,p], which is  

 
By expanding the determinant for the last column we obtain the 
same values as above: 

 

 

2. INTERSECTION OF TWO INFINITE LINES 
The computation of the intersection of two straight lines has a 
closed solution, if we use the homogenous coordinates 
introduced in chapter 10xx. 

 
Figure 271: Hesse Normal Form 

 
Figure 272: p = n . (b-a) 

Point p on line l 
l . p = 0 
Line through a b 
l = a x b 
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2.1 2D-ANALYTICAL GEOMETRY 
Given two lines represented as two homogenous equations in 
two unknown, namely the coordinates of the intersection point p 
= (px, py): 

a11 * x + a12 * y + px = 0 
a21 * x + a22 * y + py = 0 

expressed in vectors and matrices:  
A x+ c = 0. 

The intersection p (px, py) is found as the solution of the two 
simultaneous equations. Using the standard solution formula, 
this gives: 

x = A-1 (-c). 
for which Cramer's rule gives the coordinates: 

 
A test is necessary to avoid division by zero, i.e. det A = 0, 
which occurs when the two lines are parallel and have no 
intersection point. The function is not total and does not always 
give an answer. 

2.2 LINE INTERSECTION COMPUTED IN HOMOGENOUS SPACE 
In projective space, two lines always intersect. A computation 
with homogenous coordinates produces always a result. Given 
two lines m and n, the intersection p = m x n is obtained from  

triple m n m = triple n m n = 0 (triple product  with coplanar vectors is  always 
0!) 

we obtain: 
m . (n x m) = n . (n x m) = 0, 

replace (n x m) = p and obtain: 
m . p = n . p = 0. 

This shows that p is a point of the line m and also of the line n, 
which is the condition for the intersection point. 

A geometric justification for this result is possible following 
a model introduced by Menger(Blumenthal and Menger 1970). 
To represent 2-dimensional space select a point O (for origin) in 
3-dimensional space. A 2-d point is represented by the line 
through the origin and the point, called an O-line. A line through 
two points is in homogenous space the plane through the origin 
and the two points (recall: three points define a plane!), which he 
alls an O-plane. We have used this representation earlier when 
introducing the general linear transformation in (see section 

 
Figure 273: Intersection of two lines 

Intersection point x of two lines m n  
p = m x n 
If lines m given by points a, b and 
line n given by c,d then 
p = (a x b) x (c x d). 
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10.7xx). In Figure 274 two lines m, and n  are given in the z=1 
plane with points  for m (p,q) and for n (r s).  

Figure 274: The intersection of two lines—Line in homogenous coordinates 

The points p and q determine a O-plane in the homogenous 
space, so do r and s. The intersection point is the O-line through 
the origin and the intersection point. This is the intersection of 
the two O-planes determined by p, q, respective r, s and the 
origin. If we construct the normals to the two planes m and n, we 
know that each line in n must be normal to the normal of m and 
the same for all lines in n. The intersection line is in m and n and 
thus normal to m and normal to n, that is, the normal on the plane 
given by the two normals.  

This leads to the formula expressed in vector notation in 3d 
space: For each plane, the cross product gives the normal to the 
plane. Consider the plane through the two normals (and again 
through the origin). The normal on this plane is the intersection 
of the planes from p, q and r, s, that is, the intersection of the 
normal with the horizontal plane z = 1 is the intersection point. 
This gives the same formula: 

v =m x n = (p x q) x (r x s). 
m= p x q is line p,q,  n= r x s is line r, s 

2.3 SPECIAL CASES 
This formula is a total function; it gives a result, even for parallel 
lines, but the intersection is not necessarily a real point. The 
intersection of two parallel points give a result with a 
homogenous value of 0 and the transformation to the Euclidean 
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representation is not possible (see formulae in section 3 
following).  

The vector computation does even produce a result if a line 
is erroneously defined by twice the same point p. The 
corresponding line l = p x p is the 0 vector (i.e. a vector with all 
components 0), which is not a geometric element in Menger's 
model used above. 

2.4 LIMITATION TO 2-DIMENSIONAL GEOMETRY 
Above we have used the homogenous coordinate space 
represented as 3d and followed a Euclidean (3d) argument, using 
vector operations in 3d. We have used the cross product, which 
is defined for 3d vector space only, which limits this formula to 
the special case of lines in 2d space, which transform to 3d 
homogenous coordinates. Homogenous coordinates are a 
representation of the projective space. This will be explored in 
this and the following chapter to arrive at a dimension 
independent solution.  

3. PROJECTIVE GEOMETRY 
Homogenous coordinates were popularized in computer graphics 
to avoid division(Newman and Sproull 1981), but projective 
geometry can contribute more to computational geometry than 
just a computational trick to improve performance. Projective 
geometry is an example of a non-Euclidean geometry, where 
straight lines always intersect (see chapter 7). It is an example of 
a functor (chapter 6): a situation where we have not enough 
elements to represent all situation is solved with a morphism to a 
representation with more elements. Projective geometry is 
constructed from the ordinary Euclidean plane, to which a line at 
infinity is added. 

There are different models for projective geometry(Stolfi 
1991), which can be used to aid imagination: 
• the spherical model,  
• the straight model,  
• Menger's model of 0-lines and 0-planes, and  
• the analytical model;  
so far we have used only the analytical model. 

3.1 THE SPHERICAL MODEL  
The projective plane is the image of a (half) sphere (Figure 275), 
projected stereographically on a plane (Figure 277). There are no 
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pairs of geodesics that do not intersect: all great circles on a 
sphere intersect. 
 

3.2 THE STRAIGHT MODEL 
The straight model is the projection of the half sphere to a plain 
touching the sphere in a pole (Figure 277). It contains all the 
points of plane plus the points of the infinite line, which is the 
image of the equator (Figure 276).  

Stereographic projection maintains collinearity between 
geodesics. The geodesics of the sphere, the great circles, are 
mapped to straight lines. As all great circles intersect, all straight 
lines in the projection intersect as well. Some of the intersection 
points are on the great circle of the sphere in the equatorial 
plane, which is projected to the line at infinity. The intersection 
points go equally to infinity, indicating the lines in the projection 
are parallel (Figure 276). 

3.3 MENGER'S MODEL OF 0-LINES AND 0-PLANES 
Menger has suggested a model for an axiomatic treatment of 
projective geometry, representing points in the projective plane 
by lines through the origin (O-lines) and lines through planes 
through the origin (O-planes). This model was used above to 
justify geometrically the formula for the intersection point. It 
generalizes for n dimensions and translates immediately to the 
analytical model. 

3.4 THE ANALYTICAL MODEL 
It consists of the vectors [w, x1, x2, x3…], which are considered 
as homogenous, that is, they represent the same point when 
multiplied with any constant (≠ 0). It is the model we have used 
to represent homogenous coordinates (e.g., in Figure 274). It is 
also a model which generalizes beyond 2-dimensional geometry. 

Note: I order the coordinates such that the homogenous 
coordinate w is the first element in the vector; this prepares for 
generalization to n dimension. Most authors place the 
homogenous coordinate w as the last element! 

 
Figure 275: The sphere with geodesic lines  

 
Figure 276: Parallel lines in the projective 
plane intersect. The intersection point is on 
the ideal line. 

w is first coordinate! 
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3.5 CONNECTION OF THE MODELS 
The models are connected by central projection from the origin. 
Computing with the projective plane is just a different 
interpretation of the geometric situation and a different 
representation. The 2d vectors are transformed to homogenous 
coordinates of dimension 3 (see xx), where the mapping between 
the two is: 

x = xh / wh   xh = x 
y = yh / wh  yh = y 
     wh = 1 

the mapping to the unit sphere is  
d = sqrt (sqr w + sqr x + sqr y) 
xs = x/d;  ys = y/d;  ws = w/d. 

This corresponds to a central projection of R3 onto the unit 
sphere or onto the plane tangential to the sphere at (1, 0, 0). The 
additional coordinate w can be seen as a scale factor, with which 
all coordinates are scaled at the end. Figure 278 shows the 
correspondence between as and a; it also shows that a and a, b 
and b are the same point, expressed as homogenous coordinates.  

The value of the first coordinate in the homogenous 
representation indicates, whether the point is a regular point (w 
≠0) or is an ideal point at infinity (w = 0).  

4. DUAL SPACES: FROM POINTS TO FLATS 
The observation that the representation of a line has the same 
form than the representation of a point in homogenous 
coordinates suggests a duality between lines and points in 
projective space. In the projective plane,  

“(i) Any two distinct points lie on a unique line; 
 (ii) Any two distinct lines intersect in a unique point. 

The incidence properties (i) and (ii) are dual to each other, in the 
sense that the interchange of the words “point” and “line”, plus a 
minor change in terminology, changes property (i) into property 
(ii) and vice versa.” (Mac Lane and Birkhoff 1991, 592).  

4.1 CONSTRUCTION OF A PROJECTIVE SPACE AS A LINEAR 
ALGEBRA 
To construct the projective plane, take a 3d vector space V over 
F and define the points P as the 1-dimensional subspaces of V 
and the lines L as the 2-dimensional subspaces of V. These are 
the flats, i.e. the O-points and O-lines of Menger's model. This is 
visualized as in Figure 281: the points are the lines through the 

 
Figure 277: Projection of a half sphere to a 
plane 

 
Figure 278: Homogenous coordinates a 
and a', b and b' 
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origin, the lines the planes through the origin. Parallel lines have 
intersection points in the infinite line, hence the popular 
statement ‘parallels meet in the infinite’ 
For these points and lines and two operations join and meet, the 
following rules apply: 

"(1) The join as well as the meet of any element X with itself is 
X. 

(2) If a point and a line are incident, then their join is that line and the 
meet is that point. 
(3) Besides the points and lines, there exist a flat V (the vacuum) and 
a flat U (the universe) such that  the join  of V and any flat X is X, and 
the meet of V and X is V; and that the meet of U and X is X;, and the 
join of U and X is U. 
(4) the meet of distinct points is V; the join of distinct lines is U. 
(5) a point and a line that are not incident have the join U and the meet 
V."  (Blumenthal and Menger 1970136)(a comparable description in 
terms of vector spaces is given in (Mac Lane and Birkhoff 1991, 
592)). 
These are the axioms of a lattice with units <L, ∧, ∨, U, V> (see 
chapter 16xx); this is no accident, as historically, work on an 
algebraic formalization of geometry has produced lattice theory.  
 

4.2 POINTS AND LINES ARE DUAL 
We want duality in 2d space to have the following properties: 
• the dual from a dual space is the original space.  

dual . dual = id. 
• the dual of a point is a line, the dual of a line is a point.  
• duality preserves incidence: if a point is incident with a line 

then the dual line is incident with the dual point.  
Figure 282 shows a construction of the duality between line and 
point—it reminds us of the Hesse Normal Form —that is related 
to the representation of lines as homogenous coordinate triples 
and as homogenous points (note that there are other forms of 
duality between points and lines, useful in different contexts). 

This construction of duality preserves incidence as can be 
seen in the following Figure 283. The lines a and b intersect in 
point l, the dual points a’ and b’ are connected by the line l’, 
which is the dual of the point l.  

Duality can simplify geometric computation: we have the 
choice to compute in the primal space or in the dual space, 
whatever is simpler. It is generally simpler to construct a line 
connecting two points than to compute the intersection. The 
figure shows, that we can determine the intersection of two lines 

 
Figure 279: Intersection of two lines is a 
point 

 
Figure 280: Union of two points is a line 

 
Figure 281: Points and lines in 
homogenous representation 

 
Figure 282: A line l and its dual (the point 
l’) 
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by connecting the corresponding two dual points and to 
determine the primal point belonging to this line. 

4.3 DUALITY IN HOMOGENOUS SPACE 
In Menger's model of the projective space, where a 2d point is a 
O-line in 3d space, which goes through the origin and the 2d 
point in the horizontal plane z = 1 (see Figure 284), duality can 
be explained in a visual form: 

A line in 2d (given as 2 points) is a plane in the homogenous 
space—namely the plane through the origin and the two given 
points. The dual of this homogenous plane (a 2d line) is the 
normal on this plane—a line in homogenous coordinates and 
correspondingly a point in 2d (the intersection of the normal with 
the horizontal plane z = 1). The dual of a line given by two 
points is thus simply the cross product. 
 We can geometrically verify that this is the same duality than 
defined before. Consider two points a (x,0) and b (x,1), which 
define a line parallel to the x-axis (Figure 285). The cross 
product gives the point with y= 1/a, as used above (Figure 286). 

 

4.4 DUALITY IN VECTOR SPACE 
The modules, and vector spaces so far, have been built upon a 
scalar multiplication where the scalar was the left and the vector 
the right argument: 

(.) :: scalar -> vector -> vector. 

These modules and vector spaces where left modules; the same 
construction is possible with a scalar multiplication, where the 
scalar is the right argument: 

(.) :: vector -> scalar -> vector. 

The vector space resulting from a right or left scalar 
multiplication are dual to each other.  

In accordance with some of the literature (Mac Lane and 
Birkhoff 1991) we select a right module for the vector space. 
Points are expressed as ‘column’ vectors, linear transformations 
are written before the point to which they apply p’ = T p 
(premultiplication), where p’ and p are column vectors. Note that 
T p looks like the application of a function T to p. For this 
choice, the lines are then row vectors, etc. Other texts on the 
subject use the other convention (row vectors for points, 

 
Figure 283: Duality preserves incidence 

 
Figure 284: A line is a plane in the 
homogenous space 

 
Figure 285 A parallel line and its dual 
 

 
Figure 286: Cross section of figure 18 
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postmultiplication for transformations) and some do not 
differentiate between points and lines and write for both row or 
column vector(Hartley and Zisserman 2000)). 

4.5 FORMAL DEFINITION OF DUALTITY AS A DUOMORPHISM 
A projective space can be defined as a tuple T = (F, M, ∨, ∧, V, 
U), where F is the set of all flats in the vector space s, M is the 
set of all projective maps (automorphism of s) an V, U are the 
units. The dual space T* = (F, M, ∧, ∨, U, V) is isomorphic to 
T(Stolfi 1991, 83). The isomorphism η from T to T* must satisfy, 
for example 

η V = U, η U = V 
rank (η a) = corank a. 

5. REPRESENTATIONS OF POINTS AND LINES 
Duality allows us to select between two representation for points 
and lines—the primal and the dual one. 

5.1 POINTS AS VECTORS 
Points are represented as homogenous column vectors 
(remember, the homogenous coordinate is first!).  

5.2 LINES DEFINED AS LIST OF POINTS 
Lines can be defined by enumeration of the column vectors of 
the two points that they are defined by.  The dual of a line is a 
point, which is the row vector v = p x q. 

 

 

6. TRANSFORMATION OF A LINE IN DUAL SPACE 
The transformation in dual space must correspond to the dual of 
the transformation in primal space. A point x on a line u before 
transformation must be on the line u' after transformation x' = A 
x; therefore uT x = 0 and u'T x' = 0. The line is transformed by 
the inverse transformation A-1. 

 

 
Figure 287: A point p(px, py) 

 
Figure 288: A line given by two points 
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Note: if space and dual space are identified and points and lines 
represented by the same vector (as many texts do), then the 
transformation is the contragradient transformation, that is, 
transpose of the inverse transformations (A-1T uT )= u'T = (uA-1)T). 

7. LATTICES FOR GEOMETRIC OBJECTS 
The usual program for geometric studies classifies objects and 
the applicable operations by dimension, that is, point, lines, and 
areas, and introduces with each additional dimension new 
objects and operations. Menger suggested a dimension 
independent program based on joining and intersecting  
generalized geometric objects(Blumenthal and Menger 1970, 
135). It initiated investigation in an algebraic structure, which 
became generalized to include other similar structures and is 
called now Lattice theory(Birkhoff 1967).  

A lattice is an algebraic system with two operations, called 
join and meet (sometimes written as sum for join (+) and product 
for meet (*)).These operations are commutative, associative—
like a group—and absorptive. A lattice may have two distinct 
elements—called top ┬ and bottom ┴ (sometimes written as 1 
and 0, universe and vacuum) such that the regular axioms for 
unit elements are satisfied; if a lattice has these distinct elements, 
then they are unique. 

a ∨ 0 = 0 a ∧ 0 = a 
a ∨ 1 = 1  a ∧ 1 = 1 

Lattices are dual with respect to join and meet and top and 
bottom.  

With this definition of lattice, a dimension-independent 
description of the geometry of incidence can be achieved, but it 
is not sufficient to deal with orientation. The line from A to B is 
not differentiated from the line B to A, which makes it 
impossible to say that a point P is left of the line (Figure 289). 
Stolfi gives a description of a anti-commutative lattice-like 
theory, where a ∨  b ≠ b ∨ a and a ∧  b ≠ b ∧  a , which can 
represent an oriented projective space. It is a generalization of 
Menger's approach with an orientation added. Lines have an 
orientation and there is an operation opposite to convert a line to 
the line with the opposite orientation. A description of the theory 
for the general n-dimensional case follows in the next chapter 
but meet and join in the following sections are understood as 
following the rules of this anti-commutative lattice. 

 
Figure 289Point P is left of A to B 
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7.1 JOIN OF POINTS GIVES LINE 
A join of two points gives a line (see section 4 above), 
represented as two column vectors. The representation of the line 
as a (dual) point is the cross product of the two vectors that 
represent the two points. This can be checked, as the two points 
are on this line (i.e., the inner product of line and point is zero). 

 
Join is only defined if the two points are distinct; if the same 

point appears twice, then the resulting is the homogenous triple 
(0, 0, 0), which does not represent any real point (this is different 
from lattice theory, where a ∨ a = a). This observation can be 
used to determine if two points are the same:  

a = b iff a x b = (0, 0, 0). 

7.2 MEET GIVES INTERSECTION OF TWO LINES 
The meet of two lines is the common part, i.e.  the intersection 
point. The meet is the dual of the join, thus the l ∧ n =  l' ∨ n', 
where l', n' are the duals of l and n. If the two lines are given by 
points a,b and c,d then the dual of the lines l' = a x b, and n' = c 
x d. Meet is expressed in terms of join and dual operations, 
which both translate to the cross product. 

p = l ∧n 
p' = l'  ∨n' 
p' = (a x b) ∨(c x d) 
p= (a x b) x (c x d)  

One can verify that p is on line l and m by checking  
p . l = 0 and p . m = 0. 

The duality between points and lines and the correspondence 
between join (connecting) and meet (intersecting), leads to 
commutative diagrams like Figure 291, which show that only 
one of the two operations and duality must be given to construct 
the other. Join of two points translates to cross product × and is 
therefore the preferred implemented operation. 

a ∧ b = dual ( (dual a) ∨  (dual b)) 
a ∨ b = dual ( (dual a) ∧ (dual b)) 

  
Figure 290: A point p = l ∩ m = l ∧ m 
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8. POINT—LINE RELATIONS:  
Two relations between points and lines are derived from vectors. 
They are widely used and are related to the more general 
Matroid theory(Knuth 1992; Oxley 1992; Björner 1999): 
• Which side of a line is a point? 
• Distance of point from line? 
• Is point inside of circumcircle of three points?  

8.1 WHICH SIDE OF A LINE? 
A method to determine if a point is left or right of a line (Figure 
294) is to compute the determinant from the two points defining 
the line with the third point. The determinant gives twice the area 
and is signed: The determinant is positive if the three points are 
encountered in anticlockwise (positive) order and therefore the 
point c left of the line a to b. It is 0 if the three points are 
collinear. 

 

 
If the line l is given by its dual point, then we can use the triple 
product:  

det (a,b,c) = triple (a,b,c) = triple (c, a, b) = c . (a x b) = c . l 

8.2 DISTANCE OF POINT FROM LINE  
The distance of a point from a line can be determined by division 
of  the above determinant by the distance between the two points 
of the line. 

8.3 INCIRCLE TEST 
A test whether a point is inside a circle determined by three 
points will become important later (chapter 30xx). Given three 
points ABC, not collinear, incircle (A,B,C,D) is true, if A B C 
define in clockwise order a triangle and the point D is inside the 
circumcircle of this triangle. This is equivalent to test 

Angle ABC + Angle CDA < angle BCD + angle DAB. 

 
Figure 291: Duality 

 
Figure 294: Point c is left of a – b 
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The test can be written as a determinant (for details see Guibas 
and Stolfi(Guibas and Stolfi 1987), where the sign of the 
determinant must be the same as for the ccw predicate(Knuth 
1992): 

 
This determinant gives the same formula as when we compute 
the center of the circumscribing circle for the points A, B, C and 
then compute the distance from this center to one of the points 
and to the new point. The derivation is easier, if we use a local 
coordinate system with A = (0,0) and translate all other points to 
this system. 

 

 

 
Figure 295: Incircle test 
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9. CONCLUSIONS 
Coding intersection of lines is one of the more tricky parts of 

geometric processing(Goldenhuber 1997). The solutions 
achieved through the use of projective geometry are clean and 
elegant, when compared the solutions which need complicated 
tests. The principles found here can be generalized to n-
dimensional space. The arguments here for geometric objects in 
the 2d plane and the corresponding 3d projective space use the 
cross product for the transformation to the dual. Cross product is 
defined for 3d vectors only and the next chapter will need a 
generalization to n-dimensions. 

REVIEW QUESTIONS 
• What is duality? Explain with already known algebras (set 

theory). 
• What is the meaning of homogenous?  
• What is a lattice structure? In what sense is it dual?  
• How do the operations meet and join apply to geometry? 
• Explain the duality of points and line? 
• Why are we using projective space? 
• Give the formulae for the intersection of two lines given by 

points. 
• What is the difference between the geometric program by 

Hilbert compared to the approach by Menger?  
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Chapter 20 GENERALIZATION TO N-DIMENSIONS: FLATS  

In the previous chapter we have seen how projective geometry 
and duality leads to a simple formula for the calculation of the 
intersection. This chapter will generalize the solution found for 
lines in 2d space in the previous chapter to n-dimensional infinite 
geometric objects. We use Menger's approach to investigate 
joins and meets of subspaces. These subspaces, considered as 
geometric objects, will be called flats. In preparation for 
geometric operations defined later, the space investigated is 
oriented and the algebra is lattice-like, specifically anti-
commutative. The chapter concludes with a single formula for all 
intersection calculations, whatever the dimension of the space 
and the geometric element, using dual and join as the 
fundamental building blocks. 

The solution found for 2d objects uses extensively the cross 
product, which is defined only for 3-vectors. This restricts the 
formulae given to 2d (3d homogenous) geometry. This chapter 
starts with the identification of vector and matrix operations that 
are dimension independent and generalizes vector (cross) and 
triple product from 3 to n-dimensions. This leads to a 
generalized cross product gpc on nearly square matrices (n by n-
1). With this operation, the dual of k-dimensional objects in n-
dimensional space can be defined for all k < n and operations to 
compute the intersection follow immediately. 

1. SUBSPACES OF N-DIMENSIONAL SPACE 
In the following we will assume an n-dimensional, oriented 
space (n >=2). In 2d we had infinite geometric objects point and 
line, which were dual to each other. The approach used in 
section 19.2xx defining points in a 2d space as the lines through 
the origin of a 3d space (O-lines) can be generalized. To 
represent a n-dimensional projective space P, we use a n+1-
dimensional vector space V and a mapping P = P(V). The 
subspaces of this n+1-dimensional vector space each contain the 
origin; otherwise they would not be the sub-spaces. We can 
visualize them as the O-lines, O-planes etc. of Menger's model.  

A subspace of m-dimension is defined by m+1 point; a line 
(1-space) is defined by 2 points, a plane is defined by 3 points 

There is a morphism P from the sub-
spaces of the vector space V:  
P = P(V) 
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etc. k+1 points in an n-dimensional projective space V (with k 
<= n) define a k-dimensional vector subspace of V of k+1 
dimension. We will call a subspace of V a flat, specifically k-flat 
where k is the dimension of the subspace (and thus the rank of 
the projective geometric object). A k -flat has dimension k and 
codimension n-k. Subspaces with dimension n-1, i.e., with 
codimension 1, are called hyperplanes; they are dual to points. 

Subspaces are partially ordered by an inclusion relation: S ⊆ 
T, that is, S is a vector subspace of another vector subspace T. 
With this inclusion relation, the subspaces form a lattice, where 
the meet is the intersection and the join is the direct sum of the 
two spaces (Mac Lane and Birkhoff 1991, 594/5). The mapping 
to from the k+1-dimensional vector space to the corresponding 
k-dimensional projective spaces T -> P(T) preserves this 
inclusion and is an isomorphism of lattices. 

2. REPRESENTATIONS FOR LINES AND PLANES IN 3-
SPACE 

For comparison and reference, I include here a description of the 
often used representations of lines and planes in 3-dimensional 
space. 

2.1 REPRESENTATION OF LINES IN 3D SPACE 
A line can be defined as the geometric locus of all points 
collinear with given two points (Figure 296). Using the fact that 
the vector product of two collinear vectors is 0 gives: 

(b-a) x (p-a) = 0, or (p-a) x u = 0 where u = b – a. 

2.2 REPRESENTATION OF PLANES IN 3D SPACE 
In addition to the description as a function  

z = f (x, y) = a * x + b * y + c,  
which cannot represent vertical planes, a plane is defined as all 
points p for which the following equation in two parameters is 
valid. 

p = a + λ . v + μ . w = a + λ . (c-a) + μ . (b – a) 
where v and w are two vectors in the plane. Using that the triple 
product for coplanar vectors is 0, follows 

triple product (v,w,p) = 0. 
The definition using an orthogonal vector n = v x w (Figure 297) 
gives n . p = 0. 

A k-flat is a k-dimensional subspace 
of the projective space. 
A hyperplane is the dual to a point. 

 
Figure 296: A line in 3d space 
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3. JOIN AND MEET: DIMENSION INDEPENDENT 
GEOMETRIC OPERATIONS 

Only few geometric operations are possible in spaces of arbitrary 
dimension. The workhorse so far was cross product, which exists 
only in 3d space. Independent of dimension are: 
• join: the construction of linear subspaces of higher dimension 

from points or generally from other flats, and 
• meet: the intersection of two flats that results in another flat. 

3.1 JOIN: CONSTRUCTING FLATS FROM POINTS OR OTHER FLATS 
Geometric object of higher dimension are constructed from 
objects of lower dimension: A line is constructed with two 
points, a plane with three points (or a point and a line). k points 
in n space (in general position) form a k-dimensional subspace, a 
k-flat. This join operation, which combines two flats to produce a 
flat of higher dimension has the usual properties. The units are 
the flat, defined with zero points (dimension -1), called vacuum 
and the (n+1) flat, which is the n-dimensional space, called 
universe.  

Join is only defined, if the two objects have no common part. 
Geometrically evident is the rank of the result of the join: 

 
The primary representation for projective k-flats in n space is 

the matrix with k columns and n+1 rows, which results from 
joining the column vectors standing for the points into a matrix 
(Figure 298).  

3.2 MEET: INTERSECTING TWO FLATS 
Intersection of two flats gives another flat. Meet is dual to join. 
The direct calculation of the is avoided here and replaced by 
duality:   

dual (a meet b) = (dual a) join (dual b) 
and obtain 

 a meet b = dual ((dual a) join (dual b)). 

4. DUALITY IN N-DIMENSIONS 
Duality must be self-inverse: dual . dual = id. It is useful to 
introduce rank and co-rank to explain what objects can be dual to 
each other.  

 
Figure 297: A plane defined by the normal 
on it 

 
Figure 298: Construction of geometric 
objects from points 
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4.1 RANK AND CO-RANK 
The rank of an object is the number of points used for its 
definition, which is its dimension plus one. A k-flat has therefore 
rank k+1 (and dimension k). The co-rank is the same as the co-
dimension and counts how many points must be added to get the 
universe. 

rank = 1 + dim  
rank + corank = (1 + dim) + (n – dim) = n + 1 

4.2 DUAL OBJECT  
The rank of the dual of an object is its co-rank and the co-rank of 
the dual of an object is its rank: rank . dual = corank; corank . 
dual = rank. This duality applies to 2-space and gives the 
previously encountered duality between points (rank 1, corank 2) 
and lines (rank 2, corank 1).  

In 3d space, points (rank 1) are dual to planes (rank 3, corank 
1). Lines are dual to lines (rank 2, corank 2).  

4.3 DUALITY OF JOIN AND MEET 
The rank and corank of the result of a join or a meet are dual if a 
and b are disjoint: 

rank (a ∨ b) = rank (a) + rank (b) 
corank (a ∧ b) = corank (a) + corank (b) 

5. ORIENTATION 
Each flat has an orientation. For lines, the orientation is the 
direction of the line from first to second point (Figure 299); for 
planes, the orientation is the sense of turning given by the order 
of the three points (Figure 300). 
The operation reverse ¬ converts a flat in the corresponding flat 
with the other orientation.  

(line a b) = ¬ (line b a) 
(plane a b c) = ¬ (plane a c b) 

The flats occurring in a GIS are orientable, but the projective 
plane, into which they are mapped, cannot be consistently 
oriented. It behaves somewhat like a Moebius strip (Figure 301), 
which is the prototypical non-orientable surface. If geometry is 
restricted to the non-ideal parts of the projective plane, then 
orientation can be consistent (for more details see(Stolfi 1991). 
This means that we cannot construct figures that include the line 
at infinity and must not transform figures through this line. 

Ranks:  Point = 1-flat 
  Line = 2-flat 
  Plane = 3-flat 

 
Figure 299 Line A to B is oriented 

 
Figure 300: Plane given by A, B, C is 
oriented positively 
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6. THE ANTI-COMMUTATIVE LATTICE OF ORIENTED 
FLATS 

Lattices are commutative (a ∧ b = b ∧ a; a ∨ b = b ∨ a), but the 
join operation used here is anticommutative to respect the 
orientation.  

Anti-commutative Lattice <L, ∧, ∨, V, U, ¬> 
 anti-commutative p ∧ q = ¬(q ∧ p) = ¬q ∧ p p ∨  q = ¬(q ∨ p) = ¬ q ∨ p 
   (for p, q of rank 1) 
 associative r ∧ (s ∧ t) = (r ∧ s) ∧ t = r ∧ s ∧ t 
    r ∧ (s ∧ t) = (r ∧ s) ∧ t = r ∧ s ∧ t 
 units V ∨  a = a = a ∨ V V ∧ a = V = a ∧ V 
  U ∨  a = U = a ∨ U U ∧ a = a = a ∧ V 

Join and meet are only defined when the operands are disjoint; 
Stolfi suggests that implementations make the operations total 
and introduce a "undefined" object 0 (respective one for each 
rank). This can be used to test if two flats are disjoint by 
computing the join and then check whether the result is 0(Stolfi 
1991 45). 

The rank of a join of two disjoint flats is the sum of the ranks 
of the flats; the co-rank of the meet of two flats is the sum of the 
co-ranks, but we can also say that meet lowers the rank of the 
first flat by the co-rank of the second flat: 

corank (a ∧ b) = corank (a) + corank (b) 
rank (a ∧ b) = rank (a) – corank (b) = rank (b) – corank (a) 

For p and q flats with rank a and b and co-rank a' and b'  the 
commutative law is  

p ∨ q = ¬ (a + b)(q ∨  p);  
p ∧ q = ¬ (a' + b')(q ∧ p);  

this means each swap of two of the defining points changes the 
orientation (reminds of the change in sign of matrix determinants 
and swap of columns or rows). 

7. THE DUAL OF FLATS  
The dual of a line (a 1-flat) in 2d space is defined as the vector 
such that all points p of the line l given by two vectors a and b 
are given by the equation l' . p  = 0 where l' = a x b is the dual of 
the line . How to generalize this to n-1 flats in n space? This 
means first, how to replace the cross product with an operation 
that is available in all dimensions? We will approach this 
problem in four steps, (1) determining the dual of a hyperplane 

 
Figure 301: A Moebius strip - has only one 
edge and one surface! 
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(n-flat) gives point in n-space, (2) the dual of a line in 3-space, 
(3) the dual of a line in n-space and (4) a fully general solution 
for k-flats in n-space. 

7.1 DUAL OF HYPERPLANE GIVES POINT 
By definition of hyperplanes they are dual to points. In n-
dimensional projective space, a hyperplane has n-1 dimension (it 
is an n-flat), rank n and co-rank 1. Its dual has rank 1 and is a 
point. 
We map the projective n space to subspaces of n+1 vector space 
(homogoneous coordinates). The hyperplane is given as a join of 
n vectors, each with n+1 coordinates. From the equation for 
coplanarity in n space, we find that for any point p in this 
hyperplane the determinant of the join of h with p is 0. This 
formula is independent of dimension. Can we use it to determine 
p? 

det ( h ∨ p ) = 0 = det | x1, x2, x3… xn,  p| = 0  

The hyperplane h is defined by n points; when joined, this 
gives nearly a square matrix n by n+1, resulting from the join of 
n point vectors in homogenous coordinates. The expansion of the 
determinant det | x1, x2, x3… xk, p| for the last column gives a 
vector h', for which h' . p  = 0 (see before cofactors of a matrix; 
chapter 10).  

 
The operation gcp (for generalized cross product) takes a 

nearly square matrix of n (n+1)-vectors x1, .. xn and computes a 
vector h'  = gcp (x1…xk), such that  h' . p = 0. It is computed as 
the values of the subdeterminants of the nearly square matrix, 
crossing out one row after the other. The computation of 
cofactors and the inner product is independent of dimension. 
Note that gcp has no inverse; it can only transform a join of 
points to a dual space, not the inverse. 

 
gcp (x1..xn) .  p = det (p, x1…xn) 

Nearly square matrix: 
A matrix with one row more than 
columns, respectively 
one column more than rows. 
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Footnote:  
The computation is connected to the Hodge operator and the 
Eddington or Levi-Civita tensor(Faugeras 1993, 160-62); it 
follows from the Kronecker or outer product when computing 
the products of the base vectors such that any product of e(n-1) 
factors, where any of the ei appears twice is 0 and we identify the 
product e1…ej-1, ej+1, .. en = ej. This gives for the regular cross 
product the products of the base vectors as e1 * e2 = e3, etc. The 
argument using the expansion of the determinant for the missing 
first column and the analogy to the triple product seems simpler 
and suggest the generalization following in the next section. 
endFootnote 

This derivation gives for to the 2d projective space the cross 
product: 

 

A hyperplane h of dimension n-1 can be represented in 
homogenous coordinates by a n by n+1 nearly square 
matrix. It includes all points p, such that det (h ∨ p) = 0  
(observe that (h ∨ p) is square). It has a dual h' = gcp h, 
which is represented as an n (row) vector, such that h'  .  p 
= 0.  

7.2  DUAL OF LINE IN 3-SPACE 
Lines in 3d projective space have codimension 2, they are 2-
flats. The dual of a line is again a line, because a line has rank 2 
and corank = codimension 2.  

The determine the dual of a line in 3d projective space, 
consider the situation visualized in (Figure 302). One  could get 
the dual of the line p1, p2 by determination of the dual p1' of p1 
and p2' of p2. Then the intersection of these two planes p1' and 

Primal to dual transformation = gcp 

  

Figure 302: Construction to compute the 
dual of a line in 3d 

  
Figure 303: Dual of the line, connecting 
the dual points of the two planes Π1 and Π2 
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p2' is the dual l' of l. Unfortuantely, this requires the computation 
first of the dual plane to a point remember gcp does compute 
only the dual point to a plane) and of an intersection (meet), 
which we want to avoid and replace by the easy to compute join.  

A second and successful approach to determine the dual of a 
line l given by two points p1, p2 is obtained by considering two 
planes Π1 and Π2 through this line and two arbitrary points x1 and 
x2 (different from p1 and p2). The dual points for these two 
planes are Π1 = gcp (l ∨  x1) and Π2,= gcp (l ∨  x2).  The dual of 
the line is the join of these two points (Figure 303). 

 l' =  Π1 ∨ Π2 = (gcp (l ∨  x1)) ∨  (gcp (l ∨  xl)) = [gcp [p1, p2, x1], gcp [p1, p2, 
x2]]  

The approach results in a description of the line with 2 * 4 
parameters, when only 4 are necessary. The result is one out of 
an equivalent class of descriptions of the same dual line and is 
influenced by the choice of the arbitrary points x1 and x2, for 
which is required that det |x1 Π1 | ≠ 0 and det |x2 Π2 | ≠ 0. 

Footnote: The method proposed by Plücker would use only 6 
Plücker coordinates. The approach presented here and the 
methods using Plücker coordinates produce both results that are 
just one element of an equivalence class. The major difference in 
the approach presented here is that the arbitrary elements are 
introduced initially  when selecting the two points x1, x2. Plücker 
gives a general solution that is then constrained with the so-
called Plücker constraint. The approach suggested here is similar 
to the approach selected in (Leonardis and Bischof 1996) for a 
different problem; it is attractive, because the x1, x2 can be 
selected to produce numerically good conditions for the resulting 
matrices. 
Endfootnote 

7.3 DUAL OF LINE IN N-SPACE 
The generalization of the approach discussed for 3d projective 
space to n-dimensional projective space is immediate. A line in 
n-dimensional space is defined by 2 points (n+1 homogenous 
coordinates), it has rank 2. The dual has co-rank 2 = rank (n+1-
2) = rank (n-1). For example, a line in 4d has as a dual a plane 
with rank 3 = 4-1. To determine the dual we have therefore to 
identify n-1 dual points.  
To determine a dual point with gcp, we have to join the two 
points p1, p2 of the line with n-2 arbitrary points x1… nj and 
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compute the dual point q = gcp (p1, p2, x1…xj). For example, for 
a line in 4d, this requires 2 arbitrary points xi. This must be 
repeated to obtain the n-1 points which joined together give the 
dual flat. 

7.4 DUAL OF K-DIMENSIONAL OBJECTS IN N-DIMENSIONAL 
SPACE 
In general, the dual for a k-flat in n-dimensional space is a (n+1-
k)-flat and is determined by (n+1-k) dual points. For each such 
point, the k vectors of the flat must be joined with n-k (linearly 
independent) vectors to form the nearly square (n by n+1) matrix 
of which the generalized cross product gap is computed to obtain 
one of the dual points which determine the dual flat. Joining 
these dual points give the dual flat.  
Footnote:  
The generalization of the above approach to higher dimension is 
attractive, because the number of Plücker coordinates in spaces 
of higher dimension grows rapidly for 4-dimensional space (i.e., 
homogenous coordinates of dimension 5). Stolfi suggests a 
mixed representation(1991, 195/196), which represents k-flats in 
n space for k < n/2 as joins of the points used for the 
construction and for k > n/2 their duals (which use (n-k) points). 
Stolfi proposes a more compact ‘reduced simplex 
representation’. To achieve this, a direct calculation of 
intersection would be necessary for cases where the primal 
representation is more compact than the dual representation, 
which is the case for all flats k <= n/2; the intersection is then 
computed, for example, using s Single Value Decomposition 
(SVD) from which the nullspace of the two intersecting 
subspaces results (Hartley and Zisserman 2003 70) 
End footnote.  

7.5 JOIN AND MEET FOR FLATS 
With the operation to determine the dual for any flat independent 
of the dimension of the flat or the space and the join operation 
given by simple collection of column vectors of points into a 
matrix we have the key to a generalized intersection operation 
which gives the dual of the intersection: 

 (a ∧ b)'  = (a' ∨ b') 
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7.6 CONSIDERATION OF TYPES 
We have selected column vectors to represent points and row 
vectors for the representation of lines. Dual points are lines, 
therefore dual points are also row vectors and duality transposes 
rows to column vectors and in general a k-flat, which is a k by 
n+1 matrix into a n+1 by (n-k) matrix (k<= n).  

Join of dual elements combines them vertically and the gcp 
of a dual geometric object is the transposed gcp of the transposed 
object : gcp r = (gcp rT)T. 

 
Mathematicians and engineers tend to ignore the 

homomorphism, which embeds one type into another more 
complex one. For example it seems that vectors representing 
points and the dual of a line could be equated and we are 
tempted to write a .  b = aT b. Checking the types reveals the 
difference: the inner product yields a real number, whereas the 
result of the matrix multiplication is a matrix with a single 
element. It would be correct to write a .  b = det (aTb). It is often 
useful to differentiate between row and column vectors, between 
scalars and matrices which have just a single element etc.  

8. METRIC RELATIONS  
Distance between two points, the volume (respective area) of the 
convex hull of a set of points, and the incircle relation are the 
generally useful geometric relations. They identify discrete 
relations to metric properties and are used to deduce the discrete 
relations from the continuous metric. 

8.1 DISTANCE 
The distance between two points is a property of a metric space. 
In a vector space, it calculated as the length of the vector 
between the two points. From the definition of distance  follows 
that two points are equal if they have distance = 0. This 
translates in a test for equality: 

dist (a,b) = sqrt ((a-b) .  (a-b)) 
a == b = dist (a,b) ==0  
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8.2 VOLUME 
The determinant of n vectors in n-space gives the area of the 
volume of the convex hull of these n linearly independent points 
and the origin (Figure 304). The area or volume of an n+1 
polytope given by n+1 vectors in n-space is computed with the 
determinant in the homogeneous space (n+1 vectors, with h=1).  

If n+1 points are given to describe a polytope in n-
dimensional projective space, then the determinant is computed 
from their homogeneous (n+1) coordinates, divided by the 
product of the wi. The polytope in the n+1-dimensional vector 
space has height 1 and therefore the value for the volume and the 
area is the same v = h * a (Figure 305). A proof for the general 
case follows from the definition of the vector operations and 
homogeneous coordinates by simple algebraic computation. 

                             
The volume computed with this formula is signed and has a 

positive value if the points are listed in counter clockwise order. 
The determinant can be used to test for the counterclockwise 
ordering of the points or to determine if a point is left or right of 
a flat. This is a generalization of the CCW predicate from 
chapter 19. The determinant is 0 for points that are collinear, 
resp. coplanar. 

9. CONCLUSION 
The introduction of a generalized cross product for nearly 
square matrices, together with join interpreted as building flats 
from points and meet as intersections gives a compact and 
dimension independent formalization of intersection of flats of 
any dimension. The solution avoids the use of Plücker 
coordinates and gives a uniform representation for all infinite 
objects, albeit not minimal, but the loss of storage space is today 
not a primary concern. 

REVIEW QUESTIONS 
• Three planes intersect in a single point. How can this be used 

for a test of gcp in 3d space? 
 
 

 

Figure 304: det is area spanned by vectors 

 
Figure 305: The area from 3 points 



 

PART SEVEN  BOUNDED GEOMETRIC 
OBJECTS 

The previous chapter introduced points and flats, subspaces of 
limited dimension but infinite size and the geometry of 
intersections. In this part, finite objects, objects with boundaries 
are introduced; finite, bounded objects consist of an inside and 
outside, which 'hang together'. This part explores this 'hanging 
together' as topological property, considering neighborhoods and 
transformations that transform a neighborhood into a 
neighborhood (Figure 306). These topological transformations 
are a much larger class of transformations than the general linear 
transformations (discussed in chapter 10), but including these. 

The treatment follows the dimension independent approach 
to geometry. As far as practical, the discussion is not in terms of 
objects of a specific dimension, but stresses operations and 
relations that can be explained independent of the dimension of 
the objects or the space in which they are included. 

The first chapter in this section introduces topology: space as 
sets of points and their boundaries in continuous space. The 
second chapter discusses topological relations. The following 
part combines then the topological concepts with algebraic 
approaches. 

 

   

 
Figure 306: Five topologically equivalent 
figures 
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Chapter 21 POINT SET TOPOLOGY 

In this chapter space is conceptualized as an infinite set of points. 
Space is a base category of human experience and perception. 
Everybody experiences space and time as continuous; this 
chapter should capture this experience as a formal property of 
point sets. Continuity does play a role in the axiom system of 
Euclid: it is postulated that there is a middle point between two 
points; this is essentially stating that the line is continuous. This 
chapter generalizes this notion of continuity from the continuity 
of a line to the continuity of space in general. 

Topology captures the notion of  "continuous" independent 
of numbers. There are no breaks in space—only breaks in the 
geometric structure we impose on it and there are no breaks in 
time—only the structure we impose on it creates distinct objects. 
This is an application of Jordan’s curve theorem that separates 
objects with a boundary from its environment (see section xx).  

Topology is used in a GIS in many ways: topology defines 
the relations between an area and its boundary or the relation 
between two areas. We may have a list of countries belonging to 
the EU—can we determine the boundary of the EU? What 
countries are neighbors? Topology deals with invariant 
properties of figures. All the geometries in Figure 306 are 
equivalent. Each figure can be transformed to any of the other 
ones by a homeomorphic transformation  

Point set topology consider space as a collection of points. 
There are topologies for spaces represented with a finite number 
of points, so called discrete spaces; they could be potentially 
very interesting for GIS but have not yet been explored (see 
especially studies of lattices, which are also used in 
crystallography). This chapter concentrates on space formed by 
an infinite number of points. The next part will show the 
combination of algebraic methods with topology to achieve finite 
representations of spatial objects.  

homoemorphism =  
topological transformation 
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1. TOPOLOGY IS BRANCH OF GEOMETRY 
Topological relations are the relations that remain the same, 
remain invariant, under continuous transformations. Topology is 
the branch of mathematics, which discusses topological 
relations. ‘Topology is geometry on a balloon’  is a popular 
expression of what is studied here (Figure 307). Point set 
topology is based on the notions of neighborhood and 
homoemorphic transformations, which are continuous 
transformations which have an inverse which is also a 
continuous transformation. 

Set theory with the major operations union and intersection 
has been introduced before (chapter 5 xx). Most sets encountered 
before had a finite number of elements in them; the sets used to 
represent continuous space are typically sets with an infinite 
number of points in them. Only an infinite number of 
dimensionless points together capture our perception and 
experience with continuous space. The impossibility to directly 
represent this infinite number of points in a computer is the 
source of a large part of the difficulties in implementing GIS. 

2. DEFINITION OF NEIGHBORHOOD AND CONTINUOUS 
TRANSFORMATION 

Topology is the geometry that investigates properties that remain 
invariant under topological transformations, that is, 
transformations that preserve neighborhoods. An axiomatization 
of topology starts with capturing the properties of a 
neighborhood and then leads to the definition of continuous 
transformations as transformations that map neighborhoods into 
neighborhoods. Neighborhoods are fundamental for the 
definition of open and closed sets and other topological concepts. 
Alternatively, one can select open sets as fundamental and then 
define neighborhoods from them.  

A neighborhood in usual n-dimensional space is the 
homoemorph image (topologically equivalent image) of an n-
sphere; a 3-sphere is a ball, a 2-sphere is a disk, a 1-sphere is an 
interval (Figure 308). 

2.1 AXIOMS FOR NEIGHBORHOODS 
Topology introduces the concept neighborhood as a fundamental 
concept and defines it with the following axioms(Alexandroff 
1961, 9): 

A homoemorphism is continuous 
transformation and has a continuous 
inverse  
 
(different from homomorphism) 

 
Figure 307: The same topology on a 
balloon when inflated and deflated 

Topology = geometry on a balloon 

 
Figure 308: A 1-, 2- and 3-sphere 
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Figure 309: Illustrations for the axioms for a neighborhood 

Neighborhood Axioms  
H1: To each point x there corresponds at least one neighborhood U(x);  
 each neighborhood U(x) contains the point x. 
H2: If U(x) and V(x) are two neighborhoods of the same point x, 
  then there exists a neighborhood W(x), which is a subset of both. 
H3: If the point y lies in U(x), there exists a neighborhood U(y), which is a subset of U(x). 

 

2.2 DEFINITION OF CONTINUOUS TRANSFORMATIONS 
PRESERVING NEIGHBORHOODS 
Transformations that do not change the neighborhood are called 
continuous:  Neighborhoods are mapped to neighborhoods. The 
exact definition is: 

 “A mapping f of a topological space R onto a (proper or 
improper) subset of a topological space Y is called continuous at 
the point x, if for every neighborhood U(y) of the point y= f(x) 
one can find a neighborhood U(x) of x such that all point of U(x) 
are mapped into points of U(y) by means of f. If f is continuous 
at every point f ∈ R, it is called continuous in R.” (Alexandroff 
1961, 9) 

If there is a neighborhood around a point—whatever small—
which is not preserved (i.e., is not mapped to be contained in a 
neighborhood around the mapped point) then this points is a 
discontinuity point. 

2.3 DIMENSION OF A SPACE 
The dimension of a (usual) space is defined as the dimension of 
the neighborhoods. Neighborhoods are homoemorph for 
example, to a 2d disk or a 3d sphere.  

A space with neighborhoods is a 
topological space. 

 
Figure 310: Topological transformation  

 
Figure 311: Not a topological 
transformation 
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3. METRIC SPACES 
A space in which there is a distance defined for any pair of 
points is called a metric space. A definition of a distance 
function induces a concept of neighborhood to a space. Different 
distance functions (see chapter xx) give different neighborhoods 
but not necessarily different topological spaces (Figure 312). 

The natural topology for geographic space is the topology 
following from the ordinary Euclidean metric. Other topologies 
are possible, but seldom used in applications.  

4. INTERIOR, EXTERIOR, AND BOUNDARY POINTS 
It is useful to differentiate points inside, on the boundary or 
outside of a set: 
• Interior Point (Figure 313): a point for which any sufficiently 

small neighborhood contains only points which are in the set. 
• Exterior Point (Figure 314): a point for which any sufficiently 

small neighborhood contains only points which are not in the 
set. 

• Boundary points (Figure 315) are those points, for which any 
neighborhood contains points that are inside and points that 
are not inside the set. 

Definition boundary point: 
 In any neighborhood of a boundary point—whatever 
small—there are points that are outside and points 
that are inside 

5.  BOUNDARY, INTERIOR, EXTERIOR 
The notions of importance for practical work are boundary, 
interior, and exterior. The interior of a figure is the set of all 
interior points; the boundary of a figure is the set of all boundary 
points. The figure is the union of interior and boundary, and 
closed. The exterior is the complement of the figure.  

Egenhofer has shown, how ordinary geometric relations like 
touch, intersect, etc. can be defined using only the notions of 
interior, boundary, and exterior (Egenhofer 1989) (see next 
chapter). For every geometric figure, operations to determine 
interior, boundary and exteriors will be required and then the 
determination of the topological relations as defined by 
Egenhofer follows from intersections of these parts of the 
figures. 

Topological transformation preserve 
dimension. 

 
Figure 312: Two different distance 
functions give different neighborhoods(but 
the same topology) 

 

 
Figure 313: Interior point 

Figure 314: Exterior point 

 
Figure 315: Boundary point 

 
Figure 316: A is closed 

 
Figure 317: The complement of A (open) 

 
Figure 318: Outside, boundary, and 
interior 

 Boundary—All points that are 
neither interior nor exterior. 
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6. OPEN AND CLOSED SETS 
A set is called open, if it contains only interior points. A close set 
contains the interior points together with the boundary points. A 
set is close or open or neither of the two. 
Open and closed sets can be taken as fundamental for topology 
and a set of axioms given (S1 to S4). This is an alternative 
approach to the axiomatic foundation given before. The axioms 
H1 to H3 (above) follow from the axioms for open and closed 
sets; if H1 to H3 are assumed as axioms then S1 to S4 follow as 
theorems: the two theories are equivalent. 

Open and Closed Sets (subset of M) 
S1. The empty set and the set M are open 
S2. The intersection of two open sets is open (as is the intersection of finitely many open sets) 
S3. The union of open sets is open (finite or infinite union). 
S4. A subset of M  is a neighborhood of x if there is an open set O such that x is element of O and O a subset 

of M. 
For subsets of a set the operation complement applies also to 
open and closed sets, such that the complement of an open set is 
closed and vice versa. 

Complement 
 open a => closed (complement (a) ) 

Closed set could be defined using the complement operation. 
The complement of open set is closed; a set is closed, if the 
complement is open. Sets can be half-open – being open in some 
place and closed in others. 

7. CLOSURE 
The operation closure adds the boundary to a set, and converts it 
to a closed set. An already closed set is not changed, the 
operation is idempotent (closure . closure = closure). The 
closure of a half-open or open set is a closed set containing the 
given set. The axioms for closure give yet another axiomatic 
base for topological space:: 

topological space is a pair (X, closure), consisting of a set X and a mapping  
 closure : Powerset X -> Powerset X, such that for all a, b < X: 
 closure 0 = 0 
 a ⊆ closure a,  
 closure (closure a) = a 
 closure (a ∪ b) = closure a ∪  closure b 
 

Open set = interior only 
Close set = interior and boundary 

An open set is a set that does not 
include its boundary. 

 
Figure 319: Set A is half-open, A union B is 
closed 
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 closed (closure a) = True 
 closure . closure = closure 

8. CONNECTED  
A space is connected if it cannot be written as a disjoint union of 
open sets; for most applications the simpler notion of 'path 
connected' is used: A figure is connected if between any two 
points is a path that is completely in the interior (Figure 320). 
Figure 321 gives an example of a space which is connected, but 
not path connected: there are no interior points in the line 
connecting the two parts, therefore no path 'in the interior' goes 
from left to right. Continuous mappings of connected spaces are 
connected; the union of non-disjoint connected spaces is again 
connected (Figure 322). 
A region is simply connected, if it has no holes. Every closed 
path in a connected figure can be transformed 
homoemorphically to every other closed path; this is not 
possible in a figure, which is not simply connected (Figure 
325).  
Holes are crucial for the way objects can be used: Rooms are 
holes in buildings, as are windows, a needle without a hole is 
useless etc.(Casati and Varzi 1994). Lakes are holes in the land 
(2d view) and islands are holes in the water surface (Figure 
326). The number of holes in a figure are related to the Betti 

number, another topological invariant, which is increasingly 
studied in computational geometry [chazelle, Edelsbrunner].  

9. INTUITION AND TOPOLOGY 
Some aspects of point set topology are not directly connected to 
our experience. We think of objects always including their 
boundary. counterintuitive. In Figure 327 we see a lake with an 
island: the lake is closed and has a boundary towards land and 
towards the island. But the island has also a boundary, and island 
and lake do not overlap! The same difficulty applies to parcels 
with boundaries (Figure 327) 
The intuitive statement that the lake and the parcel do not 
overlap, in the sense that they do not have points in common is 
false: lake and parcel overlap, they have the boundary in 
common. If we remove one of the parcels, then the other parcel 
and the lake are half-open, they lack the boundary with the 

 

Figure 320: Connected figure 

 
Figure 321 Connected but not path 
connected figure 

 
Figure 322: The non-disjoint union of two 
connected spaces is connected 

 
Figure 323: Simply connected figure 

 

 
Figure 324: Not simply connected  

Figure 325: Path A cannot be transformed 
to path B 

 
Figure 326: The Hotel Faakersee on the 
island in the lake 
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removed parcel. What are the options to resolve this 
contradiction? 

9.1 PARTIALLY OPEN, PARTIALLY CLOSED OBJECTS 
From a position of point set topology, either the parcels are 
closed and the lake open (does not have a boundary) or the 
parcel is partially open and the lake closed as shown in Figure 
327. This solution is not practical, as all parcels then have to be 
partially open and the assignment of the boundary to one of the 
two parcels must be organized (for example, the boundary 
belongs to the parcel north or west). 
Intuitively, we seem to attribute the boundary to the harder 
object. The river bed (Figure 328) has a boundary, the water in 
which it floats does not have a cognitively salient boundary; the 
boundary between the river bed and the water is attributed to the 
earth, the boundary between river and air above it is attributed to 
the river. In the composition, the river seems half-open. But 
when considering the earth, the river or the atmosphere 
individually, then each is seen as closed. 

9.2 ALL OBJECTS ARE CLOSED AND OVERLAP 
If both lake and parcels are closed and have boundaries, then 
they overlap and the overlapping part is the boundary (with an 
area of zero).This is again counter-intuitive, as the partition of 
parcels and lakes is made such that they do not overlap. 

9.3 PLAUSIBLE ALGEBRA 
To capture our intuitions about boundaries better, it is customary 
to consider all regions as closed and a test for overlap yields a 
positive answer only when more than just the boundary have 
points in common (i.e., a non-zero area of overlap). If two 
objects have just the boundary in common, then we say they 
‘touch’ (for a definition see next chapter). 

The result of deducing an object B from another one A, 
which is the intersection of A with the complement of B, is a 
partially open, partially closed object A \ B. For a plausible 
topological algebra, every object is closed; after every operation, 
closure is applied to all objects. A theory of regular regions is 
suggested by(Randell, Cui et al. 1992).  

 
Figure 327: Two parcels on a lake 

 
Figure 328: Cross section of a river 
 

 
Figure 329: Parcels and lake as close 

 
Figure 330: The difference of two sets is 
half open 

An intuitive topology: Closure is 
applied to all objects. 
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10. TOPOLOGICAL CONSTRUCTIONS 
From sets A with a topology (A, O) other topologies can be 
constructed using the normal methods to construct sets from 
given sets (subset, sum, and product). The most are: 

10.1 SUBSPACE 
A subset B of the set A can be a topological space (B, O) with 
regards the topology O. 

10.2 SUM  
The (direct or disjunctive) sum of two sets is defined as the  

X + Y = X ×{0} ∪  Y ×{1} 
If X and Y are topological spaces, then the direct sum is a 

topological space, sometimes called the topological sum of X and 
Y. 

10.3 (CARTESIAN) PRODUCT 
The product of two topological spaces (Figure 331) is a 
topological space if there are neighborhoods of (x,y) ∈ W = X x 
Y, such that U is a neighborhood of x in X and V is a 
neighborhood of y in Y and U x V subset W {Jänich, 1987 
#8849@, 14; Jänich, 2001 #10601; Jänich, 1987 #10602} 

11. BASE AND SUBBASE OF A TOPOLOGY 
We have seen the importance of the base for a vector space. A 
similar construction is useful for topology. For example, the 
boxes U x V of a product topology form a base. 

A base for a topological space A is a set B of open sets, such 
that every open set of A is a union of open sets from B. A 
subbase A is a set C of open sets, if every open set of A is the 
union of the intersection of a finite number of sets from C. If X is 
a set and S a subset of the powerset of X then there is exactly one 
topology for X for which S is a subbase. 

12. SUMMARY 
Point set topology is constructed to capture the continuity of 
space and axiomatizes this notion. It starts with the concept of 
space as an infinite, continuous set of points. For point set 
topology, the fundamental concept is neighborhoods, and open 
and closed sets, for which properties are defined.  

Axiomatic definitions of point set topology and topological 
relations do not produce in constructive solutions. In particular 

 
Figure 331: Product space  
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the influential RCC theory is not constructive, it cannot be 
implemented directly(Cohn and Hazarika 2001). Point set 
topology is based on infinite sets, which cannot be implemented 
directly; for implementation, we need finite representations, 
which we will achieve with combinatorial topology (see next 
part xx). 

REVIEW QUESTIONS 
• What is the essential property of space? 
• Define boundary, boundary point? 
• What are open and closed sets? Why do they lead to counter-

intuitive rules? 
• Explain the concept of neighborhood. 
• Why is point set topology not directly implementable? 
• Draw a simply connected region! Draw one that is not!  
• Proof that circles based on the regular Euclidean distance are 

neighborhoods fulfilling the axioms. 
 
 
 
 

 
 



 

Chapter 22 TOPOLOGICAL RELATIONS 

The relations between two objects that are not changed by 
topological transformations are suitable to describe geographic 
situations. They are cognitively salient and used in human 
communication. Natural language terms describe such 
topological relations (the words inside and overlap are just two 
examples); but natural languages do not provide strict definitions 
for these terms, nor do they have a single, always applicable 
meaning(Frank and Raubal 1998; Frank and Raubal 1999). This 
chapter gives definitions for a comprehensive set of topological 
relations.  

Topology determines 
metric refines (Egenhofer). 

Topological relations play a role in geography and a large 
variety of definitions and names were proposed for spatial query 
languages and analysis functions(Frank 1982; Frank, Raper et al. 
2001). The goal is to find a function that assigns to every 
topologically different situation a value describing the 
topological aspects of the situation. This is not achieved yet; the 
relations Egenhofer introduced assign to each situation of two 
simple connected regions with codimension 0 a value, such that 
this assignment is invariant when the situation is transformed by 
a topological transformation. There is not yet a function that 
assigns to each topologically different situation a different value 
and it is not clear, if such a fine differentiation would be 
desirable.  

The concepts of point set topology are used in a GIS query 
language, when we ask for all the towns in a county or check, 
whether Lake Constance is inside Switzerland or at its boundary. 
Point set topology provides the axiomatization, but is of limited 
use for implementation. 

Topological relations can be composed: If all our knowledge 
about a situation covers the (topological) relations without 
knowledge about the metric properties, we still are able to draw 
interesting conclusions. For example, from knowing that the 
hotel Faaker See is on the island and the island is inside the 
Faaker See and the Faker See is in the land of Carinthia, we 

 
Figure 334: Two island with different 
shape, but same topology 
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immediately conclude that the hotel is in Carinthia (see figure 
previous chapter xx).  

1. INTRODUCTION 
Among topological properties relations between objects stand 
out. Whether two objects touch or overlap or are disjoint 
influences often what we can do with them. Topological 
relations are easily observable without measurements and are 
invariant under topological transformations. There are many 
ways an island can be inside a lake and many of these situations 
can be transformed continuously into each other; the functional 
properties are preserved by these continuous transformations 
(Figure 334): the island remains an island. It is sufficient to 
know the topological relation, because it determines the 
functionality and we need not know anything in particular about 
the metrics of the situation. 

In this chapter we concentrate on the relations between two 
simple (connected) objects (Figure 335) that are invariant under 
topologically transformations. The chapter starts with Jordan's 
curve theorem, which separates objects from their environment. 
The topological relations were originally investigated for 
intervals of time by Allen(Allen 1981; Allen 1983; Allen 1984; 
Allen and Hayes 1985; Allen and Kautz 1985). This 
investigation of relations between intervals of time mixes the 
aspect of continuity with order (Figure 336). The subsequent 
generalization to regions of (unordered) space by Egenhofer 
discussed the special case of 2d simply connected 
regions(Egenhofer 1989). The treatment here separates these two 
aspects of continuity and order (Figure 335, Figure 336). First, 
the topological relations for unordered space are discussed 
before relations between intervals of an ordered domain—for 
example time, or the z axis, which is strongly ordered by gravity, 
are discussed.  

The purpose of the chapter is to define a function topRel that 
assigns to any two regions in space a single Egenhofer relation. 
This assignment is invariant under topological transformations.  

topRel (a,b) = topRel (f (a), f(b))  
  where f any topological transformation 

 
Figure 335: Topological relations in 2d 
space and 

:  
Figure 336: The same topological relations 
in an ordered domain 

 
Figure 337: (a) simply connected, (b)      
and (c) are not simply connected regions 
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The approach is restricted to simply connected (Figure 337) 
regions with codimension 0. The figures must also be 
homogenous in the dimension; they must have locally 
everywhere the same dimension. This precludes figures with 
spikes, etc. (Figure 338) 

2.  JORDAN'S CURVE THEOREM 
The Jordan curve theorem—probably one of the simplest but 
most important theorems of geometry—says that a closed curve 
divides a plane in two regions (and correspondingly for higher 
dimensions) (Figure 339). From the curve theorem follows, that 
a line connecting and interior point of a region with an exterior 
point crosses the boundary line. 

3. TOPOLOGICAL RELATIONS BASED ON SET 
OPERATIONS ONLY  

The relations between two regions obtained by the set operations 
are invariant under continuous transformations. One could just 
separate disjoint, intersect, equal, inside, and contains/inside. 
• A disjoint B: A ∩B = 0 
• A intersect B: A ∩ B ≠ 0, A ∩ -B ≠ 0, -A ∩ B ≠ 0 
• A equal B: A ∩ B = A, B ∩ A = B 
• A inside B: A ⊆ B 
• A contains B, B inside A: B ⊆ A  
Contains is the converse of inside, whereas disjoint and equal 
are symmetric. 

These relations do not cover all the relations that people 
differentiate and that are relevant for the functioning of objects. 
It is, for example, not possible to differentiate between general 
disjoint and the special case of being the neighbor; Zurich and 
Rapperswil are on the Lake Zurich, but Schwyz and Uster are 
not (Figure 341). It is to differentiate such situations and the 
topological relations Egenhofer differentiates achieve this: 

4. TOPOLOGICAL RELATIONS FOR SIMPLY CONNECTED 
REGIONS 

For simple connected regions (Figure 337) in any unordered 
space, 8 relations can be separated: disjoint, touch, overlap, 
covers (with the converse covered by), inside (with the converse 
contains) and equal. The semantics of these 8 terms are not the 
same as those with the same name defined by set operations (see 
section 3 above). They were formally defined by Egenhofer in 

 
Figure 338: Not a figure of geographic 
interest 

 
Figure 339: A line connecting an interior 
point with an exterior point must cross the 
boundary 

 
Figure 340: The characterization of the 
five relations differentiated with set 
operations 

 
Figure 341: Relations of cities and a lake 
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his Ph.D. thesis (Egenhofer 1989) and later included in the 
spatial extension of the SQL standard (Egenhofer used the term 
"meet", which I replace here with "touch" to avoid confusion 
with the lattice operation meet). These relations are independent 
of the dimension of the unordered domain and require only that 
the regions are simply connected (Figure 337). 

4.1 TOPOLOGICAL RELATIONS OF SIMPLY CONNECTED OBJECTS 
WITH CO-DIMENSION 0: THE 4 INTERSECTIONS  
Egenhofer observed that topological relations between simple-
connected areas can be expressed in terms of the intersection of 
the interiors and the boundaries of the two objects; it is sufficient 
to observe, whether these intersections are empty or non-empty 
(Figure 343).  

Relations characterized in this way are certainly invariant 
under topological transformation: topological transformation 
must transform the interior of a region into the interior of the 
transformed region and the boundary into the boundary of the 
transformed region. The four characterizations of a relation 
between two regions are the same before and after the 
transformation: 

For simply connected objects with co-dimension 0 it is 
possible to differentiate between topological relations by 
considering the pairwise intersection of boundaries and interiors 
and testing only for emptiness or non-emptiness. This gives a 
total of 42 = 16 different combinations of boundary or interior that 
can be intersected and the result is either empty or non empty. 
From the total of 16 different combinations, only 8 can be 
realized with simply connected figures with codimension 
0(Egenhofer 1989).  

In Figure 344 and    Figure 345 the eight possible topological 
relations geometric configurations are shown, the termini 
Egenhofer proposed (with touches for Egenhofer's relation meet) 
and the defining 4 intersection values are given as empty (E) or 
non-empty (NE).  

Four relations are symmetric: rel A B => rel B A . The 
matrix for the intersection values for these relations must be 
symmetric. They are: disjoint, meet, overlap, and equal. Four 
relations are non-symmetric: inside and covers. They have a 
converse relation, namely contains and covered by.  

 
Figure 342: The eight topological relations 
in an unordered domain (the last column 
gives the names used in the RCC calculus) 

 
Figure 343: The four intersections for 
boundary and interior 
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Figure 344: The 4 symmetric relations   Figure 345: The four non-symmetric 
relations 

The relation overlap is special for the 1d case: the 
intersection of the two boundaries is empty (Figure 346), the 
entry for overlap in Figure 344 is valid for d >= 2.  

4.2 CLASSIFICATION BASED ON THE CONNECTED PROPERTY 
At about the same time as Egenhofer proposed the classification 
of topological relations based on the intersection of boundaries 
and interiors, Cohn and co-workers proposed a classification 
based on a single predicate connected. Their RCC contains 
different definitions for the same 8 relations between simply 
connected regions(Cohn 1995). 

This second definition of the same topological relations 
confirms the fundamental nature of the relations identified by 
Egenhofer. Egenhofer's approach is based on the intersection of 
boundary, interior and, later, exterior of the regions connects 
better to combinatorial topology (see later chapter 24xx) and is 
directly implementable, whereas the RCC axiomatization is 
based on point set topology and difficult to use as guidance for 
implementation; technically we say that the RCC calculus is not 
constructive(Cohn and Hazarika 2001). 

5. CONCEPTUAL NEIGHBORHOOD FOR TOPOLOGICAL 
RELATIONS 

The 8 topological relations can be arranged in a succession 
of relations that are obtained if one figure is moved with respect 
to the other figure (Figure 349, The relations that can be 
differentiated with set operations are different from the 
Egenhofer relations, even if they have the same names. For 
them, a conceptual neighborhood graph can be drawn (Figure 
348);  it is similar, but contains less relations. 

          

 
Figure 346: Overlap in 1-d 
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). Freksa proposes to call such diagrams conceptual 
neighborhoods(Freksa and Mark 1999). Consider two figures of 
unequal size: First the two figures are disjoint, then they touch, 
overlap, cover, are inside (if the two figures of equal size, then 
the succession is disjoint, meet, overlap, equal). Relations equal, 
touches and covers/coversBy are dominant(Galton 1997); they 
hold only for one instant, whereas the other relations hold for 
many different positions.  

    
Figure 349: Conceptual neighborhood  

The relations that can be differentiated with set operations 
are different from the Egenhofer relations, even if they have the 
same names. For them, a conceptual neighborhood graph can be 
drawn (Figure 348);  it is similar, but contains less relations. 
 
 

6. EXTENSIONS OF THE FOUR INTERSECTION 
TOPOLOGICAL RELATIONS 

From Egenhofer’s thesis sprang a rich literature discussing 
extensions to the base set of topological relations. There are 
clearly topologically different situations that have the same 
Egenhofer four-intersection values (Figure 352) and suggestion 
how to separate them abound. 

6.1 RELATIONS BETWEEN OBJECTS WITH CO-DIMENSION NOT 
ZERO 
The original definitions by Egenhofer are valid for simple-
connected, 2d regions in 2d space. For lines in 2d space, which 
have co-dimension 1, topologically different situations can not 
be differentiated (Figure 352). For 2 simple lines, the four 
intersection method gives one more symmetric relation: intersect 
(Figure 350) and a non-symmetric one (touches-1, touchedBy-1, 
(Figure 351). These relations are topologically invariant, but 

Figure 347: Conceptual neighborhood 
graphical 

 
Figure 348: Conceptual neighborhood for 
set operation based relations 

 
Figure 350: Intersection of two line 
segments(codim = 1) 

 

 
Figure 351: Two line segments touch-1 
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configurations that are topologically distinct result in the same 
relations; they are not sufficient to differentiate all topologically 
distinct situations (Figure 352). 

6.2 NINE INTERSECTION MODEL OF TOPOLOGICAL RELATIONS 
To differentiate the two situations in Figure 352 observe not only 
the intersections between boundaries and interiors, but also the 
intersection between them and the exteriors of the figures. This 
is called the nine-intersection model, because the intersection 
between boundary, interior and exterior are checked; this gives 9 
intersections, which are tested for empty or not(Egenhofer and 
Herring 1991).  
The two relations touches' and touches'' can be distinguished in 
the nine-intersection model (Figure 353, Figure 354). The nine-
intersection model is a superset of the four-intersection model 
and distinguishes between simple connected regions with co-
dimension 0 the same relations than the four-intersection model. 
There are 29 = 512 relations possible, but most of them cannot be 
realized with simple connected objects. 

There are a total of 33 topologically distinct relations 
between two simple lines and 24 additional ones between non-
simple lines (Figure 356). Egenhofer and Herring have also 
identified 20 relations in 2d space between a region (without 
hole; Figure 355) and a line(Egenhofer and Herring 1991). Ten 
relations exist between two regions with holes in addition to the 
8 that exist also between regions without holes. Even with these 
fine distinctions, which are much finer than what natural 
languages has simple terminology for, nine-intersection can still 
not differentiate all topologically different situations (for 
example the two situations in Figure 359 are not distinguished). 
It seems not possible to achieve such a definition for topological 
relations.. 

The topological relations assign to two regions an Egenhofer 
relation, such that any topological transformation of the two 
regions gives the same relation. Two situations (A,B) and (C,D) 
that result in the same topological relations r (based on the 4 or 9 
intersection model) r = topRel (A, B) = topRel (C, D), can be 
topologically distinct, i.e. there is no topological transformation 
g, such that g (A) = C and g(B) = D. This means: Two pairs of 
regions which result in the same Egenhofer relation are not 
always topologically equivalent (Figure 358).  

 
Figure 352: Two distinct configuration 
result in the same Egenhofer relation 

 
Figure 353: Touches' 

Figure 354: Touches''  
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6.3 REFINEMENTS OF THE TOPOLOGICAL PROPERTIES 
Egenhofer and Franzosa have identified a number of refinements 
for the intersection of boundary and interior, which distinguishes 
the situation. For each intersection it is not only tested if it is 
empty or non-empty, but for non-empty intersections we 
distinguish: 
• the number of components (in Figure 358 the number of 

components of interior-interior intersection is in the upper 
figure is 1 and in the lower figure is 2) 

• the dimension of the component is identified (in Figure 358, 
the upper figure has dimension 0 for the intersection of the 
two boundaries, the lower figure has dimension 1) 

• the sequence of boundary-boundary intersections or the types 
of boundary-boundary intersections(Egenhofer and Franzosa 
1995). 

The distinction of intersection of different dimension helps 
to distinguish between two types of neighbors. Consider the four 
parcels in Figure 357: both 1 and 3 and 1 and 5 are touching—
are 3 and 5 both neighbors of 1, and with what definition? We 
will later call the 1 – 3 relationship a 4-neighborhood and 1 – 5 
an 8-neighborhood (see xx). 

6.4 HOLES 
Regions with holes, which were excluded in the initial 
definitions by Egenhofer, pose additional problems for the 
classification of topological relations: Figure 360 gives two 
situations that give relation overlap, but are topologically 
distinct. A region with holes can be seen as a region without the 
holes plus a collection of holes. The topological relations 
between n regions (without holes) are completely specified by n2 
relations. Between two regions with m and n holes exists a total 
of (m + n + 2)2 topological relations describing the 
configuration. Some relations are redundant and only m*n + m + 
n + 1 are necessary(Egenhofer, Clementini et al. 1994). 

6.5 COMBINING TOPOLOGICAL RELATIONS  WITH METRIC 
RELATIONS 
The topological relations relate to an order relations between 
simply connected regions: 

A inside B implies (size A) < (size B) 
A equal B implies (size A) = (size B) 

  
Figure 355: A region with and without 
hole; with a connected or disconnected 
boundary 

 
Figure 356: A simple and a complex line 

 
Figure 357: Parcels 

 
Figure 358: Two pairs of regions which 
both overlap but are not topologically 
equivalent 

 
Figure 359: Two situations which are only 
differentiated by the dimension of the 
intersection 
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Inside imposes a partial order, whereas size a total order: from 
(size A) < (size B) does not follow that A inside B (Figure 363). 

It is tempting to record in the values of the intersection 
matrix an indication how much they intersect. For example, two 
areas that overlap a little bit and two areas that overlap a lot have 
both the same topological relation, but the Gestalt is different 
(Figure 364). The same applies for touching and the other 
topological relations. The measure of how much the two 
boundaries or interiors overlap, is best expressed as a ratio of the 
overlap, which makes the measure independent of the size of the 
objects. Such relations are not topological because they are not 
invariant under a continuous transformation, but they are 
expressing useful properties in a scale independent manner. 

6.6  TOPOLOGICAL RELATIONS AND APPROXIMATIONS 
Objects with indetermined boundaries (Burrough and Frank 
1995; Burrough and Frank 1996) can be represented by an area 
that certainly is occupied by the object and a second area where 
perhaps the object is situated (Figure 362). One might ask what 
are the topological relations between two objects represented in 
this way? What relations obtain certainly? What relations may 
obtain? This has been explored but applications are not yet using 
these distinctions(Clementini and Di Felice 1996; Cohn and 
Gotts 1996). 

7. COGNITIVE PLAUSIBLE TOPOLOGICAL RELATIONS  
The differentiations in 8 topological relations covered by the 
four intersection model cover a large part of the practically 
relevant cases(Mark and Egenhofer 1992; Egenhofer, Sharma et 
al. 1993; Egenhofer and Mark 1995; Shariff, Egenhofer et al. 
1998). Mark and Egenhofer have checked with extensive subject 
tests that the topological relations differentiated by intersection 
of interior, exterior, and boundary are cognitively plausible: they 
are the kind of relations people differentiate(Mark and Egenhofer 
1992; Egenhofer and Mark 1995). 

8. ALLEN’S RELATIONS BETWEEN INTERVALS IN TIME 
Allen (Allen) has classified the relations between time intervals 
into 13 named relations (Figure 365). Time intervals are simply 
connected regions of an oriented line. Oriented intervals have a 
start and an ending point that is differentiated. This leads to a 
finer distinction of the relations, where relations that are 

 
Figure 360: Two topologically different 
pairs of regions, which cannot be 
distinguished by the 4-intersection 

 
Figure 361: The 4 intersection for both 
pairs in Figure 360 

 
Figure 362:An Egg-Yolk representation of 
two objects with uncertain boundaries: 
"perhaps overlap" (Cohn and Gotts 1996) 

 
Figure 363:(size A) < (size B) but not A 
inside B 

 
Figure 364: Two different gestalt of 
overlap 
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symmetric in an unordered domain become antisymmetric in the 
ordered domain:  
• Disjoint becomes either before or after  
• Touches becomes meets or met-by 
• Overlap becomes overlaps or overlapped-by, etc. 

9. GENERALIZATION TO TOPOLOGICAL RELATIONS IN 
ORDERED N-DIMENSIONAL SPACES 

Allen's characterization of relations between temporal intervals 
can be derived from the Egenhofer relations and a differentiation 
of order. It is customary to express this as conditions on the 
starting and ending points: 

starts i j = (start i == start j) && (finish i < finish j). 
It may be simpler to determine the center of gravity (the zero 
moment, see xx) of the two intervals and classify first using the 
four intersection model and then select the precise temporal 
relation:  

A before B = A disjoint B && center A < center B 
A start B = A covers B && center A < center B 

 
Figure 365: The relations which are differentiated between 
simply connected regions of an ordered domain 
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etc. 
This approach is generally useful in 2d (general n-d) spaces. In 
an ordered 2d space, we can find one or two ordered axis. 
Geographic space, for example, is ordered by the north-south 
direction, which influences the amount of sunshine available, 
and on the east-west direction or an inland-sea direction. Italy 
touches Switzerland, but this is mainly in the north-south 
direction, whereas the relation between France and Germany is a 
touching in east-west direction (Figure 366 and Figure 367). The 
same qualifications can be applied to covers, contains etc.: Styria 
is south inside in Austria (earlier figure xx). 

10. PROJECTIONS AND TOPOLOGICAL RELATIONS 
Most GIS represent objects with the 2d projection in the x-y-
plane. Unfortunately, the topological relations between two 
regions in 3d space and the 2d projections are not simple and I 
know of no coherent theory. The problem is that the projection 
of the boundary of a 3d object is not the boundary of its 2d 
projection (Figure 369), the projection of the interior is the 
interior of the projection (Figure 368), but the projection of the 
exterior is not the exterior of the projection (Figure 370). 

Similar Projections occur when we consider space and time. 
Hagerstrand has introduced the Space-Time diagram into 
geographic research, where the projection of the location of a 
moving object is combined with time shown on the z-axis 
(Figure 371). In such space-time diagrams we can show as cones 
all the points a person can possibly reach when we know her 
location at a given time (Figure 372). One may then ask if two 
people can possibly have met, i.e., if their cones of reachability 
have intersected(Hornsby and Egenhofer 1997). 
 

 
Figure 366: Touching southward 

 
Figure 367: Touching eastward 

  
Figure 368: Projection of interior is 
interior of projection 

 
Figure 369: Projection of boundary is not 
boundary of projection 

 
Figure 370: Projection of exterior is not 
exterior of projection 
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11. SYMBOLIC PROJECTION 
An earlier approach to classify relations between objects was 
using on symbolic projections(Chang, Jungert et al. 1989; 
Jungert and Chang 1989; Chang, Jungert et al. 1990; Jungert 
1992; Jungert 1993). It characterized the relations of regions by 
the relations of their projections to the coordinate axis (Figure 
373). This approach was designed for searching in a large 
database of images, because each image can be represented by 
two strings and search for substrings is fast. The major 
disadvantage is that this approach is not invariant under 

rotation.  

12. MOVING AND CHANGING REGIONS 
Egenhofer's topological relations and especially the conceptual 
neighborhood can be understood as the sequence of relations 
between a fixed and a moving object (Figure 376). A sequence 
of topological relations is characteristic for certain types of 
changes in regions. In the conceptual neighborhood graph 
different movements result in different transitions between two 
relations that can occur without any other intervening 
relations(Egenhofer and Al-Taha 1992). This can be used, to 
differentiate different types of movements —rotations or 
translations—and changes to the region—growing or 
shrinking—as distinct patterns of changes (Figure 375, Figure 
377, Figure 378, and Figure 379): 

13. CONCLUSION 
A cognitively plausible set of topological relations has been 
identified and formally defined by Egenhofer(1989). The 
relations are differentiated by overlap of interior or boundary of 
the objects. To compute these relations from geometric objects 
represented in a GIS, it is necessary to be able to compute the 
interior and boundary of the objects and to test these for 
intersection or emptiness of intersection. 

     
Figure 371: A person’s trip from home to 
work, lunch at a restaurant and a stop at a 
shop on his way home 

Figure 372: Cone of points reachable in 30 
minutes 

 
Figure 373: Symbolic projection of A and 
B 

 
Figure 374: Transition by move or change 
of region 

 
Figure 375: Pattern for translation 

 
Figure 376: A moving object A at three 
different times before the fixed object B 
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These topological relations are invariant under continuous 
transformation f:  

topRel A B = topRel (f A) (f B) 
but not all topological separable relations result in different 
Egenhofer relations. Egenhofer's approach differentiates 
originally between 16 relations (24), of which not all can be 
realized in 1d or 2d space for simple connected figures. For 
simple-connected 2d regions in 2d space, only 8 are possible for 
objects with codimension 0.  

Egenhofer relations are restricted to simple connected 
figures. The generalization to consider the 9 intersection between 
interior, boundary, and exterior of the figure can differentiate 
more relations; refinements are possible if the dimension of the 
intersection, the number of components or even the size of the 
intersection is considered. The resulting large number of 
different topological relations may be useful in some 
applications, it seems not to lead to a generally useful, 
cognitively manageable set of relations. 

For objects with multiple components or holes, a matrix that 
gives the relations between all the components describe the 
relation; again the analysis of such situations is application 
dependent. For example, it may be interesting for some 
applications to observe that the components of object A and 
object B pairwise overlap, or pairwise touch (Figure 380). 

In ordered domains, some relations can be differentiated by 
observing the relation of the center of gravity of the two objects. 
For time, Allen's differentiated 13 relations between two 
intervals. This can be seen as the product of Egenhofer's 
relations and the order of the center of gravity. 

14. REVIEW QUESTIONS 
• What are the topological relations defined by Egenhofer? 

How are they defined? Why are exactly these relations 
differentiated? 

• What does it mean to say that a relation is dominant? Which 
relations are dominant? 

• What relations can be differentiated when only interior and 
exterior are considered? 

• What is a ‘conceptual neighborhood’?  
• What is the difference between 4 and 9 intersection relations? 

 
Figure 377: Pattern for rotation 

 
Figure 378: Pattern for expanding A or 
shrinking B 

 
Figure 379: Pattern for shrinking A or 
expanding B 

 
Figure 380: Components A touch 
components of B (from south-east) 



Simplex 269 

• What are space-time diagrams? Draw one for your trip from 
home to the university. 

• Why do symmetric relations not have a converse? 
• Build the table of distances between the relations in the four 

intersection tables (count each difference in an entry as 1 unit 
distance); what are the connections with the smallest distance? 
How to interpret? 
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PART EIGHT  ALGEBRAIC TOPOLOGY: 
SIMPLEX AND COMPLEX 

Combinatorial topology is approaching topological problems 
with algebraic methods. In part 6 the geometry of unbounded 
geometric objects (flats) was clarified and in part 7 topology and 
how it structures the continuous space of bounded objects were 
shown. The three chapters in this part use combinatorial or 
algebraic topology to deal with geometry of finite objects: 
segments of infinite lines, triangles, but also regions of arbitrary 
shape, and eventually, subdivisions of space. A GIS is using 
these structures to record the shape and the position of all the 
things it collects information about: parcel and their boundaries, 
lakes and woods but also street networks or the gas distribution 
pipes. 

Combinatorial topology is based on counting of finite 
objects(Henle 1994, 5). Countable, finite objects are more 
amenable to implementation on computers than sets of infinite 
number of points in point set topology. What are the geometric 
objects that can be counted to capture the notion of continuous 
space? The well-known Euler characteristic for a cell is a prime 
example for a count, which is invariant under topological 
transformations (Figure 381): F – E + V =1, where F is the 
number of faces, E the number of edges and V the number of 
vertices. 

Combinatorial topology studies invariants of bounded 
geometric objects under topological transformations. We first 
investigate the simplest geometric configurations: points, straight 
line segments, triangles and operations applicable to them. These 
simplices have great advantages. They are convex parts of flats 
and have a fixed number of boundary points for each dimension. 

The second chapter constructs complex geometric objects 
from simplices. The purpose is to construct an algebra that is 
closed under intersection and union. The third chapter shows 
how metric information is used to construct the simplicial 
complex necessary. This completes the goal of this part: a 

The goal of the chapter is  a method 
to calculate the intersection of two 
arbitrary figures, independent of the 
dimension or complexity. 

 
Figure 381: Euler's polyeder formula for a 
cell 

Simplex: 
part of flat 
convex 
fixed number of boundaries 
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general method to intersect arbitrary figures results from the 
merging of the cell complexes of the given figures. 

Simplicial complexes have several applications in GIS: they 
are a generalization of graphs, which will be treated in the 
following part, and subdivisions, especially triangulations (part 
10). 
 
 
 
 

 



Frank: GIS Theory Draft V15                             Feb.05          272

Chapter 23 GEOMETRIC PRIMITIVES: SIMPLICES 

Geometric objects are composed of points, lines, and areas. We 
study in this context the simplest forms, called simplices (Figure 
382). They form the building blocks from which more complex 
objects are then constructed in the next chapter. 

Union and intersection is not computable for simplexes 
(Figure 383). This chapter is therefore laying the ground for the 
discussion of simplicial complexes in the next chapter, where 
eventually merging complexes allows union and intersection of 
arbitrary complexes (chapter 25xx). 

1. INTRODUCTION 
The vector algebra (chapter 9xx) introduced geometric lines of 
infinite length, which was generalized to the notion of flats 
(chapter 19xx). In this chapter we construct geometric values for 
the simplest geometric configurations with finite geometries: 
points, straight line segments, triangles, etc. There is an simplex 
for any dimension, generally described as n-simplex (or n-simp). 

Similar to previous chapters, the focus is on the general case, 
the n-simplices. Dimension of objects is decisive: we have 
different words for properties of depending on their dimension 
(length, area, volume). This is traditional approach for 
computational geometry, which goes back to Hilbert's approach 
to geometry, applies also to GIS and CAD; it is cognitively well 
justified, but has not lead to a consistent and attractive theory. 

In this chapter, different geometric objects—points, lines, 
and triangles—are generalized to a single class simplex (n-simp) 
with operations that apply to all of them. Object-oriented 
software engineering (Wegner 1987; Meyer 1988; Rumbaugh, 
Michael Blacha et al. 1990; Egenhofer and Frank 1992) calls this 
generalization: the common operations applicable to several 
classes are identified and described at a general level. This 
dimension independent approach continues the dimension 
independent treatment of flats and the discussion of topology. 

 
Figure 382: Simplices (they are open and 
do not include the boundaries!) 

 
Figure 383: The intersection of two 
simplices is not a simplex! 
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2. SIMPLEX DEFINITION 
Simplices are the simplest finite, open geometric figure in space 
of any dimension (Figure 382). They are constructed from the 
least number of simplices of a lower dimension. 

 

Simplices are the object of studies in combinatorial (or 
algebraic) topology; for their use in GIS, we must consider their 
metric aspects as well: their properties, the relations between 
simplices and the operations applicable to them can be separated 
in metric and topological ones. Topological properties are: 
• Rank, dimension, codimension, and corank 
• Orientation  
Metric properties are: 
• Length, area, volume, generalized to size, moments 
• Distance 
• Orientation. 
Relations between simplices are: 
• Equality 
• Incidence and adjacency relations, 
• Boundary relation and the converse co-boundary. 
Operations applicable to simplices are: 
• Join, to construct a simplex from points, 
• Reverse a simplex, 
• Intersection test, 
• Point in simplex test, 

3. TOPOLOGICAL VIEW OF SIMPLEX  
A simplex is the image (under continuous transformation) of the 
unit sphere of the appropriate dimension (Figure 384). The 
sphere of 2-dimension is a circular disc, the sphere of dimension 
3 is a ball—higher dimensions are somewhat more difficult to 
imagine, but they are topologically equivalent to the image of the 
product of n unit intervals (0..1) (n= number of dimension). The 
unit sphere is part of the flat of the corresponding dimension and 
the simplex is imbedded in the flat of the corresponding 
dimension. 

0 simp – point, 
1 simp – line, 
2 simp – triangle, 
3 simp – tetrahedron, etc. 

Rank = dim + 1 
A simplex of rank n is spanned by n 
points.  

 
Figure 384: Simplex is topological image 
of unit sphere or product of unit intervals 
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The simplices are open, they do not include their boundaries. 
The closure of a simplex is called the body of the simplex; it 
includes the simplex and all its boundaries (Figure 385). 

4. A SIMPLEX RESULTS FROM JOINING OF SIMPLER 
SIMPLICES 

Simplices are constructed form a number of points in most 
general position (not collinear, not coplanar) (Figure 386). One 
point gives a 0-simplex, two points give a 1-simplex, etc. (Figure 
382). We consider here only oriented simplices, for which the 
order of points is significant. They are constructed from 
oriented flats (see chapter 19xx). The operations join used to 
construct is the same as in chapter 19 and not commutative (as 
is it usually in lattice theory). 
join a b = reverse (join b a).  

Note: the coordinates are expressed in homogenous 
coordinates. 

The join operation is the same as used to construct flats: the 
result of the join is the matrix of the (column) vectors of the 
points. The matrix construction maintains the order of the 
points. The points must be in general position,. If the points are 
not in general position the determinant of the resulting matrix is 
0; this is a convenient test to identify degenerated simplices 
(Figure 388).  

Join is generalized and takes not only points as inputs, but 
simplices of any dimension can be joined (this is similar to the 
composition of flats to flats of higher dimension). Joining a point 
with a 1-simp gives a 2-simp, etc. (Figure 389). 

The inverse operation to join is 0-skeleton: it gives for each 
simplex a list of the 0-simplices it is constructed from. 

5. DIMENSION, RANK,  
It is convenient to define the rank of a simplex as its dimension 
+1. The rank of a simplex is the number of points it is 
constructed from, i.e., the rank of a simplex is card . skeleton. A 
simplex is embedded in a flat—this is called the span of the 
simplex. The dimension of the simplex and the dimension of the 
span is the same.  

 
Figure 385: The body of s a 2-simplex: the 
2-simp, three 1-simps and three 0-simps 

 
Figure 386: Construction of simplex as join 
of points 

 

 
Figure 387: The construction of a 3-simp 
from 3 points 

 
Figure 388: 3 collinear points are not a 
triangle, 4 coplanar points are not a 
tetrahedron 

det (join a1, a2,, .. an) = 0 
<=> a1, a2,, .. an not in general 
position 

 
Figure 389: Join a point to a line gives 
triangle 
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The dimension indicates how many degrees of freedom or 
how many parameters are necessary to describe such a figure 
(Figure 391). The points of the simplex define vectors, which 
can be seen as bases for a space. The dimension of this space is 
the dimension of the matrix formed from the points of the 
simplex. For an n-simplex with points a0, a1, .. an the vectors a1-
a0, a2-a0, … an-a0 are linearly independent and define the span of 
the n-simplex (note: a0,… an are not linearly independent!).  

For regular simplices dimension is 0 or a positive integer; it 
will be written as n-simp. By convention the empty set is defined 
by 0 points, has rank 0 and dimension -1. 

6. CO-DIMENSION 
Simplices are embedded in geometric space. The codimension of 
a simplex is the difference between the dimension of the 
embedding space and the dimension of the simplex. A point in 
3d space has codimension 3, whereas a line in 2d space has 
codimension 1. Co-dimension is 0 or positive integer. The same 
as for flats, the co-dimension is the same as the co-rank. 

Codim (dim space) – (dim simp) = codim (dim space) – (rank simp) + 1  
codim = corank 

7. ORIENTATION 
The orientation of simplices follows from the orientation of the 
flats, which we constructed as oriented. A simplex embedded in 
an oriented flat inherits the orientation. The orientation of a 
simplex is either positive or negative (represented by the values 
+1 or –1). The direction of a line is either from point A to point 
B or the reverse. Areas have two directions as well, defined as 
the sense in which the points on the circumference are listed: 
anti-clockwise is positive, clockwise is negative (Figure 392, 
Figure 393). By convention, a 0-simplex has positive 
orientation. 

Volumes have two orientations as well. The orientation of a 
volume is defined positive if the vectors resulting from the cross 
product of the edges point all outwards,; if they point inside, then 
the volume has negative orientation. Areas and volumes with 
negative orientation can be interpreted as holes in an area or 
volume of positive orientation (Figure 394). 

 
Figure 390: l is f μ, with f μ = a + μ * (b-a) 

 
Figure 391: Triangle is g( μ , λ)  = a + μ * 
(b - a) + λ * (c - a) 

The rank is dimension plus one and is 
always >= 0.  

 
Figure 392: The positive arrow on a 
simplex S 

 
Figure 393: Simplices with positive 
orientation 
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The orientation in the projective representation is taken as the 
sign of the determinant of the homogenous matrix that defines 
the simplex (function clockwise respective counterclockwise). 
This is the counterclockwise (CCW) predicate in chapter 20.  

orientation (s0, s1,.. sn) = sig (det (join (s0, s1…, sn)) 

8. EQUALITY OF SIMPLEX: PERMUTATIONS OF 
BOUNDARY REVERSE SIMPLEX 

Two simplices are equal if they consist of the same points in the 
same order, but this is too restrictive a definition of equality: the 
triangles (ABC), (BCA), and (CBA) are the same. 

Two matrices describing a simplex change only the sign of 
the determinant if two rows are columns are exchanged, called a 
transposition (see chapter 10). This applies to simplices, which 
can be seen as a topological image of the simplex spanned by the 
unit vectors transformed by a matrix(Stolfi 1991 192).  

Two simplices are equal if they consist of the same points 
and the order of the points can be transformed from one to the 
other with an even number of exchanges between two points. 
Cyclic permutations of n element correspond to n-1 
transpositions. A cyclic permutation of a 2-simp gives the 
simplex with the reversed orientation. AB is the reverse of BA. 
A cyclic permutation of a 3-simp does not affect the simplex.  
A B C -> C B A -> B C A are all the same simplex. (Stolfi 1991, 
192) 

9. BOUNDARY  
The boundary of a simplex has a dimension of one less than the 
dimension of the simplex: the boundary of a line (1d) is two 
points (0d). The boundary of a triangle (2d) is the three lines 
(1d). The boundary of a point is the empty set. The dimension of 
the boundary is one less than the dimension of the simplex (for 
consistency, the dimension of the empty set is defined as -1). 

Attention: boundary for simplex is not the same as boundary 
in point set topology. Take a 2-simp (Figure 385), the boundary 
are the 3 1-simps and does not include the 0-simps at the 
corners! The point set topological boundary includes the lines 
and the corner points. 

Boundary is a relation between a simplex of dimension n and 
simplices of dimension n-1. It has a converse relation, co-
boundary, which will be used in the next chapter on complexes. 

 
Figure 394: Triangle ABC with hole EFG 

The sign of the determinant is the 
orientation 
sig x = if x > 0 then +1 else  
      if x = 0 then 0 else -1 

Cyclic permutation of 2-simplex does 
not change; cyclic permutation of 1-
simplex does change the orientation. 
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From the boundary relation follows the boundary function, 
which takes a simplex and returns the set of boundary simplices. 

boundary :: simplex -> [simplex] 

10. METRIC OPERATION: LENGTH, AREA, VOLUME, 
ETC. 

All simplices have a size: 1-simplex have a length, 2-simplex an 
area, 3-simplex a volume. For n simplices (rank n+1) with rank 
>=the volume is the value of the determinant of the (n+1) 
vectors in homogenous (n+1) coordinates, corrected for the 
product of the homogenous values and divided by the factorial of 
n (n!).  

 
The size of a simplex of dimension 0 (point) is assumed to be 0. 
The size of a 1-simp is the length, computed as the norm of the 
difference of the two vectors. If the points are given in ordinary 
(not homogenous) coordinates, then the volume is determinant of 
the matrix formed by subtracting one of the points from all the 
others:  

vol [A0, A1, .. An] = (1/n!) * det |A1 – A0, A2 – A0,.. An-A0|. 

The computation of the size yields a signed quantity that 
gives also the orientation; "ordinary" size is the absolute value, 
expressed as a real (and approximated by a Float). One might 
think of the area as the absolute value of the determinant, and 
think of negatively oriented simplices as holes! 

orientation = sign vol  

11. TEST FOR POINT IN SIMPLEX 
The test whether a point is inside a simplex or not is the base 
operation for the general intersection test for simplices. It is 
useful to separate the case, where the given simplex has 
codimension 0 or not. 

11.1 POINT IN SIMPLEX WITH CODIMENSION 0 
Take the example of a triangle (Figure 395) and test three times 
if the new point is left of the 1-simp, which means apply three 
time the counterclockwise (ccw) predicate (chapter 19): X is 
inside if it is left of AB, BC and CA, which means ccw (ABX) and 
ccw (BCX) and ccw (CAX) must all be positive. 

 
Figure 395: X is inside  
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Note: to properly deal with degenerated simplices or points 
lying on the boundary, the CCW test must yield a result of (+1, 
0, -1} which leads to a three valued logic(Sinowjew 1968); this 
is a consequence of the topological division of space in 3 disjoint 
sets: interior, boundary, exterior (chapter 21). 

This generalizes for higher dimensions. A test for a point in a 
line is a special case (no triangles!) but follows directly from the 
order of points on the line (x > a, x < b) (Figure 397) 

11.2 POINT IN SIMPLEX WITH CODIMENSION >0 
If co-dimension is not 0, then one must first determine if the 
point is on the span of the simplex. Consider a point and a line 
(Figure 398). We determine first, if the point is on the flat AB or 
not, i.e. if ABX are collinear. For this determine the size of the 
area ABX and test against 0. If not 0 then point is not on in the 
span of the simplex AB.  

This is the general test for a point to be in a flat or not (see 
chapter 20). If the given simplex of rank n and the point together 
determine a new simplex with rank n+1, which means det (n,x) 
> 0, then X is not inside.  

If the point is in the flat spanned by the simplex then use the 
test for codimension 0 given above to determine if the point is 
inside the simplex or not. 

12. INTERSECTION POINT OF TWO 1-SIMPLICES 
Two simplices intersect, if they have points in common. One 
could separate the test for intersection from the calculation of the 
intersection geometry. The general case of intersection of 2 n-
simplices does not result in an n-simplex (Figure 383) and will 
be dealt with in the next chapter. In preparation, the special case 
of computing the intersection point of two 1-simp is given here 
(Figure 399): 

 
Figure 396: The CCW test: is point A to the 
left of line B-C 

 
Figure 397: X is inside AB (1D space) 

 
Figure 398: Point not in simplex AB 

 
Figure 399: P is the intersection point of 
the two 1-simp 
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To determine the intersection point, the formula for 
intersection of flats is used (see chapter 20 and 21), but the 
computed intersection of the two infinite lines is not necessarily 
a point within the 1-simplices (Figure 400). It must be inside the 
quadrilateral ADBC. This can be tested with the ccw predicate 
(Figure 401): the following four values must all be true: 
ccw(ABC), ccw(ADB), ccw(ADC),  and ccw(BCD).  

13. INTERPOLATION AND CONTOUR LINES 
An often encountered task is the interpolation of a point into a 
simplex with codimension 1 (i.e., a line in 2d space or a triangle 
in 3d space). Simplices are flat and permit linear interpolation. 

Expressing the position of the new point as a 
parameterization, one can calculate the weighted average of the 
values for the boundary points. This can be generalized for linear 
interpolation in any dimension. It uses a barycentric coordinate 
system (Figure 403). 

  

13.1 CONTOUR LINES 
To determine the pieces of a contour-line in a triangle is a useful 
function which can be used to construct contour lines for 
triangulated surfaces later. The endpoints of the contour lines 
result from the intersection of the boundary 1-simp with the 
horizontal planes.  

 
Figure 400: Three configuration where the 
2-simp do not intersect. 

 
Figure 401: Four ccw tests to see if P is  

 

 
Figure 402: Interpolation problems 

 
Figure 403: Barycentric coordinates 
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14. REPRESENTATION IN DATABASE 
Simplices are represented in the database as entities. For each 
simplex, we can define a relation that gives the dimension of the 
simplex. Points are 0-simplices. 

The relation boundary gives to each simplex the boundary 
simplices. This gives for the join operation a different 
implementation than the join for flats; it creates a simplex and 
inserts the boundary points in the relation boundary. 

15. CONCLUSIONS 
Combinatorial topology considers topological relation of 
simplices and figures constructed from simplices; it counts 
distinct elements and is closer to implementation than the point 
set topology with infinite set we have used in the previous two 
chapters.  

The operations on simplices use topological and metric 
properties of the simplices. This brings together the geometric 
operations on flats (part 3 and 6) with topology (part 7)..Often 
metric operations are at the base for topology. For example, the 
orientation of a 2-simplex (a triangle) is determined by testing 
whether the determinant is positive or negative. 

Summary of operations applicable to simplices in general: 
• Rank, dimension, codimension, and corank, 
• Equality, orientation and reverse, 
• Boundary relation and the converse co-boundary, 
• Intersection test. 
Metric properties are: 
• Length, area, volume, generalized to size,  
• Point in simplex test, 
• Intersection between two 1-simplex, 
• Parameterization, used for interpolation. 

REVIEW QUESTIONS 
• How to compute the height of a point inside a triangle? 
• What operations on triangles are necessary to construct the 

contour lines for a triangulated surface? 
• Why is the join of two points not commutative? What is the 

difference between join (a,b) and join(b,a)? 
• What are the topological operations and relations that apply to 

simplices? 

 
Figure 550-34 
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• Which operations on simplices require a metric space? 



 

Chapter 24 SIMPLICIAL COMPLEX  

The program of combinatorial topology is the transformation of 
topological problems into algebraic questions. The primary 
method is a form of counting(Henle 1994, 5); for example, 
Euler's polyhedron formula. F -  E + V = 1. 

The simplices introduced in the previous chapter are in this 
chapter combined to complexes, which are triangulations of 
space. Simplicial complexes are collections of simplices, such 
that for each simplex all its bounding simplices are also part of 
the complex. Simplicial complexes for 2d are triangulations, but 
simplicial complexes exist for all dimensions and the treatment 
is mostly dimension independent.  

Geometric figures will be represented as subcomplexes and 
mapped to chains of simplices. This approach is viable, because 
most topological properties are independent of the details of the 
triangulation; any triangulation will produce the same 
result(Henle 1994, 157). 

Simplicial complexes and their subcomplexes are useful in a 
GIS because in a simplicial complex  
• the intersection and union of two arbitrary subcomplexes is 

again a subcomplex, i.e., a total operation;  
• for subcomplexes the topological relation defined by 

Egenhofer can be derived algebraically. 
Simplicial complexes can be generalized to cell complexes and 
then include graphs and raster representations as special cases. 
This chapter shows how to deal with geometry in a GIS; it uses 
finite representations that can be implemented in today's 
computer systems and stresses topological invariants over the 
vagaries of approximation of metric operations with floating 
point numbers. 

Terminology: all complexes in this chapter will be 
understood as simplicial complexes. 

1. INTRODUCTION 
This chapter shows how to represent arbitrary geometric figures 
that are closed under union and intersection and for which 
topological relations can be computed easily.  

Program: Transform all geometric 
operations into operations on 
simplicial complexes 
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The geometric problem posed here is the one of union of 
figures, such that interesting geometric operations op distribute 
over union:  

op (a ∪ b) = op' a ∪ ' op' b  where a∩b=0. 
Two examples: Compute the length of the metro network of 
Vienna, which is the union of the lines U1, U2, U3, U4 and U6 
(Figure 404) or determine the area of a forest F within a 
watershed W (Figure 405). The lines and areas encountered in 
reality can be approximated with collections of simplices. 
Simplicial complexes are constructed such that they can be 
treated with algebraic methods.  

Many discussions in GI Science centered around a 
representation for geometric figures and their topological 
relations(Dutton 1979). Rules restricting representations to 
subdivisions(Corbett 1975)) and later to (essentially) cell 
complexes (Frank 1983) were proposed. The use of the algebraic 
topology and specifically simplicial complexes were suggested 
first in 1986 {Frank, 1986 #325} and commercial 
implementation of the overlay operation using cell complexes 
appeared(Herring 1990; Herring 1991). 

2. SIMPLICIAL COMPLEX 
A triangulation in 2d-space is a simplicial complex and we can 
generalize the notion to any dimension: a line or a graph is a 1-
dimensional complex, the triangulation of an area a 2-
dimensional one, and a 0-dimensional complex is a collection of 
points.  

A general simplicial complex is an arbitrary collection of 
simplices, resulting from the triangulation of some 
polyhedron(Alexandroff 1961). A simplicial complex is defined 
as a collection of simplices (Figure 406), such that 
• for each simplex in the complex all the boundaries are also in 

the complex (i.e. all edges for the faces and all vertices for the 
edges) and  

• the intersection of two simplices in the complex is empty or a 
simplex already in the complex. 

A simplicial complex does not allow points which are not 
boundaries of an edge, edges that are not bounding two faces, 
etc. (Figure 407). The dimension of a complex is the maximum 
of the dimension of the simplices in the complex.  

 
Figure 404: Metro lines in Vienna 

 
Figure 405: The intersection of a forest 
and a watershed 

 
Figure 406: A 2-, 1-, and 0-complex 
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Operations with subcomplexes of a simplicial complex (e.g., 
a triangulation), are not requiring any metric operations. The 
representation of all geometric figures here will be by 
subcomplexes and all geometric operations in this representation 
will become algebraic computations (mostly operations with 
finite sets); the integration of geometries from different sources 
into a single complex is the operation, where the spatial 
information is converted into a discrete structure. 

The simplicial complex is a most restricted and complete 
representation of the topological relations between the elements 
without reference to the coordinates. Changes in coordinates, for 
example by numerical operations which are only approximate, 
are not affecting the topology. This is the fulfillment of the 
motto: topology determines, metric refines(Frank and Kuhn 
1986; Egenhofer and Sharma 1992). For example in Figure 408, 
the movement of X to X' changes the positive orientation of the 
triangle XBC; it becomes X’CB with a negative orientation. A 
representation using only coordinate values would require a test 
for X inside of ABC based on approximate metric properties. If 
the figure is represented as a complex, the topology is fixed.  

The definition of a simplicial complex corresponds to what I 
initially called 'completeness of incidence' (Frank 1983; Frank 
and Studenmann 1983) and which Kuhn and I refined later, 
using combinatorial topology(Frank and Kuhn 1986). A 
simplicial complex lists explicitly a small number of relations to 
preserve the topological structure even in the presence of errors 
in the metric processing. Numeric problems cannot change the 
topology in a simplicial complex! 

The simplicial complex represents all the intersection 
between the closure of the faces. This can be generalized to an 
abstract notion of complexes over arbitrary sets and their 
intersections. The complex then is the nerve of a system of 
sets(Alexandroff 1961, 39).  

3. DIRECTED SUBCOMPLEXES REPRESENTED AS 
CHAINS 

A complex K is directed, if every edge of K is given a direction 
from a start node to an end node, and every face a direction 
around the polygon(Henle 1994 185). A directed subcomplex is 
a subset of the oriented simplices of a complex, such that the 
subcomplex is a complex. A k-subcomplexes can be represented 

A simplicial complex of dim n 
consists of simplices, such that 
- for each simplex all boundaries are 
in the complex, 
- pairwise intersection is either empty 
or simplex (dim n-1). 

 
Figure 407: Not a complex! 

   
Figure 408: Points cannot move in a 
triangulation without violating explicitly 
stored relations 

Terminology: 
By complex we will in this chapter 
understand a subcomplex of a 
simplicial complex. 
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by a sum of k-simplices, expressed as an k-chain. A simplicial k-
complex (or a subcomplex) is a sum of k-simplices from the 
complex: 

C = a1 S1 + … an Sn = Σ ai Si 
where the ai are integers. ai =  +1 indicates that the simplex is in 
the chain, ai =  -1 that  the reversed simplex is in the chain, aj = 
0 means that the simplex Sj is not in the chain. The empty chain 
is the chain with all factors 0. The addition of chains must be 
defined such that  

f (c1 + c2) = f c1 + f c2. 
The representation of the chain as a sum of products is similar to  
vectors, except that the factors are integers (and mostly restricted 
to +1, 0, or -1). We define a multiplication with -1 in the usual 
sense and say that it reverses the complex by reversing all the 
simplices. For the addition, we will use four different rules: 

OR: 1 + 1 = 1, 0 + 1 = 1 + 0 = 1, 0 + 0 = 0 
XOR: 1 + 1 = 0, 0 + 1 = 1 + 0 = 1, 0 + 0 = 0 -- generalized: addition 

mod 2 
AND: 1 + 1 = 1, 0 + 1 = 1 + 0 = 0, 0 + 0 = 0 -- this is called an 

idemgroup (x=-x) 
Signed addition: 1 + 0 = 0 + 1 = 1, 0 + 0 = 0, 1 – 1 = 0, -1 + 0 = 0 – 1 = -1 

With these rules for addition, four different kinds of addition 
of chains are executed pointwise, like vector addition or the 
addition of polynoms: 
c1 = Σ aj sj c2 = Σ bj sj 
c1 + c2 = Σ (aj + bj) sj -- where + may be any of the four operations. 
If the rule for additions has the properties of a group (XOR, and 
AND), the corresponding additions of chains are groups as well.  

3.1 UNIONS AND INTERSECTION OF CHAINS 
The area of two complexes given as 2-chains of the same 
simplex is the sum of the two chains, using the signed addition 
rule. The intersection of the chain is the result of the AND rule.  

3.2 SIZE  
Size Operations distribute over union and intersection, as 
desired. For example, the area of two disjoint 2-complexes is the 
area of the union of the two complexes.  

3.3 BOUNDARY OPERATOR FOR CHAINS 
The boundary operator for simplices gives as a result a chain: the 
boundary of a 1-simplex (an edge) is a 0-chain with two 
elements: the start (factor +1) and the end point (factor -1). In 
Figure 412, δ(a) = -B + C. This boundary operator carries over 
to sums of chains, such that the boundary of a sum is the sum of 

 
Figure 409: Union and difference of two 
chains 

 
Figure 410 

δ (a ∪ b) = δa ∪ δb 
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the boundaries, using the signed addition rule for the coefficients 
ai: 

Δ W = a + c + b 
δ V = e + d + b’ = e + d – b 
δ (W+V) = a + c + e + d 

The boundary operation so defined works even for complex 
with holes (Figure 413). The result is a single chain, not 
separated in outer and inner boundaries. The boundary of the 
boundary of a 2-d area is 0; this can be used as a test. 

Algebraic topology develops the theory of homology, which 
is a method to capture invariants of surfaces. It gives a 
justification why the approach suggested here works: Most 
topological properties of figures are independent of the 
triangulation selected (General invariance theorem,(Henle 1994, 
157). 
Let T be a triangulatable space of dimension two, that is, a complex 
composed of simplexes of dimension two or less. Then the homology 
groups of T are independent of the choice of triangulation. 
I have not yet found a direct application of homology for GIS so 
far. It is useful for a generalization of the Euler polyeder formula 
to become the Euler characteristic of a surface and contributes to 
the solution of the 'map coloring problem', which says that all 
maps can be colored with just 4 colors. 

3.4 SKELETON OF COMPLEX 
The k-1 skeleton of a k-simplicial sub-complex is the set union 
of all the (k-1) boundaries of the components (Figure 414). The 
skeleton of an area (i.e., a sub complex with triangles) is a set of 
boundary lines(Egenhofer 1989). It can be computed as the sum 
of the boundary of each k-simplex in the chain, using the OR 
rule for the addition 

The interior skeleton (Figure 414) is defined as the skeleton 
minus the boundary (i.e., only the interior boundaries). The 
interior skeleton can be computed as the sum of the boundary 
chains, using the AND rule. 

3.5 INTERIOR OF COMPLEX 
The interior of a complex consists of all faces minus the 
boundary. If a k-complex is given by a set (or chain) of k-
simplices, the interior consists of these faces, their inner skeleton 
and again the boundaries of these (Figure 414). 

 

  
Figure 412: Boundary of sum is sum of 
boundaries (unoriented simplices) 

δ (δ (r)) = 0 iff r a 2d-area 

boundary distributes over sum: 
δ(Σ ci) = Σ (δci) 

 
Figure 413: Subcomplex with hole 

   
Figure 414:Skeleton, interior skeleton and 
interior 
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4. TOPOLOGICAL RELATIONS BETWEEN 2D SIMPLE 
REGIONS  

Egenhofer has identified (see chapter 22) eight topological 
relations between simple regions(Egenhofer 1989), which are 
derived from the intersections of the interiors, the intersection of 
interior and boundary and the intersection of boundaries. The 
classification whether these intersections are empty or not 
determines the topological relations. To determine the 
topological relations between two regions given as simplicial 
subcomplex, we have to compute their boundaries and interior 
and then to test whether the intersections are empty. These 
operations are all algebraic. 

The argument is given for two 2d regions, each a 
subcomplex of a complex and given as a k-chain. The case of a 
1d line and a 2d region is considered in the third subsection. The 
approach generalizes to higher dimensions, but Egenhofer's 
definition of relation is only given for the relations between two 
2d regions. 

4.1 COMPUTE BOUNDARY AND INTERIOR 
To compute the boundary and the interior of the two regions for 
testing Egenhofer relations must be attentive to the difference 
between the notion of boundary in point set topology (which 
Egenhofer's definition use) and the boundary operation in 
combinatorial topology, which is used for the implementation.  

The interior of a 2-subcomplex is the 2-chain of triangles, 
plus the 1-chain of the interior skeleton, plus the 0-chain of the 
interior point.  

The boundary of a 2-subcomplex is the boundary operator 
applied to the 2-chain, which gives a 1-chain of the 1-simplices 
in the boundary. Then determine the skeleton of this 1-chain, 
which gives a 0-chain, which are the points in the boundary (why 
is it not the δ (δ (r)) ?). 

4.2 INTERSECTION TESTS 
Simplices in a simplicial complex have only simplices in 
common which are part of the complex, there are no other 
intersections. Only simplices of the same dimension can intersect 
and if they are intersecting then they are equal—this converts the 
test for intersection in a test for equality! 
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Figure 416 shows which tests must actually be done: The 
interior consists of a 2-chain, a 1-chain and a 0-chain, the 
boundary consists of a 1-chain and a 0-chain. Only intersections 
of same dimension must be checked. We can exclude the 
intersection of the interior 1-chain and the 0-chain: two 
complexes can only have common interior skeletons, if they are 
common interior faces (Figure 415).  

 
Figure 416: The seven intersections necessary 

4.3 EGENHOFER RELATIONS BETWEEN 1D REGION AND 2D 
REGION 
For the intersection between two 1-complexes or a 1-complex 
with a 2-complex, the tests reduce further. For the 2-complex, 
the interior faces can be ignored and we have to consider only 
the interior skeleton (1-chain and 0-chain). For a 1-complex, the 
interior is the interior skeleton (1-chain and 0-chain) and the 
boundary is a 0-chain. 

 
Figure 417: The intersections for the relations with a line 

5. SUMMARY 
Simplicial complexes and specifically subcomplexes are the 
representation for which geometric operations, especially sum 
and intersection, are total. The topological relations are the result 
of simple arithmetic and set operations and do not rely on metric 
operations with approximate floating point numbers. The next 
short chapter shows how two complexes are integrated to form a 

 
Figure 415: Intersection of interior 
skeleton only possible if the faces intersect 
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single complex for which both are sub-complexes, such that the 
above described operations apply.  

Simplicial complexes are triangulation and generalize to 
complexes built from cells. Most of the principles of simplicial 
complexes apply directly to cell complexes. A triangulation of a 
given situation includes more geometric objects than the same 
situation represented by cells, but operations on cell complexes 
require more complex implementations(Herring 1987; Herring 
1990; Herring 1991). The theory is better explained with 
simplicial complexes, even if commercial GIS use cell 
complexes for performance reasons. Alternatively, better 
performance of simplicial complexes may be achieved with the 
reduction in the number of objects may also be achieved with the 
methods necessary for multiple representations (Lieblich and 
Arbib 1982; Minsky 1985; McKeown and Lai 1987; Beard 1988; 
Buttenfield and Delotto 1989; Günther 1989; Timpf, Volta et al. 
1992; Buttenfield 1993; Frank and Timpf 1994; Sester 1996) and 
different levels of detail {Frank, 1986 #325}. 

REVIEW QUESTIONS 
• Why is the incremental overlay method less sensitive to the 

problems of approximate calculation with coordinates? 
• Why is this called algebraic topology? What is it contrasted 

with? 
• What is the difference between a cell complex and a 

simplicial complex? 
• What is the definition of a simplicial complex?  
• What is the boundary of a boundary? Where is it used? 
• Why is Figure 407 not a simplicial complex? 

 
 
 



 

Chapter 25 OPERATIONS FOR COMPLEXES 

We have seen that the intersection of two triangles is not a single 
triangle, but 4 triangles and therefore intersection is not an 
operation applicable to triangles resulting in a triangle (figure in 
previous chapter 24).A general method to intersect any 
geometric figures can be given; it reduces to merging the two 
figures as two complexes to a single complex and then determine 
the intersection of the two subcomplexes.  If we take each 
triangle as a simplicial complex then the intersection operation is 
just merging the two triangles, which are complexes, and 
determining the intersection of the two subcomplexs. This 
operation is closed; the result is a subcomplex of the complex 
and can be used for other operations! 

This chapter describes the operations necessary to manage 
the simplicial complex and to integrate two complexes in a 
single one. Simplicial complexes are built according to a 
parsiomous principle(Knuth 1992, 62): no inconsistency can 
occur if nothing is ever tested for which the answer can be 
deduced from previous tests.  

This merging of complexes achieves the geometric part of 
most GIS operations which is an overlay operation. For example 
the overlay of the subdivision of an area into parcels and a 
valuation map let us compute the value of each parcel (Figure 
419, Figure 420). Assume that the two subdivisions are given as 
simplicial complexes; the overlay operation reduces to the 
integration of the two complexes into a single one, of which each 
is then a subcomplex. Then the intersection of the two 
subcomplexes is just an intersection two chains. 

 
Figure 418: Example of the merge of two 
complexes 
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Figure 420: Overlay of land parcels and land value 

1. OVERLAY OPERATION 
The combination of two subdivisions is regularly occurring task 
in applications. It is called overlay operation. Examples are the 
overlay of the ownership partition and the valuation partition of 
some land (Figure 420), but the same operation is used to assess 
how much forest area falls into a town, computed as the overlay 
of land use with the political boundaries, etc. The operation 
consists of a geometric and a thematic part: in the geometric part, 
the smallest common areas are found and then the attributes of 
these faces are computed. In this chapter, only the geometric part 
is discussed. 

The result of an overlay operation is a subdivision, where 
each cell is entirely included in a cell of each of the given 
subdivisions (Figure 420, with indications from which original 
cells a new cell derives); with the result of the overlay, the value 
of each of the original parcels can be computed as the area of 
one of the cells with uniform value times the value and then 
summed for the parcel. For example, the value of the parcel B is 
the area of (B,2) times value 2 and area of (B,3) times value 3. 
The overlay operation is the common first step in all similar 
operations. 

The overlay operation has been one of the oldest and most 
difficult problems for GIS.. Chrisman et al. has published a first 
approach as WHIRLPOOL(Dutton 1979). Properly working 
implementations were difficult to achieve; first, because 
inconsistency were introduced by the approximation of real 
numbers with computer arithmetic and, second, by the many 
special cases, in particular areas with holes. In the mid 1980s a 
U.S. Federal agency tested a number of commercially available 
overlay operations and all failed on some inputs (Figure 421 
shows a difficult input, which creates many sliver polygons)! 

We face these difficulties by two measures: 
(1) Complexity and special cases are reduced by the 

restriction of all figures to simplices. 
(2) Avoiding deducing a topological relation from 

coordinates twice reduces the influence of errors induced from 
approximate computations. This parsimonious principle (Knuth 
1992, 62) was suggested in (Frank and Kuhn 1986) and by 
Steven Fortune(Knuth 1992). The result of a decision based on 

 

 
Figure 419 Parcels and valuation of a 
piece of land 

  

 
Figure 421 Test figure to check overlay 
operation 
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coordinate calculations may contradict another approximate 
calculation using the same coordinates computed earlier. These 
differences in the calculation with approximations result—from 
the point of view of the logic of the algorithm—as 
inconsistencies in the data structure, which algorithms cannot 
tolerate and stop. Deriving the topological situation only once 
avoids this difficulty. An alternative approach is using 
computation with realms(Schneider 1997). 

2. MERGING COMPLEXES 
Merging two complexes is approached as the element-wise 
insertion of the simplices of the smaller one into the larger one 
(Figure 422). Specific operations which insert points, lines and 
faces into a complex are required, as well as an operation to 
create a new, empty complex. With these operations, any 
complex can be constructed as merging two complexes.  

The discussion here is in terms of operations for a 2-
complex; the extension to higher dimensions is left for future 
extension. 

3. STARTING CASE: CREATE EMPTY |COMPLEX 
The starting case is an empty complex. To avoid difficulties with 
the outer edge, we start with a 2-dimensional simplicial complex 
which triangulates the sphere (Figure 423). Note that only the 2-
simp A and B should be used and the other 'triangles" are only to 
complete the figure and assure that all nodes have the same 
structure. It also achieves that the computations are restricted to 
the part of the projective plane which has a consistent 
orientation.  

4. TEST FOR POSITION OF POINT IN A COMPLEX 
The first step in the insertion of simplices in a complex is the 
determination of the affected simplices. This reduces primarily 
to the determination of the position of a new point within the 
complex. A point can be  
(a) Coincident with a 0-simp already in the complex 
(b) Incident with a 1-simp (line segment) in the complex 
(c) Incident with a 2-simp (triangle) in the complex 
No other case can occur, because the triangulation covers the 
whole projective plane. 

Parsimonious principle: "do not ask 
dumb question", i.e. questions that 
can be answered from what is 
already known. 

  
Figure 422: 2 regions, triangulation of the 
two regions, integration 

 
Figure 423: Triangulation of the sphere 
with 6 2-simp 
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The test uses the CCW predicate. In principle, one triangle 
after the other is tested with the point, but this is not 
parsimonious, the same questions are asked repeatedly, once for 
inclusion in the triangle on the left side of a line, once for 
inclusion in the triangle on the right side of the line. Using the 
CCW predicate to determine if the point is left of a line in the 
following algorithm has been suggested by Stolfi and 
Guibas(1982): 

Start with an arbitrary 1-simp.  
If point is left of 1-simp then  
  Select next left 1-simp at end and test point 
         against this one 
 If point is left then  
  Select 1-simp at end and test point againt 
     this one 
  If point is left then point is inside the  
    triangle found 
 else 
  select 1-simp right at end and test point 
against this one … 
 
repeat till point was left to the past three lines. 

The idea is to restrict the search to the subspace formed by the 
infinite extensions of the 1-simp where we have not yet tested 
that the point is outside (Figure 425). If the test with the current 
line is true then continue with the next 1-simp of the triangle (in 
positive turning direction), if not continue with the next 1-simp 
of the triangle on the other side.  

If three sides in a row test positively, then the point is inside. 
Figure 426: Split 1-simp 

The algorithm given by Guibas and Stolfi  does not deal only 
with points in general position. An implementation for GIS must 
detect when the point is incident with a line or coincident with a 
point in the complex first.  

5. ADDING A POINT TO A COMPLEX 
Adding a single point maintaining the complex structures is the 
building block of the algorithm. Adding a point in a complex 
must make this 0-simp a boundary of at least one 1-simp, and 
this 1-simp must be a boundary of some 2-simplex. Three cases 
are differentiated, depending where the point is lying.  

Case a: New point coincident with other point—nothing 
needs to be done for the geometry  

 
Figure 424: Repeated CCW test 

 
Figure 425: Each test excludes a half-
space 

 

 
Figure 427: Barycentric split of 2-simp 
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Case b: New point incident with line. The 1-simp must be 
split in two 1-simp and the adjacent triangles split as well 
(Figure 426).  

Case c: New point incident with triangle: The triangle must 
be split in three and three new 1-simp introduced (Figure 427). 

6. ADDING A LINE TO A COMPLEX 
Adding a line of a complex requires first to add the two 0-simp 
that are the boundary of the line. Assume this is done and we 
have only to add the 1-simp between two 0-simp of the complex.  
Case 1: Both boundary points are within the same triangle (i.e., 
the 1-simp is completely in one triangle) and nothing additional 
need be done; with the insertion of the two boundary points the 
line is already inserted (this is even the case when the second 
point is coincident with one of the newly inserted 1-simps) 
(Figure 428). 
Case 2: The boundary points are in two different triangles. 

Subcase 2a: the points are in neighboring triangles: Insert the 
two points and determine the intersection point of the new 1-
simp with the boundary lines of the triangle. Insert this point and 
the new 1-simp is also in the complex (Figure 429). 

Subcase 2b: the endpoints are not in adjacent triangles. Insert 
the two endpoints and determine the intersection points with the 
1-simp in the complex (not all need to be tested!). Insert these 
points and the 1-simp is also in the complex (Figure 430). 
Note that the determination of the intersection points of 1-simp is 
restricted to the boundary of the triangle in which one of the 
endpoint is lying, respective where a new point of the line is 
inserted. An efficient algorithm is proceeding from the start to 
the end of the new 1-simp, inserting the start point, determining 
the intersection with the boundary and inserting this point, 
selecting it as the new start point of the reminder of the line to 
insert (Figure 431). This is using subcase 2b repeatedly till 
eventually subcase 2a applies, which then reduces to case 1. This 
shows that this approach can handle all insertions of 1-simplices. 

 

 
Figure 428: Different cases on insertion of 
1-simp where inserting the points inserts 
automatically the line 

 
Figure 429: Endpoints of line in 
neighboring triangles 

 
Figure 430: Endpoints not in neighboring 
triangles 
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7. INTERSECTION OF SIMPLICIAL COMPLEXES 
Intersecting two complexes means first to integrate the two 
complexes into one and represent the two given complexes as 
subcomplexes of the merged complex, and then to compute the 
intersection as an operation on integral chains, representing the 
two subcomplexes. 

Merging the two complexes is done with adding one of the 
two complexes element by element to the second one complex. 
The two complexes A and B are given (Figure 432). Take the one 
complex A and determine the skeleton of the simplex B, which is 
a 0-chain and a 1-chain. The simplices of these chains are now 
added elementwise:  

Step 1: Start with the integration of the points from the 0-
chain. Repeat for every point: The point is (Figure 433) 
• coincident with a point of A, nothing needs to be done 
• incident with a 1-simp of A, split the line and both 

neighboring triangles  
• inside a 2-simp of A, then split the triangle  
Details of these operations have been discussed before (section 
4); the result is shown in Figure 433. 

Step 2: integrate the 1-simps of B. Repeat for every 1-simp 
in B: A 1-simp of B can  
• coincident with a line in A': nothing needs to be done. 

or 
• intersect one of the 1-simp of the augmented complex A' (i.e., 

A plus all the 0-simps from B). Compute the intersection 
points with 1-simp in A' and insert these points in A'. This also 
inserts the line 

For the example, one line needs to be added, which intersects 
another line; it is necessary to insert a new 0-simp, which then 
inserts automatically also the two 1-simps (Figure 434). 
With this a complex integrating both A and B is established and 
A and B can both be expresses as a chain of 2-simp. The 
intersection is then the intersection of the two chains and one 
could also determine Egenhofer relations as computations with 
the chains. 

 
Figure 431: Gradual insertion of 1-simp 

 
Figure 432 Two complexes A and B  

 
Figure 433: The three cases for integration 
of points 

 
Figure 434: Adding one more 0-simp and 
two 1-simp 
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8. MAINTAIN SPLITTING HISTORY OF A LINE 
The approximation of coordinates by floating point number 
introduces small errors. If a line from A to B is repeatedly split, 
the splitting points P1, P2, .. Pn are not exactly situated on the 
original line (Figure 436). If one is later taking the azimuth of 
any of the resulting segments Pi to Pi+1 the value obtained may 
be considerably off. 
In each case of a split, remember the original and how it is split. 
This gives a relation: consist_of. The GIS must maintain the 
original line AB and record that it is split into lines AP1, P1 P2, 
etc. Similarly for areas: The two regions representing the object 
geometry are given—after triangulation of the region—as 2-
chains. After the integration we must still be able to reconstruct 
the original triangulations. 

In Figure 437 the two triangles A and B are integrated. The 
original situation is given by two boundary relations: 0-
boundary, which connects a 1-simp with the 0-simps, and the 1-
boundary relation, which gives for each 2-simp the bounding 1-
simps. The Figure 438 gives the original boundaries plus the 
addition of new boundaries as they are split (but no existing 
entries in the relations are dropped!). In addition, history 
relations are maintained, 1-history gives for the new 1-simps that 
other 1-simp they are part of, and similar for the 2-history which 
gives the parts for the original two triangles A and B (Figure 
439). 

 
Figure 435: Labeled 2-simps 

 
Figure 436: A line with multiple splitting 
points 
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9. SUMMARY 
Simplicial complexes and specifically subcomplexes were the 
missing concepts to compute union and intersections of arbitrary 
figures. If geometric figures are represented as subcomplexes of 
a single complex then the operations necessary to compute 
intersection, unions or the topological relations based on the 4 or 
9 intersection become operations on chains. .  

The integration of two simplicial complexes in 2 dimensions 
needs two steps, which are repeated: 
• Integrate a point from one simplicial complex into the existing 

one. This has been covered as the insertion of a point into a 
triangulation. 

• Integrate a line from one simplicial complex into the existing 
one. This is covered in the first subsection, differentiating 
several cases. 

An additional operation to integrate the faces is not required (for 
2-dimensional complexes). However, relations that record how 
simplices are subdivided during the integrations steps are 
necessary to have access to the original definition of the figures 
and avoid influences of the accumulation of approximation 
errors when computing intersection coordinates. 

 
 

 
 
 

 
Figure 437 Two triangles A and B to 
integrate 

 
Figure 438: The integration of A and B 

 
Figure 439: The history relations 



 

PART NINE  AGGREGATES OF LINES GIVE 
GRAPHS 

This part discusses special simplicial complexes, namely 1-
complexes, complexes that consist only of lines. Connections 
between points are often used to conceptualize our world: roads 
between villages (Figure 440), telephone lines between 
buildings, but also rivers flowing towards lakes and the sea. Such 
networks are seen in all applications of GIS: concrete 
representation of linear features like street networks, rivers, but 
networks are also used to conceptualize abstract situations like 
migration flows, trade between countries (Figure 441), etc. 
Networks can be shown well graphically. Maps show networks 
as lines and our concept of geography is influenced by the 
representation of space and objects in space as maps. The graphs 
discussed in this part are abstractions from lines on maps. 

The abstract notion of network and the analysis of network 
properties are generally useful. Kirchhoff's laws, originally 
formulated for electric networks, apply in many similar 
situations. They state (1) that the sum of flows in and out of a 
node must be zero and that (2) that the sum of the differences in 
potential around a closed circuit must be zero as well.  

This parts introduces properties of networks, abstracted to 
graphs of nodes and edges that have clean definitions and allow 
meaningful analysis operations. The foundation provided by 
graph theory contributes to the advancement of the topical 
sciences like regional economy, hydrology, transportation etc.  

The first chapter introduces graphs as an abstract concept of 
nodes and edges connecting them. It introduces a number of 
notions that are widely applicable and ends with the description 
of an algorithm to find the shortest path in a network. The 
properties discussed in this chapter are invariant under 
topological and even more general transformations. 

The second chapter then brings back the geometric aspects; 
it concentrates on graphs that are embedded in 2d space and 

 
Figure 440Towns and streets between them 

 
Figure 441Trade flows between European 
countries 
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shows how this additional knowledge can be used to improve the 
algorithm.  
 



 

Chapter 26 ABSTRACT NETWORKS: GRAPHS 

The famous mathematician Euler (1707 – 1783) regularly 
walked through the city of Königsberg and asked himself, 
whether he can have an evening walk, such that he crosses each 
bridge exactly once and return home (Figure 442)? The question 
identifies what is important in the situation and what can be left 
out: it does not depend on the form and position of bridges in 
Königsberg, but only on islands and the connections between 
them. This abstraction and the theory that belongs to it is today 
called graph theory. The simplification to nodes and connections 
between them yields a an elegant theory that answers many 
questions that depend only on lines and how they connect nodes, 
not on the particulars of the form of the lines or the position of 
the points in space.  

Graph theory is motivated by spatial situations, but it is an 
abstract theory. Street networks, rivers and similar structures 
show properties, which are captured with the structure of graphs. 
They are all forms of connected lines and one can ask questions 
like: Is there a connection between A and B? What is the shortest 
path from A to B?  

A graph consists of nodes and the lines between them, which 
we call edges. Graph theory is constructed as a bi-partite algebra 
over nodes and edges and a relation incidence of a node with an 
edge. Graphs are invariant under topological transformation and 
other transformations that preserve the incidence relations. The 
embedding of a graph, which is necessary to show a graph, is 
arbitrary (Figure 443).  

 
Figure 442: Königsberg and its islands 

Graph—a bi-partite structure of 
nodes and edges, with an incidence 
relation. 
 
Terminology: 
An edge is incident with a node. 
Two nodes are adjacent if connected 
by an edge. 
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1. INTRODUCTION 
Graph theory captures the connectivity in a situation. Street 
networks are an example, where a road connects towns, but 
airline connections form graphs as well as the water lines or the 
sewage pipes in a city. They are all forms of connected lines and 
one can ask questions like: Is there a connection between A and 
B? What are the neighbors of B?  

Graph theory concentrates on the structure of connections 
between points. From a graph point of view, the map of 
Königsberg reduces to nodes and the connections, with arbitrary 
position in space. The graph in Figure 444 is equivalent to the 
original map (Figure 442). Graph theory is the geometry in 
which incidence and adjacency between points are the 
invariants; all other aspects can change without affecting the 
results. Even in this abstract form, the core of the problem is 
present and one can demonstrate why Euler cannot walk once 
across all bridges and reach home. Can you see the reason? Can 
you express it as an abstract rule? 

Graph theory defines terms like path, walk, etc. in a strict 
way. Interesting are optimal paths, called shortest path between 
two nodes. Dijkstra has published in the early days of computers 
an elegant, non-trivial algorithm to find the shortest path in a 
graph(Dijkstra 1959).  

2. ALGEBRA OF INCIDENCE, ADJACENCY, AND 
CONNECTIVITY 

Graphs are bi-partite algebraic structures, which consist of 
Nodes and Edges and an incidence relation between them. The 
intuition for nodes is points (0-simplices) and for edges are line 
segments (1-simplices or 1-cells). A graph is an abstract 
simplicial 1-complex. 

Graph theory was developed early and the terminology in is 
often at odds with current terminology in other fields of 
mathematics.  

2.1 DEFINITION 
A graph consists of a set of Nodes N = {n1 … nn} and a set of 
edges E = {e1 .. ee}.  The edges are not oriented and the edge eik 
=  (ni, nk) and the edge eki = (nk, ni) are equivalent. The graph is 
a function from the edge to a pair of nodes (under the 
equivalence Eq: (nk,ni)=(ni,nk)) :  

  

 
Figure 443: The same graphs with different 
embedding in 2dspace 

 
Figure 444: The graph theoretical essence 
of the map of Königsberg 

node = 0-simp 
edge = 1-simp 

The function from edge to nodes is 
the boundary operation for a 1-
simplex 

 

 Figure 445: Graph (N, E, g) with 
N = {n1, n2, n3}, E= {e1, e2},  
g (e1) = (n1, n2), g (e2) = (n2, n3) 
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g:: e -> (n,n)/Eq. 
The triple (N, E, g) is a graph (Figure 445). The function g gives 
the incidence relation, from which an adjacency relation can be 
derived. 
• Incidence: a node is incident with an edge if the edge starts or 

ends in it:  
incident (n,e)  g (e) = (n1, n2) && n==n1 || n== n2 

• Adjacency between two nodes means that the nodes are 
connected by an edge: 
adjacent (n1, n2) == exist e | incident (n1, e) && incident (n2, e) 

2.2 WALK AND PATH 
A walk is defined as a sequence of edges ei such that ei and ei+1 
are both incident with the same node. A walk can contain an 
edge more than once (e.g., {e1, e2, e3, e4, e5, e2} is a proper walk, 
containing e2 twice) (Figure 446). A walk between n1 and nm is 
defined as an alternating sequence of nodes and edges  

n1, e1, n2, e2, …. nj, ej, n(j+1)…. nm 
where for all i incident (ni ei) and incident (ei, n (i+1)) 

 
A walk is closed if the last edge ej and the first edge e1 are 
incident with the same node (Figure 447). A path is a walk such 
that no edge appears twice; a path can be closed and is then 
called a cycle (Figure 447). The length of a path is the number of 
edges it contains.  

A path is called Hamiltonian, if it uses each node exactly 
once. A closed walk is Eulerian, if it uses each edge exactly 
once. 

2.3 DEGREE OF NODE 
The degree of a node counts how many edges are incident with 
this node (Figure 448). 

2.4 CONNECTIVITY 
A number of notions relate to the connectivity in a graph: Two 
nodes are connected if there is a path between them. All nodes 
that are adjacent to a given node are connected, but also all 
nodes that are adjacent to the connected nodes are indirectly 
connected. Adjacency is in this context called directly connected. 
The relation connection is transitive: 

con a b and con b c => con a c. 
 

Two relations: 
Incidence of node and edge 
Adjacency of two nodes connected by 
edge 

 
Figure 446: A walk 

 
Figure 447: A closed path, which is a cycle 
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A graph, in which between any pair of nodes an edge exists, is 
called 'completely connected' (Figure 449). A bridge is an edge, 
which if removed, disconnects the graph in two components. 

The connectivity of a network can be measured by 
comparing the existing number of edges with the maximum 
number of edges possible. This connectivity measure can vary 
from 0 to 1, 0 being a graph with no connectivity, no edges at all; 
1 is obtained for a completely connected graph (Figure 449 
above). A connected graph has minimum connectivity, if all 
nodes are connected to some other node, with a connectivity 
value of 2/m(Abler, Adams et al. 1971, 259). 

 

 

2.5 COMPONENTS OF A GRAPH 
The components of a graph contain each all nodes which are 
connected (Figure 450).  Connectivity is a transitive relation and 
forms equivalence classes which are the components. 
Components are the fixed points or closures of the connected 
relation; they contain all nodes that are directly or indirectly 
connected to a given start node. 

To identify the components of a graph requires an inspection 
of every element of the graph. One can imagine, connectivity 
spreading out from a start node, first connecting the nodes with 
path of length 1 (i.e., directly connected), then connecting nodes 
with path of length 2, then with path of length 3, etc. (Figure 
451) 
We will in later sections see methods to maintain a graph 
connected (part 10). 

 
Figure 448: Graph with nodes labeled with 
degree 

 
Figure 449: Completely connected graph 

 
Figure 450: A graph with three 
components 

 
Figure 451: A nodes are directly connected 
to O, B nodes are connected by path of 
length 2, etc. 
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2.6 CENTER AND RADIUS OF A GRAPH 
In analogy to the diameter and radius of a circle we can speak of 
diameter and radius of a graph, taking each edge as unit length.  
We start with defining the excentricity of a node: it is the largest 
distance to any other node in the graph. The radius of a graph is 
the minimum excentricity of any node; the diameter is the 
maximum excentricity of any node.  

3. SPECIAL TYPES OF GRAPHS 
A simple graph has only an incidence relation: does an edge 
start- or end at a given node. Edges can carry more information: 

3.1 LABELED GRAPHS 
In labeled graphs every edge has a label, which contains some 
information. Labels are functions from an edge to a value 
(Figure 453): 

label: edge -> value 

Labels on the edges are used in GIS to describe properties of the 
edges of a graph—width of a road, length of a road segments, or 
the cost of traversing the edge.  

In a labeled graph properties based on the labels can be 
determined; for example the sum of the labels or the maximum 
or minimum label ("a chain is only as strong as its weakest 
link"). The sum of the length labels of a path is the length of the 
path.  

A special case of a labeled graph is a weighted graph, 
where the labels are all positive numbers. For example a graph 
with labels indicating the length of the edge, is a weighted graph.  

3.1.1 Directed graphs 
In directed graphs, the edge (N5, N6) is different from the edge 
(N6, N5). Two nodes A and B are only adjacent if the edge (A,B) 
is in the graph; it is not relevant if an edge (B,A) is in the graph. 
Sometimes we speak of an oriented graph, which is a graph 
where each edge is given a direction and labels then reference 
this direction (e.g. flow graphs).  

Directed graphs are used to model street networks, where 
some roads are restricted to ‘one way streets’. One can either 
represent a one-way street by a directed edge and use two 
directed edges to represent the two directional lanes of a two 
way street (Figure 454). Alternatively, a oriented graph can be 

 
Figure 452: Radius of a graph: The nodes 
are marked with the excentricity  

 
Figure 453: Graph with labels 
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labeled with labels ‘oneWay’, ‘oneWay the other direction’, ‘two 
ways’. In a graph where edges are labeled with their directed 
flow, Kirchhoff's law says that the sum of the flows in and out of 
each node is zero, which translates to: for each node, the sum of 
the labels on the adjacent edges is zero. 

For directed graphs, the in-degree (edges ending at the node) 
and the out-degree (edges starting at the node) are differentiated.  

indeg, outdeg :: n -> g e n -> Int 

In a directed graph, a node A can be connected to B but B not 
connected to A (this is avoided in street networks!). For directed 
graphs, two forms of connectedness can be differentiated: A 
directed graph is strongly connected, if for any two nodes A and 
B A is connected to B and B is connected to A. If only one of the 
two connections exist, the graph is said to be weakly connected. 

3.2 TREES 
Certain applications lead to graphs that do not have cycles—for 
example, river networks (Figure 455); in such a tree, any two 
nodes are connected by exactly one path. If the graph has 
multiple components and any two nodes are connected by at 
most one path, then we have a forest (Figure 456).  

Trees are often used to classify entities; taxonomy is a 
classification of terms and has typically tree structure. The 
hierarchical structure of political subdivisions form a tree (Figure 
457) as do depiction of a person's ancestor (a family tree). 

Trees do have special properties that are useful when 
constructing algorithms(Samet 1989). If data is properly 
organized in a tree, one can search for an element by binary 
decisions between the left and the right subtree. Processing of a 
tree is a recursive procedure, which follows from the recursive 
definition of the data structure (see chapter 4). Decision can be 
analyzed using trees, where each bifurcation in the tree 
represents a decision; if observed values are given, then a 
decision tree can be reconstructed; this is a popular method in 
data mining [sheckar book]. 

 
Figure 454: Two-way edges are modeled 
with two (anti-) parallel edges. 

 
Figure 455: An acyclic graph  

 
Figure 456: A forest consisting of three 
trees 

 
Figure 457: The tree of the political 
subdivision 
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In a directed tree, we can label edges from the roots forward, 
adding one for each successive edge and taking the maximum 
value at each node. For stream networks, these labels are called 
stream order (Figure 458). Real streams, but also other 
applications lead to graphs which do not have cycles following 
the direction of the edges (Figure 459). For acyclic graphs a 
partial order relation obtains and some acyclic graphs are 
lattices.  

3.3 BI-PARTITE GRAPH 
A graph where the nodes can be separated in two sets such that 
no edge is between two nodes from the same set is called bi-
partite. They are used to describe matching problems, for 
example matching people with a set of jobs. Petri-nets are 
another application for bi-partite sets; Petri-nets contain place 
nodes and transition nodes (Figure 460) and the nodes are 
marked by tokens, which move in time. A transition "fires" when 
both input nodes are marked by a token and then all the output 
nodes get marked.  

3.4 SPECIAL CASES 
Some special cases which are either potentially difficult to 
handle in an algorithm or cannot be represented are often 
excluded: 

3.4.1 Loops 
An edge that connects to the same node is called a loop (Figure 
461).  

g (e4) = (N3, N3) 
For most applications loops do not make sense, and algorithms 
assume that a graph does not contain a loop and fail if they 
encounter one. 

3.4.2 Multi-Edge (Zweieck) 
If two edges run between the same two nodes, we say they form 
a  multi-edge ('zweieck’, Figure 461). Such edges are excluded 
in the definition of a graph where edges are identified by the pair 
of nodes they are incident with. If multi-edges are required for 
the application, then edges must have independent identifiers and 
we cannot just use the pair of node identifiers as identifiers for 
the edge. 

 
Figure 458: Stream order labels 

 
Figure 459: An acyclic graph 

 
Figure 460Petri-net showing service to 
customer 

 
Figure 461: A graph with a multi-edge and 
a loop. 
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4. PLANARITY 
A graph is said to be planar, if it can be drawn in 2d space (a 
plane) such that no two edges cross—independent of location of 
nodes and form of edges. 

The interesting question, whether a graph can be drawn in a 
plane without crossing of edges (other than those incident in 
nodes), can be answered without reference to the location of the 
nodes. There are two non-planar graphs (Figure 466), and any 
graph that contains one of the two cannot be drawn in a plane 
and all other graphs are planar. 

5. REPRESENTATIONS 
There are many ways to represent a graph. All are based on the 
storage of the incidence or the adjacency relation.  

5.1 REPRESENTATION AS ADJACENCY MATRIX 
A graph is represented by the adjacency relation: which nodes 
are incident with an edge. This can be captured, for example, in 
a square matrix, where for each combination of nodes 0 signifies 
that the nodes are not adjacent and 1 when they are adjacent. 

The adjacency matrix A(G) of the graph G is an n x n-matrix 
where n denotes the number of vertices in G. Its entries aij are 1 
if the (directed) edge from node i to j exist in the graph G and 0 
otherwise. For non-directed graphs, the matrix is symmetric. The 
row or column sum gives the degree of a node, for directed 
graphs, the in- and the out-degree separately. The sum of all 1s 
in the adjacency matrix gives the number of directed edges (or 
twice the number of non-directed edges).  

The adjacency matrix can be can be read as base for a vector 
space, even without coordinate values assigned to the points. 
This opens opportunities to apply methods from linear algebra to 
the analysis of graphs in the abstract [ref?]. 

5.2 CONNECTIVITY 
The multiplication of an adjacency matrix with itself gives the 
connectivity of path length 2, further multiplication path length 
3, etc. Figure 467 gives the square of the adjacency matrix of the 
simple graph from Figure 464; it shows the number of path of 
length 2 in this graph. Note that it contains in the diagonal the 
degree of the nodes; each edge starting at a node gives rise to a 
path of length 2 back to this node! 

 
Figure 462: Planar graph: can be drawn in 
2d without intersection of edges. 

 
Figure 463: the same graph redrawn 
without crossing edges 

 
Figure 464: A simple graph 

 
Figure 465: The adjacency matrix for the 
graph Figure 464 

 

 
Figure 466: The two non-planar graphs K5 
and K3,3 
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We can define a power function,  
A 2 = A * A 
An = A * (A n-1); 

The fixed point (An = A(n+1)) gives the longest path (length = n) 
in the graph. The sum of all connectivity matrices (A + A1+A2 .. 
An) gives the total connectivity. The entries of the k-th power Ak 

of A(G) count the walks of length k (i.e., with exactly k edges) 
between a fixed starting point and the endpoint in G.  
The matrix I – A is invertible iff the graph does not contain any 
directed cycles. The inverse (I-A)-1 gives the number of directed 
path between two nodes (because (I-A)-1 = I + A + A2 + A3 …). 
Spectral theory of graphs gives more connections between linear 
algebra and graph theory. 

5.3 INCIDENCE MATRIX 
The incidence matrix B(G) of an undirected graph G with n 
nodes and m edges is an n x m-matrix (bij) of zeroes and ones, 
where n is again the number of nodes and m is the number of 
edges. If the nodes are labeled 1,2,...,n and the edges are labeled 
e1, e2, .. , en then entry bij is 1, if edge ej meets node i, and 0, if 
not.  

In the case of digraphs we have to distinguish between 
outgoing and incoming edges in a point and set bij  = +1, if edge 
ej  starts in point i, bij = -1, if edge ej ends in point i, and bij  = 0 
otherwise. 

5.4 REPRESENTATION OF GRAPHS AS LIST 
Graphs are relations and can be stored and manipulated as such, 
using the methods described in chapter 16. Undirected graphs 
give one incidence relation from edge to nodes  

incidence:: edge -> {nodes} 
from which the adjacency relation can be derived. 

adjacent = (incidence . incidence -1)\I 
Note: the composition with its inverse includes also the 
connection of a node with itself. This is subtracted at the end. 

For directed graphs, we start with two functions start and 
end. The adjacency is then just the composition of start.end. 

start, end:: edge -> node 

6. OPERATIONS OF A GRAPH ALGEBRA 
The graph algebra consists of constructors to construct an empty 
graph and to insert a node or an edge into a graph and observers 

 
Figure 467: The square of the adjacency 
matrix from Figure 465 

  

Figure 468: The incidence matrix of the 
graph in Figure 464 
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to detect incidence and adjacency. Consistency constraints may 
be:  
• Only nodes that exist in the graph can be connected and the 

deletion of a node deletes also all the edges incident with this 
node. 

• Incidence is split in two relations: start and end of edge, which 
means all edges are internally directed. 

 Operations to construct the graph are: 
emptyGraph:: g 
insertNode :: n -> g -> g 
insertEdge :: n -> n -> -> g -> g 
removeEdge :: e -> g -> g 
removeNode :: n -> g -> g  

Observers are:  
edges :: g -> [e] 
nodes :: g -> [n] 
incidence :: :: n -> g -> {e} 
adjacencey :: n -> n-> g -> Bool 
adjacentNodes :: n -> g -> [n] 
connectedEdges, connectedEdgesStarting,  
   connectedEdgesEnding :: n -> g -> [e]  
nodeDeg :: n -> g -> Int     

7. OPERATIONS ON GRAPHS 
There are transformations of a graph into another graph. Two 
cases are relevant for GIS: 

7.1 LINE GRAPH 
A line graph is the result of replacing every edge in a graph by a 
node and connecting nodes if the corresponding edges in the 
original graph were incident at one node. Not all graphs are the 
line graph of another graph.  

Line graphs have applications when nodes have labels, for 
example in a transportation network, the nodes may be labeled 
with the expected delay.  

7.2 COMPLEMENT GRAPH 
The complement graph has an edge between any two nodes 
where the original graph did not have an edge and no edge 
between nodes which were connected in the original graph 
(Figure 470). The complement graph has the same nodes than 
the original graph, only the set of edges is complemented. 

7.3 MINIMAL SPANNING TREE 
For each graph the minimum set of edges which retain 
connectivity is called the minimal spanning tree. It consists of 

 
Figure 469 The line graph from the graph 
in Figure 464 
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some of the edges of the original connected, undirected graph, 
such that all nodes remain connected (Figure 471).  

8. SHORTEST PATH ALGORITHM IN A WEIGHTED 
GRAPH 

Determining an optimal path between two nodes in a weighted 
graph is one of the most important operations on a graph. There 
are many paths between two nodes, in graphs with cycles even 
infinitely many. To select from these the ones which are optimal 
for some criterion, is a question that occurs in many applications. 
For example, we may ask for the shortest path between two 
nodes, or the path which gives minimal travel time. 

An application of the 'shortest path' algorithm uses an 
optimality criterion, which requires positive labels in the graph 
and it minimizes the sum of these label values. The prototypical 
shortest path takes the length of the edges as labels and 
determines the path with the minimal sum of edge length. 

Shortest path is an example of a large set of problems, where 
a solution with a minimal sum of some property is searched for. 
It is the discrete case of Fermat's principle, which stated that the 
path of light in a medium is the path that takes minimal time; 
from this follows Snell's law. (Fermat's principle has been 
generalized since). 

In general, problems that ask for the selection of a set of 
elements resulting in some minimum value can be computed by 
producing all possible combinations evaluate them and select the 
one with the minimal value. For many practical applications, 
such an approach is not possible, as the number of possible 
combinations is very large—consider all the possible ways to get 
from A to B in a city—and to produce all of them to identify the 
one that is fastest is not practical. Dijkstra’s algorithm to 
determine the shortest path in a graph is an example how we can 
produce the candidates in order such that the shortest one is 
found initially without exploring all the other possibilities. 

8.1 DIJKSTRA’S ALGORITHM 
Dijkstra has published an algorithm for the determination of the 
shortest path in a graph where the labels are the length of the 
edges(Dijkstra 1959). The algorithm requires that all labels are 
positive (non-zero), which is automatically fulfilled if the labels 
give the length of the edges; this is why it is known as 'shortest 

 
Figure 470 The complement graph to the 
graph in Figure 464 

 
Figure 471 Minimal spanning tree 

Shortest Path: 
minimal sum of edge values (labels) 

Edge values must be positive! 
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path' algorithms. The location of the nodes is not relevant for the 
algorithm. 

The algorithm is explained in terms of ‘cost’ to reach a node. 
Cost is summing the weight at the labels; it is an abstract concept 
of accumulation of the labels and can be seen as utilization of 
some resource along the path. The algorithm identifies the path 
with the minimal cost. 

The algorithm starts from the given start node and a cost for 
this node of zero. There starts an expansion step: For all nodes 
in the graph, obtain the cost of moving to them—a cost value 
maximum indicates that there is no direct connection. The cost of 
reaching the current node plus the cost of moving along the edge 
gives the cost of reaching the next nodes. The list of nodes with 
the cost of getting there and the edge traveled is added to the 
current list of reachable nodes. If a node is reached that was 
reached before, then only the path with lower cost is retained. 
Then the expansion step is repeated for the node which is 
currently least expensive to reach: If it is not the desired target 
node, then this node is expanded according to the procedure just 
explained. 

The shortest path search as proposed by Dijkstra searches 
from the given node in circles of equal cost around the start node 
till it hits the target. The expansion goes in all directions, even 
the direction opposed to the target (Figure 472) because 
Dijkstra's algorithm works independent of the embedding of the 
graph in 2d space and uses no concept of 'direction' or 'direction 
to the target'; it considers only the values of the labels.. The next 
chapter gives an algorithm which follows the direction to the 
target, but it requires an embedding (i.e. coordinate values for 
the nodes).  
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8.2  DESCRIPTION (FOLLOWING 
KIRSCHENHOFER(KIRSCHENHOFER 1995)) 
The following algorithm determines for a fixed node  
the distances d(x,y) to all other nodes y, i.e., the lengths of the 
shortest paths between x and y. Furthermore it constructs a 
function p in such a manner that starting from any node y the 
sequence p(y), p(p(y)), p(p(p(y))),... of nodes determines a 
shortest path connecting y with x. 

In the algorithm the cost for connections between two nodes 
which are not connected are set to infinity; when later selecting 
the node with minimal cost so far (step (2)) and when a new cost 
to a node is computed, a cost value of infinity excludes these 
non-connections. In an implementation, these connections are 
not considered, but this leads to more complications in the 
description. 

The algorithm is in 4 steps: 
"(1) Initialize: Set  

 ,: ,: VUemptysetW ==
Vyypxyylxl UU ∈∗=≠∞==  allfor  :)(, allfor  :)( ,0:)(  

(2) Determine the minimum of lU(y) over all y ∈ U 
Choose a node  such that  lU(z) equals the above minimum. 
Set d(x,z) := lU(z) 
 (3) Set W1 = W ∪ {z}, U1 := U \ {z},  
as well as for all y ∈ U1 

 
)).,()(),((min :)(

1
yzwzlylyl UUU +=

 
If in this last expression lU(y) > lU(z) + w(z,y) 
          then set . 
(4) If , the algorithm terminates.  
If  for all , then the graph is not connected, and 
there exists no path from x to the nodes in U.  
Otherwise set  and return to step 
(2)."(Kirschenhofer 1992, 159) 
Let us consider the following network with cost function defined 
on its edges (Figure 474): 
After initializing we have 

. 

After having passed steps 2,3 for the first time we have 
 

as well as the following new values of the l- and p-functions 

 
Figure 472: order of expansion  
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If we attach to each node y the array (l(y),p(y)) we get Figure 
473. 
After the second run through steps 2 and 3 we have 

 
and the new values 

 
(Figure 475). 
After the third time  

 
as well as 

 

(Figure 476). 
The fourth time yields 

 
and 

 
(Figure 477). 
After the fifth time we have 

 
as well as   
(Figure 478). 
Finally the sixth time yields 

 

and the algorithm terminates. 
All shortest paths between f and x have length 7, and the 

walk  
 

is a shortest path of this kind. 

8.3 SHORTEST PATH IN A STREET NETWORK WITH ONE WAY 
STREETS 
Street networks have one way streets, but not all streets are one 
way (Figure 480). We could either represent the network with all 
directional edges and have two one directional edges for every 
two-way street or two have an oriented graph with two kinds of 
edges: two-way edges and one-way edges.  

The difference when computing a shortest path in a street 
network with one way streets is only in the operation to 
determine the nodes which are connected to a given node 

 
Figure 473: After the first expansion 

 
Figure 474: The initial graph  

 
Figure 475: After the second expansion 

 
Figure 476: After the third expansion 

 
Figure 477: After the fouth expansion 

 
Figure 478: After the fifth expansion 

 
Figure 479: Example direct graph 
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(function connectedNodes). In Figure 479only the nodes B and C 
are connected to A, D is not connected to A.  

8.4 TURNING RESTRICTIONS 
Police regulations in cities often limits the turns possible at an 
intersection. Street networks representing driving operation in 
the real world must also represent these turn restrictions, 
modeling situations where signs ‘no left turn’ or ‘no right turn’ 
are posted. Turn restrictions require that the internals of a node 
are again a small network, describing which connections are 
possible. Figure 483 gives an intersecting where all turns are 
possible; the small edges in the turning graph can be given waits, 
to indicate how much time is lost in waiting and turning. In 
many real situations, only few turns are possible (Figure 481)! 
Alternative to turn graphs one can transform the street graph to a 
line graph, which represents the connection between edges in the 
original graph and compute the shortest path in the line graph.  

9. HIERARCHICAL ANALYSIS OF A NETWORK 
Space displays a hierarchical structure; best known is the 
political subdivision of a country in states, and the states in 
counties, which in turn are subdivided in towns (Figure 457). 
Christaller has pointed out that such a structure develops some 
regularity due to human behavior(Christaller 1966).Each level of 
central services  - from providing daily supplies to services 
which are used once a month, once a year or once a lifetime – 
requires larger service areas to collect enough business to 
survive; therefore centers of different level occur in different 
distances. Christaller investigated the relatively flat area between 
Vienna, Munich, and Frankfurt and found a surprising regularity 
(Figure 484).  

How to detect the dominant connections in a network of 
nodes? How to form the hierarchy? Given a network structure of 
relations between towns, where each town is connected to each 
other to some degree. Assume that we have a matrix that gives 
the strength of the connection between any two towns in an area, 
for example the number of phone calls exchanged between the 
two nodes. Following a suggestion by Nystuen and 
Dacey(Tinkler 1988, 265), we identify for each node the total 
strength (i.e., the total of calls connecting this town) and the 
strongest link. The total strength orders the town by strength. A 
node is independent, if it's largest flow goes to a smaller node, a 

 
Figure 480: City streets—mostly one-way 
with some turn restrictions (the streets 
around TU Vienna!) 

 
Figure 481: A detail from the above street 
network with turn restrictions shown 

 
Figure 482: The directed line graph 
corresponding to a part of Figure 482 

     
Figure 483: A full turning graph 

 
Figure 484: Central places of three 
different levels 
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node is subordinate (or a satellite city) if its largest flow goes to 
a larger city(Tinkler 1988, 266). This gives a graph that reveals 
the structure of relations between the centers in the area. 

10. SUMMARY 
The concept of transitivity that is motivated by the connection in 
a path network and is experienced in many contexts is the core of 
graph theory. Equivalence classes, transitive closure and fixed-
point operations have become fundamental and most powerful 
ideas for the definition of semantics of functions; they are 
motivated by graphs.  

a < b && b < c => a < c Transitivity 
f (n) = f ( f (n))   fixed point 

Transitivity in connection leads to the concept of a path, as a 
sequence of connected edges and—given different paths between 
two nodes—to the request for the shortest path between two 
nodes; the computation of a shortest path in a graph is a discrete 
form of the calculus of variation. Dijkstra’s algorithm shows 
how this problem can be solved efficiently. 

REVIEW QUESTIONS 
• How can you compute the outdegrees resp., the indegrees of 

the nodes from the entries of the adjacency matrix? 
• Explain the purpose of the shortest path determination and list 

several applications (other than in a street network). 
• Explain the concept of Dijkstra's algorithm. How is the search 

progressing? 
• Why is Dijkstra’s method not effective to find a shortest path 

in a regular grid? 
• Does Dijkstra’s algorithm work for graphs with negative 

weights? Why not? 
• Why does the minPath operation not find the best solution if 

trains on an edge can overtake each other? How can it be 
improved? 

 

 Graphs Are about Transitivity 



 

Chapter 27 LOCALIZED NETWORKS 

Graphs for which the location of the nodes in space is known 
have many applications in geography. Street and river networks 
are perhaps the most visible, but also the airline and the railway 
networks are localized. Transportation in general follows 
networks and the cost is—in first approximation—proportional 
to the distance traveled. To determine the shortest path in an 
embedded network can be answered more effectively than with 
the shortest path algorithm of Dijkstra, which was shown in the 
previous chapter.  

The embedding of a graph in space by assigning a coordinate 
pair to each node leads not only to improved efficiency when 
computing the shortest path, but embedded networks show 
specific forms, which we perceive as gestalt. This is the result of 
the processes shaping the network. Spatial analysis methods can 
differentiate the processes which were at work!  

Graphs are invariant under a class of transformations larger 
than topological transformations: two graphs are equivalent if 
they have the same connectivity between nodes. Planar graphs 
are graphs which can be embedded in 2d space such that no two 
edges cross. Topological transformations leave planarity of a 
graph invariant.  

1. OPERATIONS FOR EMBEDDED GRAPHS 
Networks in the real world are embedded in 2 or 3d-space. The 
cost function we optimize in shortest path algorithm is real world 
distance along the edges. To construct an embedded graph, 
position information must be associated with each node, i.e., we 
have a function  

nodePos :: n -> Coord 
which returns for each node its position in space. Metric 
operations between points translate to functions with the node 
identifiers as inputs: distance between nodes, bearing between 
nodes, etc.  

distanceInGraph :: graph -> nodeId -> nodeId -> float 
bearingInGraph :: graph -> nodeId -> nodeId -> angle 

These functions are the combination of a function to find the 
coordinates for a given node identifier and the function to 
compute distance or bearing from coordinates (distance resp., 
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bearing above). Edges can only be inserted when the two nodes 
were stored before and the distance between the nodes is 
automatically computed and need not be stored.  

2. ORDER OF EDGES AROUND A NODE 
For a planar graph, the order of edges around a node is fixed and 
remains the same under topological transformations. In an 
embedded planar graph, it is often necessary to find the next 
edge to a given edge (Figure 485). We have already used this 
function to determine for a point in which triangle it falls. 
Triangulations are just a special case of a planar graph (chapter 
25xx). 

The computation to determine for a given edge which is the 
next edge incident with this edge in positive turning direction, 
requires several steps, requiring retrieving all incident edges with 
the node, determine their bearing and sort the edges: 

Find next edge at node (e, n): 
1. retrieve all edges starting or ending at a given 
node 
2. compute bearings for each of them 
3. sort edges by bearing 
4. find the given edge 
5. return the next edge from sorted list 

This operation is time consuming and if used often, it is 
advantageous to store the order of edges around the node as a 
function, such that the next edge to a given one can be retrieved 
quickly (Figure 487). Care is necessary, as this introduces 
redundancy in a subtle way and opens a door to possible 
inconsistencies; the next sections show how these  

3. AN ALGEBRA TO STORE CYCLIC SEQUENCES: THE 
ORBIT ALGEBRA WITH THE OPERATION SPLICE 

Cyclic sequences in which a function f produces after some 
repetitions the initial value again (fn (a) = a) are called orbits. 
The function next which gives for an edge the next edge around 
this node is going through a cycle (next4 = id for the node in 
Figure 486). Guibas and Stolfi have shown an algebra for orbits 
that is useful to maintain the orbits of edges around a 
node(Guibas and Stolfi 1987). 

Orbits are graphically represented as chains of links, as in 
Figure 487. 

 
Figure 485: e2 is the next edge around n 
after e1 

 
Figure 486:Orbit around node 
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One might expect for orbits operations to insert an element, 
to remove an element, to merge orbits, etc.—similar to the 
semantics of sets. This is a possible, but not elegant, approach, 
because only one essential operation needed, called splice 
together with the trivial operation new to make an orbit with a 
single element. Inserting a new edge e5 to n explains the 
operations (Figure 491): 

 
The operations splice has two arguments m and n and switches 
the value of next for them. Splice is  a parallel assignment, a 
switch (Figure 494) of two pointers {Knuth, 1973 #2467}. 

Before: next  m = o; next  n = p 
splice m n 
After: next  m= p; next  = o 

This "merges in" an orbit after the indicated position, with the 
starting element the next of the second argument. Despite this 
‘asymmetric explanation’ is the operation commutative, splice a 
b = splice b a. Splice is its own inverse: splice a b. splice a b = 
id, as shown in Figure 493. 

Orbits represented in this form are called linked lists in 
computer science. Figure 490 gives an example for splicing two 
larger lists; the result is shown in Figure 495.  

4. REPRESENTATION OF EDGE AS HALF-EDGE 
Edges are incident with two nodes; we have used so far a 
representation of pairs e = (n,m) and stated that the order of the 
nodes is not relevant and (n,m)=(m,n). In a computer 
implementation, the two representations are differentiated and 
we will need to keep track which end of the edge we are 
interested in. For example in Dijkstra's shortest path algorithm 
one needs to obtain all the edges emanating from a given node 
and then the nodes these edges lead to with the cost of traveling 
along the edge, but the edges are stored arbitrarily (Figure 496) 
and need be organized to have the node we are interested in the 
first place. This is inconvenient and a better solution is to split an 
edge in two half edges.  
A half edge originates at one node and is linked by the function 
sym to the other half edge; half-edges around a node are linked 
by next (Figure 497, Figure 500). These 3 functions origin, sym 
and next can be stored as relations in a database and give, for 
example the adjacent node from a half edge by composition 
sym.origin. Starting with a node n and using the converse 

 
Figure 487: An orbit 

 
Figure 488: The operation splice (e4, e5)  

 
 Figure 489: The result of splice (e4, e5)  

 
Figure 490: Merging two orbits: splice (a2,  
b2) 

 
Figure 491: Orbit around n with additional 
edge e5 

  
Figure 492: A new orbit with a single 
element 

 

 
Figure 493Splice (a2,b2) applied again 
produces Figure 490 

 
Figure 494: The operation switch 

  
Figure 495: The result of splice (a2, b2) 
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relation origin', we obtain all adjacent nodes by map (origin. 
sym) . origin' ; the result is a list of nodes because origin' returns 
a list of half-edges. An operation newEdge produces the two 
half-edges with orbits around their ends and the sym functions 
(Figure 499). 

5. OPERATIONS TO MAINTAIN GRAPH  
To maintain a graph with orbits around the nodes requires that 
all operations that change the graph not only add nodes or edges 
but also update the orbits around the nodes. One operations to 
insert a half-edge into an orbit would be sufficient, because it 
could also be used to remove a half-edge from the orbit 
(remember: switch is its own inverse). An operation to insert a 
node into an edge is added for symmetry. 

5.1 INSERT EDGE IN ORBIT AROUND NODE 
Given a node n with an orbit f,g,h and a new edge e (Figure 498). 
The new edge should be inserted between f and g into the node n. 
This is achieved with the operation splice (e,f) (Figure 502) and 
the result is as desired an orbit f, e, g, h around n (Figure 502). 
Observe that the arguments to the splice operation are the two 
half edges, such that each is inserted after the other in their 
respective orbits. Applying splice (e,f) again removes the edge e 
from the orbit. The same operation is used to connect the other 
end of the edge to the adjacent node. 

5.2 INSERT NODE TO SPLIT EDGE 
Inserting a node in an edge produces also a new edge. This can 
be achieved with one newEdge and 3 splice operations. The first 
splice removes the edge from the node (Figure 503, Figure 504) 
and then two splice operations close the orbits around the old 
and the new node (Figure 505). It is possible, to achieve the 
same effect with only two splice operations, if the splice is 
applied to the sym functions (the result are then two edges e1,d1 
and d2,e2). 

5.3 FOLLOW A CYCLE 
The functions introduced can be used to follow in a graph around 
a minimal cycle (Figure 506). Start with a half-edge, say e1 at m.  
i2 = next (e1), which means we follow the cycle clock-wise. To 
get the other half edge is i1 = sym(i2), then again the next edge 

 
Figure 496: List of edges around n in 
Figure 491 

 
Figure 497: Two half edges with pointers 
to next edge around node and to other half 
edge 

  
Figure 498: Node n with edges f g h and 
new edge e 

 
Figure 499: A new edge 

 
Figure 500: Alternative visualization of 
half-edges 

 
Figure 501 Splice (e,f) 

 
Figure 502: Result is node n with orbit f, e, 
g, h 
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around the node h2 = next (i1) etc. an alternative chain of sym 
and next operations get us back to e1. 
 

6. SHORTEST PATH IN AN EMBEDDED GRAPH 
In an embedded graph, no labels for the length of an edge are 
necessary, because the distance can be computed from the 
coordinates of the points. Dijkstra's algorithm shown in the last 
chapter works for embedded graphs, but is not the fastest 
method. In an embedded graph, directions are fixed by the 
location of the nodes and a shortest path algorithm should 
progress primarily into the direction from the source to the 
target. The A* algorithm uses this additional information from 
the embedding of the graph and is therefore more efficient. In 
Figure 507 the order in which nodes are expanded are marked 
and in this example only one 'unnecessary' node not on the 
shortest path is expanded; in Dijkstra's algorithm, the target 
would have been only found after 20 expansions (figure previous 
chapter xx). Geometrically, an A* algorithm searches similarly 
than the Dijkstra algorithm, but it adds to the cost of each node 
the cost to reach from there the target—this gives some 
directionality to the search.  

After an expansion step we know for each node the cost to 
arrive there from the start; Dijkstra's algorithm expands then the 
node with minimal cost. In an embedded graph we can also 
compute the Euclidean distance to the target, which gives the 
least cost to reach the target from there—any path in the graph 
will be longer. When selecting the next node to expand, we do 
not select the one with the least cost to arrive to, but add to each 
node the cost from there to the target and expand the one with 
the smallest total for cost to arrive here plus minimal cost to the 
target.  

Figure 509 shows the graph from the previous chapter 
(figure xx) with a few nodes and edges added. In this graph, 
Dijkstra's algorithm needs to expand 8 nodes (roman numerals). 
The A*-algorithm shown in Figure 508 expands only 5 nodes. 
The estimates of distance to target which are added to the cost 
'so far' keep the expansion clearly in the right direction! 
If we minimize some other values then additional information 
for the edges may be necessary; for example, one might want to 
minimize travel time. The time necessary to drive along an edge 

 
Figure 503 Insert new edge d after e 

 
Figure 504 Splice (k,e2) opens the orbit 

 
Figure 505 Splice(d1,e2) and splice (k, d2) 
inserts edge 

 
Figure 506: A graph with a cycle m,n,o,p,q 

 
Figure 507: The order in which nodes are 
expanded from start to target 



Localized networks 321 

depends on the length of the edge, i.e., the distance between the 
nodes, divided by the speed; the average speed for an edge 
depends on the width of the road, the radius of the curves, etc. 
To store the design speed, width of the roadway, etc. may be 
stored as a label with the edge and then compute for each edge 
the time it takes to travel along it. 

The A* algorithm can be used whenever we look for a 
minimal path in a network and have a method to estimate the 
minimal cost to reach the target from a given node. If the actual 
cost later is larger, we still find the optimal path (but not, if the 
actual cost would be less than the estimate!). For example, 
fastest path is often desired, where each edge has a label with 
length and an expected speed. To estimate the travel time from a 
node to the target we calculate the Euclidean distance divided by 
maximum speed; this is a minimum and the actual time will be 
larger, therefore it is an acceptable estimate for the A*-
algorithm. 

The change in the code from Dijkstra's algorithm to A* is 
minimal: when selecting the next node for expansion, one has 
first to add to the cost to reach the node the (minimal estimated) 
cost to reach the target; then the node with least total cost is 
selected for expansion. 

7. LINEAR REFERENCE SYSTEMS 
An embedded graph provides a reference system for points. 
Points along the edge can be identified by their distance from the 
start point of the edge (Figure 510). This is a natural 
parameterization of the edge. Functions to calculate the 
coordinates of a point along a line have been introduced (see 
parameterization of 1-simp, chapter 23xx). 

A linear reference is composed of an oriented edge (or an 
identifier for it), and a distance s from its origin; this determines 
a point on the edge (Figure 510). It is possible to add a lateral 
position l and a height h to identify a point in 3d related to the 
edge (Figure 511).  

7.1 MILEPOSTS 
Mileposts along a highway (photo xx) use this kind of reference 
system, but they measure the distance along a path consisting of 
many segments. This method is convenient and widely used, by 
road administration, waterways and railways. Mileposts are 

 
Figure 508 The A* algorithm expands only 
the 5 nodes on the shortest path! 

 
Figure 509: The graph from the previous 
chapter embedded in Euclidean space and 
with some additional edges.  

 
Figure 510: A linear reference  

 
Figure 511: A reference to a 3d point 
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different from linear reference systems along an edge in a graph. 
They use not a single edge but a longer ‘route’ as the unit along 
which the reference length is measured. This introduces a 
number of problems: 
• Sometimes a single road segment is part of more than one 

route (Figure 512); the same point has then 2 different 
mileposts! 

• Routes become shorter or longer by construction of by-pass or 
short-cuts.  

Consider the original road mileposting in Figure 513. There 
are about 11.5 km from A to B and mileposts are set along the 
road. Later, the road is improved to avoid the town C with the 
narrow passage and the town D on the hill. Avoiding C creates a 
longer (but hopefully less congested) road that reaches the 
previous road at milepost 4.3 (but with its own milepost 5)—the 
same mileposts are now used twice! Shortening the road at D 
makes the mileposts between 8 and 9.6 to disappear. The clean 
solution to redo the mile posting from A to B is avoided because 
it would require to physically relocate the existing mile posts 
along the road, but it would also invalidate all references to 
locations along the road using mile posts—for example in all the 
legal documents that pertain to the posting of street signs, traffic 
restrictions and also accident reporting. In practice, the doubly 
counted new miles at C are marked and it is hoped that not too 
much confusion emerges! 

7.2 STREET ADDRESSES AS LINEAR REFERENCE SYSTEM 
A street address, with street name and number, is a form of linear 
reference systems – provided the building numbers are 
distributed along the street in increasing order. In Europe, many 
cities number buildings from the city center outwards 
alternatively on both sides of the street, such that odd numbers 
are on the left side and even numbers on the right side. If the 
building numbers on street corners are known, then other 
building numbers can be interpolated. This gives an approximate 
reference system. In America, each block starts on an even 100, 
with many numbers missing. This allows even more precise 
localization with very little precise data (Figure 515); it was used 
for DIME (dual independent map encoding (Fagan and 
Soehngen 1987) and carried over to the TIGER files of the 
U.S.G.S. For each street segment, the address range on each side 

 
Figure 512: One street segment is part of 2 
numbered interstate highways. 

 
Figure 513: Original road and a new 
detour at C and a shortcut at D 
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of the street is given; they were established to support the 
decennial census operations 
(http://www.census.gov/geo/www/tiger/chapter5.asc). 

8. SHORTEST PATH BETWEEN POINTS ON EDGES 
 Real world of navigation is not restricted to operations between 
nodes in a graph; when we search for a shortest path between 
two buildings, we start on an edge between two nodes and the 
destination is again on an edge between two nodes (Figure 516). 
A translation of a building street address to a linear reference on 
the edge can use the interpolation method suggested in the 
previous section. In order to use one of the shortest path 
algorithms discussed, the start and the destination must be 
inserted into the graph as nodes with the function to split an edge 
shown before (section 6xx). 

8.1 MILEPOSTING 

8.2 MILEPOSTING AS LINEAR REFERENCE SYSTEM 
The mileposting method can be seen as a coordinate system, 
namely the coordinate system for a line with a single coordinate 
(one degree of freedom). This is used practically: everybody 
knows the milepost along a highway (photo).  

Figure 517: Southern Austria: (a) highway network, (b) railway network 

9. OVERLAY OPERATIONS ON GRAPHS 
Two graphs embedded in the same coordinate system (Figure 
517) can be combined. For example the highway network and 
the rail network can be combined in a single graph. (Figure 518). 
The integration uses the same operations as used to integrate two 
simplicial complexes (remember, graphs are 1-complexes!).  

The resulting combined graph maintains labels for each edge 
with its origin—is it a rail or a road edge. Assume that the edges 
are labeled with travel time, one can now ask what is the fastest 
way between two points, allowing driving or using the railway, 
or even mixing the two; so-called mixed mode transportation. An 

 
Figure 514: Typical street numbering 
pattern 

 
Figure 515: Regular numbering allowing 
100 numbers for each block 

Many countries use regular 
distribution of street numbers along a 
street, but one must not assume that 
this is universal! 

 
Figure 516 

 

 
Figure 518: Combination of highway and 
railway network 
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application is a trip from the countryside to a major city, where 
we use multiple modes of transportation: first with the car to the 
railway station, then with the rail, then metro, and ultimately 
streetcar to our destination. This requires combining 4 different 
graphs, for the road, rail, metro, and streetcar network. In the 
combined graph the shortest (fastest) path can be determined. 

10. PLANAR EMBEDDED GRAPH 
Not every real world network is represented by a planar graph: 
streets may overpass each other. This is sometimes described as 
'grade separated crossings'.  If the graph is stored as a planar 
graph, then 'grade separated crossings' must be marked, because 
they do not allow turning. As an example, look at the standard 
highway exit: it is certainly not a planar graph (Figure 519). 
Alternatively, the network could be maintained as a non-planar 
graph with intersection of edges that are not nodes, but this is not 
the current preference of standards, which usually assume an 
underlying structure of a (simplicial) complex. 

11. OPTIMIZATION OF A NETWORK 
In many cases a given set of nodes must be connected to 
optimize some criterion. Connecting two nodes with the shortest 
path has been discussed extensively, but other situation with 
other optimization goals are common and they often lead to 
specific gestalt of a network. Given a graph, it is often possible 
to identify the kind of network represented; a street network in a 
city or overland looks different and a stream network is easily 
recognized. 

11.1  SHORTEST PATH NETWORK 
Assume that a number of buildings must be connected to a water 
distribution system (Figure 520). In the abstract the problem is to 
connect a number of service points with a mimimal length 
network. The network with the shortest path is characterized by 
interior angles of 120 degrees. Consider the three prototypical 
situations: three collinear nodes, three nodes with an angle of 
less than 120 degrees and 3 nodes in general situation (Figure 
521). For a larger set of nodes, the edges all meet at internal 
(additional nodes) under 120 degree angles (Figure 522, Figure 
523), but practicality may dictate other choices: distribution 
networks in cities are typically buried in the street and 
connections to buildings are then at right angles.  

 
Figure 519: A typical highway intersection 

 
Figure 520: Minimal length connection of 
6 buildings to a water source 
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11.2 MAXIMAL INCOME 
Consider constructing a railway or a highway, where the cost to 
link to a node must be compared to the revenue obtained from 
linking to this node. Connecting all the nodes is not the solution 
that maximizes the income, as the following example (from 
Abler, Adams et al. 1971, 275) shows (Figure 524). 

11.3 TRAVELING SALESMAN PROBLEM 
This is a "famous" problem in computer science, not for its 
practical relevance but for its computational complexity. A 
salesman has to make a number of calls to clients, located at 
different points, and return at the end; what is the shortest path 
he can take? In which order should he visit the clients? 

In the abstract: determine the shortest path connecting a set 
of nodes. This problem has been extensively studied and it has 
been proven that no fast algorithm to certainly identify the 
shortest path is feasible. Several reasonable methods to find a 
close to optimal solution are known (Figure 525). 
A variant of the traveling salesman problem is the "Car pool" 
(Paul Revere) path. Find a path from a start to a destination, 
linking all intermediate nodes in any order to obtain the shortest 
path (Tinkler 1988) (Figure 526). 

11.4 THE FORM OF THE NETWORK REVEALS WHAT WAS 
OPTIMIZED 
Studying the form of a network allows us to identify which 
function was optimized. Internal angles of 120 degree indicate 
that the cost of construction was minimized, generally, a shortest 
set of edges was identified (Figure 523). If the graph is 
completely connected, then convenience for use was optimized 
(Figure 526). A hierarchical arrangement shows connections 
from one point out. A close path (cycle) reveals an attempt to 
serve several points and return back (Figure 525). 

REVIEW QUESTIONS 
• What are orbits? 
• Why is splice its own inverse? What does this mean? Do you 

know other operations with this property? 
• What is the difference between A* and Dijkstra’s algorithm?  

  
Figure 521: Minimal pipe length for 3 
nodes 

 
Figure 522: Typical connection of 3 nodes 
in general position 

 
Figure 523: Network with minimal length 

 
Figure 524: A network which optimizes net 
income (construction cost-income). The 
figures for the nodes give their potential 
income 

 
Figure 525: Traveling salesman   
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• When can A* be used?  
• What is the effect if the estimate of remaining effort in A* is 

wrong? 
• How do we determine the shortest path between two points 

located on a segment (not a node)? 
• When do we need Identifiers? Why?  
• Exercise: find algorithmic solutions for all the optimal 

network problems. 
• Apply splice (e,f) to Figure 502. What is the result?  
 

 
 

 
Figure 526: Optimal path for a car pool  



 

PART TEN  CELLS 

Maps show the world described by curved lines and areas 
(Figure 527). Land is divided in parcels, each owned by one 
person (Figure 528). In this part the representation of curved 
lines and arbitrary subdivisions of space created by them are 
discussed. It is shown how they are related to general 
representation of geometry in a simplicial complex (part 8).  

The first chapter discusses lines as they are, for example, 
used to draw geographic situations on maps; collections of points 
are versatile and can be interpreted as linear features or bound 
areal features. The different interpretations of collections of 
points as lines or areas are related to the operations applicable to 
them.  

The second chapter discusses subdivisions. We want a 
subdivision in parcels to remain such that every piece of land is 
assigned to one parcel and that the parcels do not overlap. Such 
divisions occur in spatial and non-spatial situations and are 
called partition; we will use the term subdivision for partitions of 
space.  

Not only ownership of land produces subdivisions, but also 
the subdivision of a continent in countries, countries in 
provinces, etc. are subdivisions—and other examples from 
administration abound (school districts, church parish, etc. see 
figure before xx). Natural processes can lead to subdivisions: the 
world is divided in land and sea (Genesis xx), land is divided in 
watersheds. Much data is collected with respect to subdivisions 
and combining this data requires effective processing of 
subdivisions. 

Assigning area to a service point is a crucial link between 
space and points: a hospital (point resource) serves a region 
(area), a grocery store is visited by clients from a block in a city. 
Voronoï diagrams show service areas such that every point is 
served by the nearest service Voronoï diagrams are the dual of 
the Delaunay triangulation. In the last chapter the general 

 
Figure 527: Example map  

 
Figure 528: Parcels as an example of a 
subdivision 
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approach of subdivision of space in cells is connected with 
simplicial complexes. 
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Chapter 28 CELLS: COLLECTIONS OF SIMPLEXES TO 
REPRESENT CARTOGRAPHIC LINES 

In this chapter we deal with methods to represent maps (Figure 
529). The discussion is considering the map here as a collection 
of points and lines, and ignores the complex, multi-layered 
structure that is communicated to a human map reader and the 
use of the line network as a graph to find a route, as discussed in 
the previous chapters (26 and 27). The chapter does also not 
address placement or content of labels, characters, numbers and 
symbols, which describe objects on a map.  

This chapter generalizes simplexes to cells. The geometry of 
a cell can be represented by a list of coordinated points, and this 
list can have different interpretations: it can represent a 
collection of points, a line, or even an area (0-, 1- and 2-cells). 
These different interpretations correspond to different algebras 
applicable to the same representation and will be defined as 
transformations between different complexes. 

1. INTRODUCTION 
In the example map without symbols and text (Figure 529), we 
find  
• points that indicate the location of points in reality (for 

example, points with measured height); 
• lines that stand for a path between two locations, or a brook 

running in a valley; 
• areas, which stand for a pond, a forest, or a building.  
These points, freeform lines and areas are cells. This chapter 
shows how the geometric values of simplexes (points, line 
segments, triangles) can be combined to produce the less 
restricted cells.  

 
Figure 529: The points, lines, and areas of 
a map 
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The curved lines on maps representing irregular forms in the 
terrain are approximation to the real situation. Cells can be 
approximated by simplices and the operations on cells 
implemented in terms of these approximations (Figure 530). 
Map graphics are representations of ideal geometric figures. The 
graphical representation must have an extension: a line has a 
width; a point is really a small area, etc. In the discussion in this 
chapter, we stress the ideal properties of the geometric figures 
and the non-ideal, realistic consideration of graphical elements is 
left for a discussion of visual communication and cartography. 
We exclude equally the labels, symbols, etc. that are for real 
maps. 

This chapter does not address the cartographic 
transformation from world coordinates to map coordinates, the 
selection of symbols. It excludes also the simplification of lines, 
for example the so-called Douglas-Peucker algorithm. This is 
left for a comprehensive discussion of approximations. 

The focus of the chapter is on operations with lines. These 
operations depend on the interpretation, especially of the 
dimension of the objects manipulated. Collections of points can 
be just that, collections of points, but they can also be lines, 
closed lines or even areas. Different operations apply to these 
different interpretations, other operations transform between 
interpretations. For example, the convex hull transforms a 
collection of points in a single cell. Triangulation transforms a 
collection of points in a collection of 2-simplices.  

2. CELLS 
The simplices are the simplest geometric figure in each 
dimension; they are restricted to straight connections between 
the points. The restriction to straight connections can be removed 
to give the generalized concept of cell. Cells, like simplices, 
exist in each dimension; there are 0-cells, 1-cells, 2-cells, etc., 
each topologically equivalent to the corresponding unit sphere 
(Figure 531).  

 

 

 
 

 
 

 
Figure 530: The different points, lines, and 
areas 

 
Figure 531: Cells 
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0-cells are simple points and coincide with 0-simplex.  
1-cells are curves between two 0-cells.  
2 cells consist of an undetermined number of 1-cells as 

boundary. 
Operations on cells are (mostly) the same as for simplices. The 
cells can be approximated by collections of the simplices of the 
corresponding dimension and operations on cells are defined by 
operations on the simplicial complex used to approximate them; 
the result of applying the operation to the individual simplices 
are then summed or otherwise appropriately integrated. The 
operations carried forward from simplices are: 
• Rank, dimension, and codimension are defined for cells as for 

simplices 
• Orientation: All the simplices forming a cell must have the 

same orientation. This orientation is the orientation of the cell. 
A cell can be reversed by reversing all simplices in it. (This is 
implemented as operations on chains). 

• The boundary of a cell is the boundary of the chain of 
simplices of the desired dimension. 

• Intersection of two cells represented as 1-chains in a complex: 
determine the degree of the nodes. If the degree for any node 
is higher than 2 the chains are intersecting and these points are 
the intersection points. 

• Length of a 1-cell, area of a 2-cell: the size of an n-cell is the 
sum of the size of the n-simplices it consists of. 

• Point in cell test (the ordinary point in polygon test): the point 
is in the cell if it is in one of the 1-simplices or in the 1- or 2-
skeleton of the cell. Alternatively, determine the boundary: 
the point is inside the 2-cell if it is left of the boundary (ccw 
predicate).  

• Non-branching 1-cells are linear and can be parameterized. 
Determine the length of the line as a running sum from start to 
end. 

• Join and meet are computed by converting the two cells to 
two complexes and then computing the join or meet of these. 

• Equality: if the 0-skeleton of two cells are not equal, the cells 
are not equal. Two 1-cells are equal if they consist of the same 
1-simplices; two 2-cells are equal if their 2-complexes have 
the same boundary (but not necessarily the same 2-simplices). 

• Incidence and adjacency relations: convert both cells into 
complexes and determine incidence or adjacency there. 

 
Figure 532: Approximation of 1-cell by 1-
simplices (at two different quality levels) 

 
Figure 533 Approximation of 2-cell by 2-
simplices 
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• Length, area, volume, generalized to size, moments.  Metric 
properties are in general determined by converting to a 
complex and then sum the metric properties of the 
corresponding simplices. 

• Point in cell test is computed as a point in simplex test after 
conversion of the cell to a complex. 

• Parameterization follows the same logic than 
parameterization of 1-simplices: Assume a function p (s, v) 
which for a simplex and a parameter value [0..1] returns the 
coordinate pair of the point. Then compute the successions of 
length li of simplices up to point i (for the last point n this is 
the length of the 1-cell). Then the coordinates is obtained with 
a call of the function c (v, n), where v is the ordered list of 1-
cells and n the number of points in the line:  

 
• count the number of components in a cell (operation 

cardinality).  
Novel operations, which were not meaningful for a simplex, are  
• Convex hull 
• Triangulation 
These are transformations between geometric objects of different 
dimension and implementable as operations on complexes. 

3. REPRESENTATION AND INTERPRETATION OF CELLS 
A cell is represented as a chain in a complex. A 0-cell is a 0-
simplex, 1-cells are lines, approximated by a 1-chain from a 1-
complex, and 2-cells are regions, approximated by a 2-chain in a 
simplicial 2-complex. 

A collection of points can represent just this, a collection of 
points, or a collection of lines, a line, a closed line or even an 
area (Figure 535). In each case, the complex is replaced by its 0-
skeleton, i.e. the collection of 0-simplices it contains; for the 
cases considered here, the mapping from 0-skeleton to the 1- or 
2-complex is an isomorphism. This can be generalized beyond 2 
dimensions: Any n points define an n-simplex, thus a collection 
of n points define sets of simplices up to dimension n. The 
interpretation adds rules, which one of the many sets of 
simplices is intended. The use of order among the points is 
important to select a line (collection of 1-simplices) 
interpretation. Convex-hull and Delaunay triangulations are 

 
Figure 534: A line approximated by points 
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methods to select a definite area (collection of 2-simplices) 
interpretation.  

An ordered sequence of points is used to represent a line or 
even a region (Figure 535). The operations that follow from 
these interpretations are geometric and must be separated from 
the operations to manipulate the data structure used for the 
representation. The uniform representation of cells and cell 
complexes as simplicial complex removes this ambiguity, which 
is otherwise visible at the user interface.  
If a collection of n-simplexes is interpreted as an m-cell, then the 
operations of m-cells are applicable. This is the meaning of the 
phrase ‘is interpreted as’. The Figure 536 shows the differences 
between representation and interpretation (i.e., operations 
applicable). If data representations are directly visible to the user 
or programmer, then it is left to him to select the operation 
applicable understanding the assumed interpretation and the 
required constraints. This leads to errors because it contradicts 
the object-oriented principle of encapsulation of behavior in a 
class. 

We will use differentiated representations for the different 
interpretations and define operations for the transfer between 
these representations (Figure 537), even if the underlying 
representation is the same, namely 0-simplices. They are 
internally treated as 0-complex, 1-complex, and 2-complex and 
eventually mapped to the same method to deal with chains, but 
typed differently to assure consistent use of operations. Between 
these different interpretations are transformations which have the 
general form of transforming a set of k-complex to an n-
complex, with k < n.  

4. CONVERSIONS BETWEEN DIMENSIONS 
Figure 536 gives a hint to what conversions are possible. They 
are systematically discussed here and defined as operations on 
simplicial complexes. 

4.1 CONVERSION FROM ORDERED LIST OF POINTS: 

4.1.1 To a 0-complex:  
Convert the list of 0-simp to a 0-complex, represented as a 0-
chain. Each point is a 0-simp.  

 Figure 535: Different interpretations of a 
sequence of point as points, line segments, 
open line, closed line and area 

 
Figure 536: Representations and 
interpretation 

 

 
Figure 537: Different path to construct a 2-
cell from a sequence of points 
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4.1.2 To a 1-complex:  
Three interpretations of the ordered list of points:  
(1) Each pair of points is a separate piece of line,  
(2) A line from first point through the intermediate points to the 
last point or  
(3) A closed line connecting the last point to the first point. 
Adding the first point to the end of the list converts case (3) into 
case (2). 

In each case, a pair of points is converted to a 1-simp and 
then a list is formed. Complexes do not allow crossings of edges 
which are not nodes; if the given line is self-intersecting, then 
additional point may be necessary and must be marked. 

4.1.3 To a 2-complex: 
Insert the points into an empty 2-complex. This forms triangle, 
because every point must be a boundary of a 1-simp, which must 
be a face of a 2-simp. Note: this conversion is not unique and 
many equivalent results are acceptable (see next chapter for a 
unique solution). 

4.2 CONVERSION FROM 1-COMPLEX TO LIST OF POINTS 
The conversion from the 1-complex to a list of points is the 
skeleton operation (exactly the 0-skeleton).  

4.3 CONVERSION FROM 1-COMPLEX TO 2-COMPLEX 
Insert the 0-simp from the 1-complex to the (empty) 2-complex. 
This forms triangles (2-complexes). Then insert the 1-simps into 
the resulting complex; most of them will already exist, but in 
some cases it will be necessary to swap an edge in a quadrilateral 
to insert the desired 1-simp (Figure 538) 

4.4 CONVERSIONS FROM 2-COMPLEX  
A 2-complex without the 2-cells is a 1-complex. The operation 
skeleton gives this conversion (1-skeleton and 0-skeleton, or just 
the 0-skeleton). Applications often request not the skeleton, but 
the boundary, which is a closed line and obtained by applying 
boundary to the 2-complex. 

5. IMPLEMENTATION OF GENERAL GEOMETRIC 
OPERATIONS 

6. SPECIAL OPERATIONS FOR 0-COMPLEXES 
Three operations are interesting to warrant a special discussion:  

Conversion may introduce additional 
points if the line is self-intersecting.  

 
Figure 538: Example of conversion of list 
of points to 1-comples where swapping an 
edge is necessary: the edge 3-6 is replaced 
by 1-2 
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• Find the nearest neighbor to a given point, 
• the convex hull, and  
• the construction of a triangulation between the points.  

6.1 NEAREST NEIGHBOR 
The operation determines for a given point x the point pn from a 
collection of points that is closest to x (Figure 539). A 
straightforward method to find the nearest neighbor is 
• determine the distance from each point in the collection to x; 

by applying distance to x to each point; 
• sort the points according to their distance to x; 
• select the first. 
Special data structures were invented to avoid searching through 
all points. These improved algorithms are necessary for large 
data collection as a GIS; but are not discussed here, because they 
only affect performance, but not the result produced(Samet 
1990; Samet 1990). 

6.2 TRIANGULATION  
The conversion of a list of points (or a 0-complex) into a 2-
complex produces a triangulation. There are many different 
triangulations between a set of points possible (Figure 540). The 
insertion of points and incrementally producing the triangulation 
gives different results depending on the order of insertion. Two 
questions arise: is there always a triangulation for the given cell 
and is there a single (canonical) triangulation for a given set of 
points? Any 2-cell can be triangulated, but the triangulation of a 
3-cell may require so-called Steiner points, i.e. additional points 
inserted inside the volume. A unique triangulation exists and will 
be shown in the next chapter. 

6.3 CONVEX HULL 
The convex hull of a set of points is the set of points, which are 
the ‘extreme’ points of the collection, such that all points in the 
collection are included between the connections of these extreme 
points (Figure 541).  

 
Figure 539: p2 is the nearest point to x 

      
Figure 540: Two different triangulations of 
the same points 

The convex hull for a set of points is 
the smallest convex set that contains 
all points  
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Many algorithms are known(Knuth 1992; Edelsbrunner 2001). A 
simple, incremental algorithm starts with three points, which are 
always convex set. Add point by point: if point is inside, then 
return previous hull, if point is outside, add the new point and 
determine which of the previous points is now inside. 
Algorithms should avoid testing the same configurations 
repeatedly ("do not ask dumb questions").  

Observe that the conversion of a point set to a 2-complex 
and then determining its boundary is also producing the convex 
hull. 

The computation of the complex hull has a dual problem: 
given a set of half-planes limited by some flats, determine the 
corners of the convex area delimited (Figure 542). This operation 
is useful for finding an area where a number of conditions, 
expressed as inequalities, obtain. The problem is solved by using 
translating the given flats into points (see duality chapter 19) and 
then computes the convex hull, which gives a set of simplexes. 
The dual of these simplices are the boundary points of the 
solution. This is the often used simplex algorithm to find an 
optimum for a set of linear constraints [ref]. 

7. SPECIAL OPERATIONS FOR 1-COMPLEX 
A 1-complex is a set of 1-simplices. It can represent a single line, 
a set of lines, a complex line or a closed line (Figure 535). A 
number of tests are used to differentiate these forms.  

7.1 TEST FOR CONTINUOUS AND CLOSED 
A 1-complex is continuous if the degree of each node is 2, 
except for the start and endnode. A 1-complex is closed if the 
degree of each node is 2. 

The operation completion, adds 1-simplices to make the 1-
cell continuous. The operation closure ads a 1-simp from the 
start of the 1-cell to the end of the 1-cell and converts the 1-cell 
to a close 1-cell, which can be interpreted as a 2-cell. 

A test for self intersecting for a 1-cell translates to a test in 
the 1-complexs on the degrees of the node: A 1-cell is self 
intersecting if any node has a degree higher than 2 (Figure 543). 

7.2 INSERTION OPERATIONS ON 1-COMPLEXES 
GIS software which provides operations to manage lines as 
ordered sequences of points need special operations (Figure 

  
Figure 541 Convex Hull 

 
Figure 542: Area where 5 conditions are 
fulfilled 

  
Figure 543: Self intersecting 1-cell 
approximated by 1-simplice. The marked 
node n has degree 4! 
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544). We show here, how they translate to operations on the 
simplicial complex:   
• Extend line by one point:  

Extending a line means adding a point at the beginning or at 
the end – usually provided as two operations. In both cases, 
the new 1-simp is added to the chain, because a 1-chain does 
not depend on the sequence in which the 1-simplices are 
listed. 

• Delete a line segment from a 1-cell: Add the negative 1-simp. 
• Insert an element at a position (first, last, after another one).  

If a line should be changed to insert a point in the middle to 
split a line segment then the line segment that should be 
changed is subtracted (added negatively) to the complex and 
then the 2 new segments are added. To delete a point from the 
line, just reverse the above operation: delete the 2 adjoining 1-
simplices and replace them by one. 

• For directed 1-complex: Reverse the order, find first or last 
element : 
reverse the simplexes one by one (i.e., multiply with -1) 

8. CONCLUSION 
In this chapter, operations with collections of points, line 
segments, where introduced. In all cases, we were able to relate 
the operations on cells to operations on simplicial complexes 
(chains) that are used to approximate the cells. 

The similarity of the representation – graphically and in a 
computer – for different interpretation leads potentially to 
confusion: a user may not be clear what he intends to 
manipulate: the graphical line or the represented area? Confusion 
may arise equally from the implementation, if the program 
confronts the user with differences in the operations which 
related to the internal representation, but not to different user 
concepts.  

REVIEW QUESTIONS 
• What is the difference between a collection of points 

interpreted as 1-cell or as 2-cells? What are the structural and 
what the behavioral differences? 

• What is Jordan’s curve theorem stating? 
• Explain an algorithm to produce a collection of line segments 

that are not intersecting each other. 

 
Figure 544: Operations with lines: extend 
at begin, at end, add point, and delete point 
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• What is the convex hull? To what operation is the complex 
hull dual? 



 

Chapter 29 SUBDIVISIONS ARE PARTITIONS OF SPACE 

Representation of areas is in a GIS; isolated regions are 
sometimes of interest, but in general, geography is interested in 
the subdivision of space in regions, not only the buildings and 
the streets are, but also the 'free space' between them. This part 
will discuss such subdivisions of space, for which a prime 
example are cadastral parcels. They are spatial partitions, where 
every piece of land belongs to exactly one cell. 

1. INTRODUCTION 
Subdivisions of space that are constructed such that all the pieces 
exhaust (cover) all of the area and the pieces are not overlapping 
are common: political subdivisions are, for example, constructed 
this way and any political map showing the countries of Europe 
or the communes in a Bundesland has this structure (Figure 546).  

Different approaches are possible to treat and represent 
subdivisions: 
• to represent the partition by the lines that form it. 
• as a graph, where we interpret the cycles in the graph as areas, 

called faces, or 
• as a cell complex using the methodology of combinatorial 

topology. 
In a GIS, the faces in the subdivision are associated with 

some thematic value, for example the cadastral identifier of the 
parcel, the owner, etc, or the soil type, the amount of rainfall 
annually, etc.  

2. DEFINITION OF PARTITION 
Let PI = {Ai | i ∈ I} be a set of non-empty subsets of A. The set PI 
is called a partition of A if every element of A is in exactly one of 
the Ai(Gill 1976, 15): 

∪ over i, Ai = A   exhaustive 
Ai intersection Aj = 0 whenever i≠ j  pairwise disjoint 

We call this property 'jointly exhaustive and pairwise disjoint' 
and abbreviate it to JEPD.  

 
Figure 545: Buildings, streets and 'free' 
space 

 

Figure 546: Austrian Länder 

             
Figure 547: Example for subdivision and a 
graph which is not a subdivision 

JEPD:  
Jointly exhaustive and  
pairwise disjoint.  
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Partitions are partially ordered by a relation≤. A partition PI is 
finer than PJ  if every Ai ∈ PI is a subset of some Aj ∈ PJ. We 
say PI is a refinement of PJ  and write PI ≤ PJ. Partitions form a 
lattice with this ordering. The operations meet and join are 
intuitively understood spatially: the meet is the partition with all 
the boundary lines and the join is the partition that retains only 
the common boundary lines (Figure 549). 

3. POLYGONAL GRAPH 
The set of boundaries in a subdivision (spatial partition) form a 
graph, which is called a polygonal graph. This graph has some 
properties, which we will describe recursively (followingGill 
1976, 391) 

Figure 580-11:—recursive definition of boundary graph 
A polygonal graph is a connected, planar graph (condition that 
no edges are not crossing in G). It subdivides the a 2d plane (or 
the sphere, the projective plane) into regions (called faces).  

A polygonal cycle is a closed, minimal path (see xx). 
A graph consisting of a single polygonal cycle is a 
polygon. 

(Basis of recursion): A polygon is a polygonal graph. 
(Induction step): Let G = (V, E) be a polygonal graph.  
 Let a = vi, vm, vm+1, … vn, vj   

be a proper path of length l > 1 which does not cross over G and 
where vi and vj in V and vm…. vn not in V. Then the graph G’ = 
(V’, E’) with 

 V’ = V ∪ { vm… vn } 
 E’ = E ∪ a 

is a polygonal graph. This recursive construction does not allow 
holes in a face, but allows cycles of length 2 (zweieck) or even 
length 1 (loops). 

Each face is bounded by a minimal cycle. The maximal 
polygonal cycle of the polygonal graph is its outside boundary. It 
is convenient to consider this outside as an additional face; 
infinite face, outer void or similar names are customary. This 
completes the Euclidean plane to the projective plane (Figure 
551). This outer face has the opposite orientation of the other 
faces, because the projective plane cannot be oriented 
consistently; all operations must avoid touching this 'outer face'. 

     
 
Figure 548: Two partitions 

  

Figure 549 Their meet and their join 

 
 
Figure 550: A polygonal graph and 

a  

 
Figure 551: A polygonal graph and its 
completion. Note that face F2 has negative 
orientation 
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Faces are the same as 2-cells in a complex; two faces are 
adjacent if they have a common boundary (in Figure 552: f1 and 
f2 are adjacent). A face is incident with the edge that is its 
boundary (in Figure 552 f1 is incident with e). We may say an 
edge bounds a face or a face is bounded by edges. 

3.1 BOUNDARY GRAPH MUST BE CONNECTED 
The recursive definition of the subdivision enforces that the 
polygonal graph remains connected. This does not allow isolated 
holes (Figure 553).  

3.2 RESTRICTIONS ON SUBDIVISIONS 
What restrictions should be enforced? What assumptions can be 
built into the representation? Restrictions built into the 
representation makes it impossible for an application to construct 
objects that violate the rules, even if the restriction is not 
justified by the application. For example, spatial subdivisions 
have holes (Figure 546). Much of the discussion about optimal 
data structures for GIS center around questions what 
assumptions are built into a data structure, what application 
situations are excluded by these restrictions and how to 
circumvent them.  

I have not seen a simple algebra for the maintenance of a 
polygonal graph allowing holes, i.e., a graph which is not 
connected. This makes polygonal graphs and 2-cells not 
attractive as a method to implement directly subdivisions. The 
alternative is to subdivide the faces into 2-cells (which are 
topologically equivalent to a sphere and have no holes) or into 2-
simplices (Figure 554). In either case, the operations on the 
subdivisions are translated into operations on aggregates. 

4. EULER OPERATIONS ON SUBDIVION 
The Euler polyhedron formula is invariant for a subdivision. 
Operations changing the subdivision must preserve this 
invariant; the elementary operations to change the polygonal 
graph are therefore called Euler operations. 

4.1 EULER'S POLYHEDRON FORMULA 
For polygonal graphs a relation between the number of nodes 
(n), edges (e) and faces (f) for a simply connected graph 
topologically equivalent to a cell is: 

N – E + F =  1   Euler’s formula for a disk 

 
Figure 552: A polygonal graph with two 
faces 

 
Figure 553: Isolated hole - not a 
subdivision!   

 
Figure 554: Two subdivisions constructed 
from cells 
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This formula is valid for simple connected graphs in 2d (not 
counting the outer face). For example, the Figure 552 has 5 
nodes, 6 edges, and 2 faces: 5 – 6 + 2 = 1. The formula is proven 
by induction along the lines of the recursive construction of the 
polygonal graph above. The Euler polyhedral formula is most 
used for subdivision of the surface of a sphere or the projective 
plane, where the formula is 

N – E + F =  2 Euler’s formula for a sphere 
because, the outer (remainder) face counts as well.  

4.2 GLUE AND CUT 
Operations to change a polygonal graph into another polygonal 
graph must leave the Euler formula invariant. Inserting edges 
must divide faces; removing edges must merge faces. 
Traditionally the operations are called merge or glue (Figure 
555), divide, split, or cut (Figure 556). Euler operations are the 
minimal steps that differentiate two partitions and all partitions 
can be constructed by a finite number of splits; any two 
partitions can be transformed in any other by a finite number of 
glues and splits. 

4.3 ORDER RELATION OF SUBDIVISION  
A single cut operation makes a subdivision an elementary step 
finer than the original one; a single glue operation makes it an 
elementary step coarser.  
There is a connection between a partition of a thematic space and 
the induced spatial subdivision. Consider the political subdivsion 
of space in countries, states, districts etc. (figure earlier). 
Different levels of this partitions lead to different levels of 
spatial subdivisions: the map of Europe as countries, the map of 
Austria with their Länder (states) (figure earlier xx), etc. It is 
possible, to subdivide one entry in the thematic partition further 
(e.g. Austria) but leave the other countries in the map of Europe 
the same (Figure 557). In general, any partition of thematic space 
produces a partition of geographic space. This mapping between 
thematic space and geographic space is order preserving: The 
partition of attribute space can be finer or coarser, and 
correspondingly is the subdivision of space finer or 
coarser(Frank, Volta et al. 1997). 

        
Figure 555: Glue 

   
Figure 556: Split 

Any partition can be constructed by 
splits. 
Any partition can be transformed in 
any other by glue and split 
operations. 

   
Figure 557Subdivision of Europe with 
Countries and sates for Austria 
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5. INVARIANTS USED FOR TESTING PARTITIONS 
The U.S. Bureau of the Census used in the early 1960s 
computers to prepare the maps for all the enumeration districts. 
These 50’000 xx maps were produced for the investigators who 
visited all dwellings in the assigned area and counted the persons 
living there; to assure that the whole population is counted only 
once, these maps must be JEPD and it was necessary to check 
the graphs which resulted from digitizing the street network for 
correctness. Corbett in a classical contribution—perhaps the first 
application of topology to GIS—proposed two tests which check 
a graph to see if it forms a proper partition(Corbett 1975).  

1. Closed path around an area: The cycle around an area 
must be closed, this relates to Kirchhofer's law, which says that 
the sum of the potential differences around a mesh in an 
electrical network is zero. This excludes isolated edges, missing 
edges, etc. but primarily inconsistencies in the polygonal graph 
structure (Figure 559). 

2. Area closes around a point: The succession of face—
lines—face must be closed around a point. This relates to the 
other law of Kirchhofer,  that the sum of the inflow and outflow 
of a node must be zero (Figure 560).  

6. CONSTRUCTION OF PARTITION FROM COLLECTION 
OF LINES—SPAGHETTI AND MEATBALLS  

Manual digitizing of a boundary map resulted in a collection of 
lines, with arbitrary starting and ending points; instructions to the 
operator may result in some additional structure in the order with 
which the digitizing proceeded, but such hints were found to be 
unreliable. To collect information about the region, the operator 
digitized an arbitrary point inside a region and attaches the 
attribute information to this point (Figure 561). This follows the 
cartographic tradition of regions with labels (name of land, value 
of land, parcel number, etc.).  

The result of digitizing boundary lines and labels for the 
regions without any particular order is in the jargon called 
‘spaghetti and meatballs’ (after a popular dish in the USA). How 
to construct an algorithm to convert automatically such data into 
a subdivision? The code seems straightforward: compute all the 
line intersections and then construct the cells, following the 
edges around a node and around a face (invariants listed above). 

 
Figure 558: Refinement of subdivisions by 
cut 

 
Figure 559: Closed path around face 

 
Figure 560: Close path around node  

 
Figure 561: Spaghetti and meatballs 
resulting from digitizing 
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At the end, identify the faces with a 'point in polygon' test for 
each 'meatball'.  

This does not work, if the inputs contains ‘holes’—which are 
frequent in choropleth maps, but also soils map, political 
subdivisions, etc., contain them. Closing such polygons does not 
work with a method following a polygon around a node or face. 
Identifying the inner face later with a point in polygon test 
results in two polygons. Digitizing instructions often request that 
the 'island polygon' is connected by an arbitrary link to the outer 
boundary of the enclosing polygon (Figure 554). 

7. CONCLUSIONS 
A subdivision has the properties of a partition, it is JEPD. The 
operations on subdivision are restricted to operations that 
maintain the invariants of the partition. The invariant is 
succinctly expressed in Euler's polyeder formula, which is 
maintained by the Euler operations glue and split. It is 
sometimes necessary to combine several steps from a consistent 
partition to a new consistent partition.  

To maintain a subdivision, the Euler operations are sufficient 
(Figure 562). The operation that produces a finer partition are 
implemented as integration of a point or a line (0-cell or 1-cell) 
with a 2-complex (see chapter 25). This cuts the edge or the face 
in two. The split and glue operations require only the creation of 
a new aggregate and a note that this aggregate contains the two 
cells. 

For practical purposes, an interface at a lower level 
manipulating directly the polygonal graph seems desirable. 
Operation could include:  
• Add Node with Coord—to create a node with given 

coordinates and no connections; 
• Delete node (with all connected edges); 
• Connect nodes—creates a new edge between to existing 

nodes; 
• Delete edge; 
• Split edge with a node—insert a node into an edge; 
• Delete node from two connecting edges. 
These operations would not maintain the invariants of a 
polygonal graph and the user has to check at the end of a 
transaction consisting of several changes that the result is 
consistent.  

 
Point p is inside of face 17 and 21—not a 
proper subdivision 

 
Figure 562: The two Euler operations on 
faces and the operations on edges 
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REVIEW QUESTIONS 
• Why a subdivision is called topological data structure? 
• What is a ‘winged edge’ structure; why this name? 
• Manual digitizing of partitions produces ‘spaghetti and 

meatballs’—what is meant with this jargon expression? 
• What does JEPD mean? 
• What are the Euler operations? 
• Why does glue and split leave the Euler formula invariant? 
• What are the tests to check the consistency of partition? 
• Why does the recursive construction of the subdivision not 

permit the inclusion of isolated holes? 
• What is the dual graph to a given graph? 
• What is a complex? What is included, excluded? 



 

Chapter 30 GRAPH DUALITY FOR TOPOLOGICAL DATA 
STRUCTURES 

The interpretation of a graph as delimiting faces creates a need to 
be able to navigate around faces and nodes (Figure 563). This 
operation is used to ascertain that the graph remains planar and 
describes a subdivision (chapter 25 and 27). The same operation 
to visit all nodes around a face is necessary to compute the area 
of the face, to test if a point is inside a face, etc. The similarity of 
these two operations, shown in the previous chapter, is here 
explained by graph duality. 

To a given primal graph a dual graph can be constructed, 
such that every face in the primal graph corresponds to a node in 
the dual graph and vice versa. Edges are mapped to edges that 
are crossing the primal edges (Figure 564). The dual graph gives 
the neighborhood relations between the faces (Figure 565, Figure 
566). 

Duality helps in GIS to determine areas of influence around 
point objects. For example: what is the area served by a hospital 
(Figure 567)? The assumption is that a service point (e.g. a hotel) 
services all points which are closer to this service point than to 
any other. It is given by the Voronoï diagram (also called 
Thiessen polygon) around the given points. The construction of 
the Voronoï diagram can be done directly but it is more 
convenient to use duality and construct first the dual of the 
Voronoï diagram that is the Delaunay triangulation.  

The Delaunay triangulation is optimal in the sense that all 
the triangles are as similar as possible to isocycle triangles. 
There are many possible triangulations for a given set of points, 
but only one Delaunay triangulation. It is unique and this alone is 
sometimes useful. 

1. GRAPH DUALITY 
We have used duality before, most productive in projective 
geometry where we had a duality between points and 
hyperplanes (chapter 19). In subdivisions, there is a duality 
between the faces and the nodes. An edge has two adjacent 
nodes and two adjacent faces, which hints to graph duality. 

 
Figure 563: Operations to find the next 
edge around a node and the next node 
around a face 

 
Figure 564: Strict duality 

 
Figure 565: Austrian Länder 

 
Figure 566: Dual of Figure 565 

 

 
Figure 567: The areas of influence for a 
number of places 
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The primal graph shows as edges the node adjacency 
relation; the dual graph shows face adjacency relation. This can 
be interpreted in applications: For example, in Figure 566 we can 
see which regions of Austria are neighbors and which ones are 
not (the connections to the outer face are left out). 

The dual graph of a graph is constructed as follows: 
Represent each face as a node in the dual graph (including the 
infinite face). Replace each edge with an edge crossing. Figure 
568 and Figure 569 give two simple graphs and their duals.  

The dual of a planar graph is always planar. Duality for 
connected graphs is its own inverse:  

dual . dual = id. 
The dual of a cell is different from the element; duality separates 
the two graphs in two sets of elements, each consisting of 
edges, nodes, and faces, where duality maps between faces and 
nodes and maps edges to edges. There are graphs that are self-
dual, i.e., the graph and its dual are identical (Figure 571), but 
real-world regions with this property are seldom (Figure 572).  

The degree of each dual node representing a face is equal to 
the number of edges bounding this face, and, by duality: the 
number of edges of a dual face is equal to the degree of the 
node. The dual of a triangulation (all faces have three edges) 

results in a graph where all nodes have degree 3, but not in a 
triangulation (Figure 582)! The two consistency tests (in chapter 
29) are in fact only a single test, duplicated by duality (Figure 
570, Figure 563, Figure 573).  
 

If we represent the graph as relations between nodes, edges 
and faces, we can see immediately that the dual graph is 
available when we interpret the node-edge relation as the face-
edge relation and vice versa. The only difference between nodes 
and faces is that the faces have no coordinates; it is useful to 
select for the faces the mean of the coordinates of the 0-skeleton 
(corners of the triangle). This point is inside the triangle and is 
the center of gravity. No such simple rule exists for arbitrary 
cells. 

1.1 WHY NO HOLES? WHY NO ISOLATED NODES? 
Duality helps to understand the difficulty with isolated holes 
(previous chapter) and see that isolated nodes create similar 

Graph Duality: 
Node  Face 
Edge   Edge (crossing) 

 
Figure 568: A graph with one edge and its 
dual 

 
Figure 569: A graph with two faces and its 
dual 

Duality for graphs: every correct 
sentence about a graph is correct if 
node and face are systematically 
interchanged. 

 
Figure 570: Cycle around a node  

 
Figure 571: A self dual graph 

 
Figure 572: A geographically interesting 
example for self dual graph: Switzerland 
and the three language regions (French, 
German and Italian speaking) 

 
Figure 573: Dual: cycle around a face 
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difficulties. The dual of the dual of a graph, which is not 
connected, is not the same graph.  

There is an asymmetry between primal and dual graph. A 
graph with a hole has a dual with an isolated edge, but the dual 
of the graph with the isolated edge does not give a hole. Figure 
576 shows two applications of the operation dual: the first graph 
has a whole and its dual is shown. The dual of this figure is a 
connected graph with three faces (2 inner ones, one exterior), 
which are not inside each other (Figure 577). The next figure 
shows that the dual of this graph is again the second graph 
(Figure 578). Duality works only for connected graphs! 
A similar argument excludes isolated nodes. They do not show 
in the dual graph and dual would not be a self-inverse (Figure 
574, Figure 575). 

1.2 DUALITY AND ORIENTATION 
The figures above show nodes and edges, but do not consider 
orientation. Unfortunately, orientation is reversed by duality.  
In Figure 579 the dual of edge g is g'. It is the result of turning 
the edge g by a function d turning one quarter in positive 
direction. Applying the same operation q to g' gives not g, but 
the reverse g. Applying dual to g' must give g (dual. dual = id), 
but left applied to e' gives (reverse e).  

Duality is only achievable with a trick: look at dual part of 
Figure 579 from the back of the page. Then turning e' 
anticlockwise (positive) gives e, as desired. The strict dual graph 
is the graph constructed by replacing faces with nodes and vice 
versa and turning edges, but looked at from the 'other side', the 
flipped side (alternatively, one can define positive orientation 
differently for primal and dual graph). A hint to this asymmetry 
in duality was seen, when following the next edge around a node 
(in anticlockwise direction) and uses the same pointers to circle 
around a face clockwise (chapter xx). 

To achieve operations which use duality extensively, we 
have to separate direction and orientation of an edge. The 
orientation of an edge determines what is left and what is the 
right face bounded by this edge (above, orientation was fixed 
given the direction). Orientation and direction are two properties 
and independent from each other; one can “picture the 
orientation and direction of an edge as a small bug sitting on the 
surface over the midpoint the edge e and facing along it. The 

  
Figure 574: Graph with isolated node and 
dual 

 
Figure 575: Dual of the dual of Figure 574 

No holes, no isolated edges 
guarantee that  
dual.dual = id  

 
Figure 576: A graph with a hole 

  
Figure 577: The dual graph to the dual of 
Figure 576  

 
Figure 578: The dual of the dual 

Figure 579: Edge and dual edge 

 

 
Figure 580: The bug giving direction and 
orientation 
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operation reverse e corresponds to the bug making a half turn on 
the same spot, and flip e corresponds to the bug hanging upside 
down from the other side of the surface, but still at the same 
point of the edge and facing the same way” (Guibas and Stolfi 
1982, 80)(Figure 580).  

2. VORONOÏ DIAGRAMS GIVE 'AREA OF INTEREST' 
Consider a number of service points—for example shopping 
centers or hospitals—and delimit the area served by each point. 
This concept of 'service area' is an often used concept, useful in 
many applications.  

The application concept of 'area of interest' 'area of 
influence' or 'service area' must be translated into a formal 
definition that captures the relevant aspects of the concept. Start 
with a set of service points, which we will call nodes. Assuming 
that the space is isotropic and any point will prefer service by the 
node that is closest. This gives a definition of service area, as the 
region of all points that are closer to one service point than to 
any other service point. Each point of space is serviced by the 
service point closest, or, every service point provides service to 
all points that are nearer to this point than to any other point. 
This gives areas around each point as shown in Figure 581. 

The construction of a Voronoï diagram starts with the middle 
points between any two points (M, M', M'' in Figure). These 
points must be on the boundary between two regions. All points 
on the bisectors between the two points are potentially also part 
of the boundary between two service areas. Bisectors of three 
service points close have a single intersection point. This gives 
the boundaries of the Voronoï regions. If many service points are 
given, then the manual determination of which intersection 
points are meaningful may be confusing, but is not a principal 
problem. 

Combining such a Voronoï diagram with population density 
gives us an idea how many persons are serviced by each point—
the assumption that people go to the next service point is a best 
first guess. This overlay operation of population density (or a 
modified value, population in a certain age group) with Voronoï 
regions is one of the basic operations in "business geography" 
which supports spatial marketing decisions [ref].  

It is to understand this limitation of 
dual graphs in order not to expect 
from them properties that they cannot 
have.  

 
Figure 581: Service points and distance to 
them 

 
Figure 582: A Voronoï Diagram and the 
dual Delaunay triangulation 
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3. VORONOÏ DIAGRAMS STRUCTURE EMPTY SPACE 
The Voronoï diagram is not only useful for the determination of 
service areas, but is also used to structure the empty space 
between the observed features. Maps show salient features, but 
most of the space is left in the background color. Jones has 
suggested that the Voronoï diagram for the features shown 
assign to each feature some of the open space(Jones, Bundy et 
al. 1995). This is then later useful to determine if two objects are 
neighbors, for example two buildings, which are not touching 
are considered neighbors if their Voronoï area of influence are 
touching (Figure 583). 

In the figure, some buildings along two streets are shown. 
The neighborhood relation defined through the Voronoï diagram 
makes 2 a neighbor or 27, but not 25 a neighbor of 29, because 
their distance is, compared to the distances to other buildings too 
large. The dual of this graph gives the neighborhood relation 
(Figure 584).  

4. BARRIERS AND NON-POINT SOURCES 
A service point may not reach all the location just based on 
proximity—hard boundaries in the terrain may make this 
impossible. For example a river may make it impossible to reach 
the nearest distance service point. Space is not isotropic in this 
case and the Voronoï diagram must include these boundaries. 
A different complication is introduced by services that are not 
points but lines or regions. For services given as lines—e.g., a 
road that can be accessed any place—the boundaries of the 
Voronoï diagram are parabola. They are the geometric locus of 
all points having the same distance to a point and a line! 

5. DELAUNAY TRIANGULATION IS THE DUAL OF A 
VORONOÏ DIAGRAM 

The primal nodes are the given service points. The Voronoï 
diagram has the special property that three boundary segments 
meet in a single point (Figure 581). These intersection points of 
the boundaries will be the dual nodes forming the graph of the 
Voronoï diagram. There are three primary edges connecting 
three service points around each of the dual nodes. The dual is a 
triangulation and the primal and dual edges cross at right angles 
(Figure 585). 

 
Figure 583: Which buildings are 
neighbors? 

 
Figure 584: The dual graph to the Voronoï 
diagram in Figure 583 
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We have assumed here that the service points are in general 
position and not any 4 of them lie on a circle. Only then all the 
nodes in the Voronoï diagram have degree 3 and the dual—
which is called Delaunay triangulation—is a triangulation 
(Figure 582). This triangulation is well-determined for this non-
degenerated case: for any set of points there is exactly one 
Delaunay triangulation. 

5.1 CONSTRUCTION OF VORONOI DIAGRAM AND DELAUNAY 
TRIANGULATION 
The construction of the Voronoï diagram is somewhat 
complicated and it is often easier to find the Delaunay 
triangulation and then to construct the dual graph. An 
incremental algorithm to construct a Delaunay triangulation 
inserts point by point in a triangulation. In addition to the 
methods introduced in chapter 25 for the construction of a 
simplicial complex (i.e. a triangulation), we check after the 
creation of a new triangle, if this triangle has the properties of a 
Delaunay triangulation or the switched triangulation of the four 
points would be better (Figure 586). To determine whether ABC 
and ACD are the better triangulation than ABD and BCD we use 
the incircle test (see chapter 9). 

The incircle test checks whether a point is inside the circle 
defined by the three other points. A triangulation is Delaunay if 
all its edges pass the circle test.(Guibas and Stolfi 1982). The test 
is for the Figure 586 (upper) incircle (ABCD) > 0 and for the 
lower figure incircle (ABDC) > 0 (note that incircle ABCD = - 
incircle (ABDC); it is one permutation of the matrix from which 
the determinant is taken (Figure 587). 

5.2 DETAILS OF INCIRCLE TEST (REVIEW): 
Given three points ABC, not collinear, incircle (A,B,C,D) is true, 
if A B C defines in clockwise order a triangle and the point D is 
inside the circumcircle of this triangle (Figure 587). This is 
equivalent to test 

Angle ABC + Angle CDA < angle BCD + angle DAB. 
The test can be written as a determinant (for details see Guibas 
and Stolfi(Guibas and Stolfi 1987): 

  

   

  
Figure 585: Construction of the Voronoï 
diagram 

 
Figure 586: The originally constructed 
triangulation and the switched one 
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Reversing the order of the points gives the negation of the 
predicate (i.e., true becomes false, false becomes true), as does 
transposing any adjacent pair.  

5.3 USE OF THE TEST 
The new edges that are created when inserting a point into a 
triangle are Delaunay (see Lemma 10.1(Guibas and Stolfi 1982)) 
and only the previously drawn edges in the triangle or 
quadrilateral are suspect (i.e., the edges AB BC CA, or AB BC 
CD DA in Figure 588). These must be tested by the incircle test 
and swapped if necessary. If all suspect edges are tested, the 
triangulation is Delaunay and the next point can be inserted. 

6. ALGEBRA TO MAINTAIN A 2D MANIFOLD 
It instructive to study the algebra proposed by Guibas and Stolfi 
(1982) to maintain a 2d manifold. The general algebra maintains 
2d manifolds. The restricted case for 2d subdivisions can be 
deduced. Their algebra does not allow holes or isolated points. 

The method proposed by Guibas and Stolfi is treating the 
primal and the dual graph at the same time. The two graphs 
together give a triangulation of space (Figure 589), known as the 
barycentric subdivision(Henle 1994, 130). 

 
Figure 589: Priaml and Dual Graph give triangulation 

6.1 MANIFOLD (GERMAN MANNIGFALTIGKEIT)  
The algebra constructs and maintains a 2d manifold. This is a 
surface which is locally everywhere 2d. A manifold of 2-
dimensions is a topological space, where the neighborhood for 
every point is equivalent to a disk. This includes surfaces that are 

 
Figure 587: D is inside the circle defined 
by ABC 

 
Figure 588: The point N is just inserted 
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not planes or not orientable, for example the Moebious strip, 
Klein's bottle, etc. The definition for a subdivision of a manifold 
is(Guibas and Stolfi 1982, 77): 

A subdivision of a manifold M is a partition S of M into three 
finite collections of disjoint parts, the vertices, the edges and the 
faces, with the following properties: 

S1. Every vertex is a point of M 
S2. Every edge is a line of M (A line is subspace of M 

homeomorphic to the open interval (0,1)) 
S3. Every face is a disk of M (A disk is a subspace of M 

homeomorphic to the open circle with unit radius) 
S4. The boundary of every face is a closed path of edges and 

vertices. 
Two subdivisions S and S’ on two manifolds M and M’ are 

equivalent, if a homeomorphism of M onto M’ gives an 
isomorphism from S to S’ that maps each element of S onto an 
element of S’. The converse is not always true: Not for every 
isomorphism between two graphs S and S’ exist a 
homeomorphism between the manifolds. A topological property 
of a subdivision is a property that is invariant under 
equivalence(Guibas and Stolfi 1982, 79). 

The difficulty is to define a representation such that it 
represents all the valid subdivisions, and not more and not less. 
The 2d manifold is broader than what is necessary to represent 
subdivisions; our immediate purpose is the maintenance of a 
planar, orientable surface. A 2d manifold is not necessarily 
planar or orientable. A manifold admits also edges that are not 
boundaries, i.e., which have the same surface on both sides 
(Figure 590). For the purposes of maintaining a 2d subdivision, 
which is a special case, a number of simplifications can be 
introduced.  

 
Figure 590: Manifold, but not polygonal 
graph 
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6.2 ALGEBRA WITH QUAD EDGES 
An edge and its reverse are represented as half-edges (see 
chapter 27xx). If we add the two half-edges from the dual graph 
to the half-edges from the primal graph, we get a quad-edge 
(Figure 591). The algebra with quad edges represents each edge 
by four parts: e1and e2 are the primal quad-edges (e1  is the 
reverse of e2) and d1 and d2 are the dual quad-edges. The four 
quad-edges are connected by an orbit. The origins of e1 and e2 
are the nodes n1 and n2, the origins of the quad-edges are the 
faces f1 and f2. Around the nodes and faces are orbits for to find 
the next quad edge (i.e., in constant time, following a pointer); 
the next function around a node gives the emanating quad-edges; 
the next function around a face gives the dual edges for the edges 
around the face. 

The function rot gives the next quad edge, whereas the 
function next gives either the next quad edge around a node or 
the next dual quad-edge around the face. Note, that rot is not 
dual: rot . rot ≠ id. These operations can be mapped to database 
relations (or pointers) and are fast. The advantage of quad-edges 
is that no backwards pointers are necessary. For example, 
finding the previous edge around a node (next-1) is going from 
the half edge (say e8) to the quad edge d4 by rot; then going to d1 
by next around f1 and then to e1 by rot. This gives next-1 (e8) = 
rot  (next  (rot (e8)) = e1; generally: next-1 = rot . next . rot ) 

6.3 ASSESSMENT 
The quad-edge algebra was the first provably correct and 
efficient set of operations on a subdivision. The approach her is 
simplified for orientable surfaces and we must carefully restrict 
operations to the orientable part of the projective plane. The 
method does not directly deal with holes and should be 
combined with simplicial complexes (but then other 
simplifications may apply). 

7. TOPOLOGICAL DATA STRUCTURES 
In the GIS industry the term topological data structure (or short 
topology) refers to a representation of subdivisions, where the 
relations between node and edge (like a graph) and edge and face 
are maintained. This is essentially a graph and its dual, merged 
into a single structure. 

 
Figure 591: Combine half-edges for primal 
and dual graph gives quad-edge 

 
Figure 592: The quad-edge (g, l, h, m), 
where g,h are primal half edges and l,m 
are dual half edges  

 
Figure 593: The functions rot and next 
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Many proposals for data structures to represent the topology 
of a subdivision exist. They can be summarized in diagrams that 
indicate the elements that are stored, face, edge (or half-edge or 
quad-edge) and node. The arrows represent functions that lead 
from one to an adjacent element directly in constant time. 

 
 Figure 594: Different representations of subdivisions 

Figure 594 shows a comparison of different proposals for data 
structures. Relations that are not shown as arrows are in this data 
structure combined from other relations—following an orbit 
around a face or a node—and take more time. One can see that 
the quad edge is one that has not more pointers than the most 
efficient other ones, but gives at the same time the dual graph.  

Most often used is the 'winged edge structure'. Attractive is 
also the representations by arrows, which is essentially half-edge 
plus a pointer to the face. 

7.1 WINGED EDGE STRUCTURE 
The idea that a partition is a graph—to represent the edges and 
their adjacency with points—and the dual graph—to represent 
the edges and their adjacency with the faces—follows an often 
used data structure to represent partitions (Figure 595): 

This data structure has the advantage that each element has a 
fixed number of components. An alternative, where areas are 
represented by a list of the edges or a list of the boundary points 
would be much less convenient to deal with. The partition is 
represented by four functions 

startNode, endNode :: e -> n 
leftFace, rigthFace :: e -> f, 

which are all proper functions with a single result (accepting the 
infinite face as a proper face). The disadvantage is that following 
the edges around a node or around a face is difficult and requires 
searching in the list of edges and requires the computation of 
angles and sorting the edges leaving in a node (Figure 596).  

 
Figure 595: The edge AB is linked to A and 
B and to the two faces f1 and f2 
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7.2 AN ALTERNATIVE TO QUAD EDGES: HALF-EDGES—ARROWS 
In this representation, the edges are split in two ‘half-edges’ or 
arrows that emanate from an origin (the start node) and have a 
twin, which has as an origin the end node of the boundary edge. 
There are links leading from one half-edge starting at a node to 
the next around the node. These links together with the links 
between the twin half-edges make it easy to follow around a face 
(Figure 597). 

 
 Figure 598: An example data structure 

Figure 596: An example of a winged edge 
representation as tables 

 
Figure 597: The half edges with additional 
pointer from face to an edge and from node 
to an edge 
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This data structure represents the functions: 
firstEdge:: n -> e 
origin :: e -> n 
twin :: e -> e 
face :: e -> f 
next :: e -> e 
prev :: e -> e 
outerBoundary:: f -> Maybe e 
innerBoundary :: f -> Maybe e. 

This data structure is more voluminous than winged edge. 
Some of the relations that were immediate are now indirect. An 
example is  

startNode = origin, but endNode = origin.twin. 
To get all the edges around a face if one follows the next 
function. To go around a node, one follows twin.next; in both 
cases checking for the end of the loop by comparing with the 
element one has started with. 

7.3 CRITIQUE: 
These two descriptions of data structures lack definitions for the 
operations. It is difficult to program operations that guarantee 
that they remain consistent. It is also not immediate, what special 
cases of subdivisions are included or excluded. 

8. SUMMARY 
Duality links a graph separating the faces to the graph describing 
neighborhoods between faces. The Voronoï diagram and the 
Delaunay triangulation are dual to each other. They connect 
points, boundaries and areas in a way which is meaningful to 
many applications. 

The algebra presented by Guibas and Stolfi is a formal 
approach to a long-standing problem, namely an algebra with a 
representation and operations for spatial subdivisions. The 
method maintains a 2d manifold consistent. It has some 
disadvantages for GIS applications: 
• It can handle non-orientable surfaces (like the sphere or the 

projective plane) but at a cost—the operation flip and the 
representation of its state. 

• If it is restricted to an orientable subspace (for example the 
state plane coordinates for a country) then coding must 
ascertain that the 'inconsistencies at the boundary' are never 
encountered. There is potential for errors during execution. 

The algorithm is short and effective, but it does only manage the 
orbits around the nodes and faces, it does not maintain the 
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relations between edges and nodes and faces, because the orbits 
are the representation of face and edge and are duplicated with 
the origin pointer.  

 
The method is overly general and perhaps too general to treat 

the special case we are interested in. The management of 
simplicial complexes seems less demanding. 

REVIEW QUESTIONS 
• What is a Voronoï diagram? What does it show?  
• What says dual . dual = id? 
• What is the dual of the Voronoï diagram? 
• What is special about the Delaunay triangulation compared to 

other triangulations? 
• Why did we not construct a ‘which face is this point in’ 

function? 
• How do you determine the service area of some service 

points? 
• Where are the ‘point-in-circle’ routines used? Why did we 

define them earlier? 
• Why is the edge algebra outlined not easy to use? 
• What are the consistency constraints of the insert edge and 

insert node operations? 
• What are the inverses of insert edge and insert node? Give a 

graphical example. 
• For what applications will we use the insert edge and insert 

node operations? 



 

PART ELEVEN  TEMPORAL DATA FOR 
OBJECTS 

In this last—and short—part, we return to temporal data. The 
functor changing, whichwe have used to extend operations from 
static and local functions to time series in part 4, is applied to 
value describing the properties of objects. A moving object, for 
example a car, is nothing else than an object with a changing 
location and comparable to a town that has a changing 
population. The first chapter treats representation of objects 
moving in space, showing in detail how the functor changing is 
applied to what appears as single attribute value—here position. 
For a moving object, the position is a function of time. It can be 
observed and we obtain a time series not different from the 
observation of temperature in chapter 11 xx.. The application of 
this functor gives us the representation of the changing world.  

A database reflects not the current world state but our 
knowledge of the world state. Our knowledge of what is the case 
in the world typically lags behind the changes in reality; 
similarly, the facts in the database most often describe what was 
the case earlier and may be changed already. The representation 
is influenced by limitations of our observations and the methods 
we use to classify the observations made; it may also contain 
gross errors and other inaccuracies. In administrative and legal 
procedures it is necessary to be able to demonstrate what was 
known at a given time in contradistinction to what was a fact at 
the same time. The database itself is then considered a changing 
object – namely our changing knowledge of the world. The same 
functor changing constructs the 'database time perspective' from 
a single spatio-temporal database. 

In effect, applying the functor changing twice to a snapshot 
database gives a spatio-temporal database with both time 
perspectives: the changing world and the changing knowledge 
about the world. One can ask to types of questions: "Where was 
object X at time T" and "At time U, where did we believe that 
object X was at time T". 



 

Chapter 31 MOVEMENT IN SPACE: CHANGING VECTORS 

Movement of objects in space is important for humans and the 
representation of movement in GIS an opportunity to make GIS 
more useful. This chapter investigates in detail the representation 
of changing objects and the operations applicable. We separate 
the change of properties of the objects, including the location, 
shape, etc. and the creation and destruction of objects.  

This chapter shows how the functor changing that was 
introduced in chapter 11 and used there to represent time series, 
is directly applicable to moving objects, e.g., the location of taxi 
cabs in a city or airplanes in the sky.  

1. INTRODUCTION 
Real object movement is complex and an Information System 
can only contain a simplified approximation. This chapter starts 
with the approximation of movement as piecewise linear and 
with a fixed speed (velocity v). The discussion is mostly treating 
uniform movement, but it shows also, how other movements 
with changing speed can be modeled with the same approach. 

2. MOVING POINTS 
Movement can be abstracted to the movement of point objects, 
or movement of the center of gravity of extended objects. 
Movement is controlled by a vector v indicating the speed of an 
object and the position p is the integration of this speed over time 
with the initial position p0 (Figure 599). Initial position, velocity, 
and momentary position are all expressed as vectors; time is a 
scalar, as usual. 

p(t) = p0 + v * t 

Such a moving point is a point changing its position in time; 
this is a 'changing vector' and is the result of applying the functor 
'changing' to a vector. The use of the functor changing converts a 
simple point (data type vector) in a changing point (exactly 
changing vector). Changing points, i.e., moving points, represent 
movement. The location of a moving vehicle is described as a 
function that yields a point for every moment in time. 

If the object O1, e.g., an airplane, is stored in the database 
not as an object with a fixed location, but as a moving object, 

 
Figure 599: A moving point 
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which is a changing vector, it is possible to ask questions like 
"give the location of O1 at T1" or "How far is O1 from the airport 
now". 

3. FUNCTOR CHANGING APPLIED TO VECTOR 
The use of the functor changing applied to vectors gives the 
moving point. The ordinary operations addition and subtraction 
are lifted to work on changing vector. They can be used to 
calculate the distance between a moving object and a fixed 
location or to calculate position of an object that is moved 
relative to a moving reference frame (Figure 600). If p1(t) is the 
location of the object relative to the moving frame (e.g. a wagon) 
and the position of the frame is p2(t) then the position of the 
moving object relative to the outer reference frame is (p1 + p2) 
(t). 

4. DISTANCE BETWEEN MOVING OBJECTS 
An interesting question is the distance between a moving object 
and a location or between two moving objects. Given a function 
to calculate the distance between two points p1 and p2; can this 
function be used to calculate the distance between two moving 
points?  Lifting the function dist (p1, p2) with the functor 
changing (lift 2) means that all the constant coordinates x and y 
of p1 and p2 are replaced by functions x (p1, t), y (p1, t), x (p2, t) 
and y (p2, t). The result is a formula to calculate the distance 
between moving points as a function of time. This is, of course, a 
synchronous application of calculations valid for a single time 
point, like the synchronous operations on time series in chapter 
11. 

 

 
If all the standard arithmetic functions are available in a 

lifted form to apply to changing values then lifting the distance 
function gives the desired function. A subtle conversion is 
necessary: a changing vector (of x and y) must be converted in a 
vector of two changing coordinate values: a changing vector and 
a vector of changing coordinates is semantically the same, 
syntactically different.  

 
Figure 600: Object moved inside a moving 
object 

Figure 601: Distance between moving 
points 
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5. ACCELERATED MOVEMENTS 
Point movements with constant acceleration can be described 
with the same functor: velocity is changing; a function of time 
and position is a function of the (changing) velocity. The 
trajectory of an accelerated movement is a straight line only if 
the initial velocity and the acceleration are parallel. If the 
acceleration is different in different directions and not parallel to 
the initial velocity, a curved trajectory results (Figure 602). 

Lifting with the functor changing is not sufficient to obtain 
all results desired. Second order functions for integration of 
function values over time intervals are necessary. Software 
packages for treatment of formulae (Wolfram 1988) can do 
symbolic differentiation and integration for complex expressions 
and the same methods could be applied here. For realistic 
complex functions, numerical integration and differentiation is 
an option to calculate approximations(Wolfram 2002). 

6. EVENTS 
Allen—following the philosophic discussion in Hamblin—
defined an event as the minimal interval over which a state 
holds. This is the same as a fluent of Boolean values, which is 
true within an interval and not outside (Figure 603).  

This definition of event is not conforming to common usage 
of the word in the English language. Wordnet (Fellbaum 1998) 
gives 4 senses for the noun event: 

1. event -- (something that happens at a given place and time) 
2. event, case -- (a special set of circumstances; "in that event, 
the first possibility is excluded"; "it may rain in which case the 
picnic will be canceled") 
3. event -- (a phenomenon located at a single point in space-
time; the fundamental observational entity in relativity theory) 
4. consequence, effect, outcome, result, event, issue, upshot -- 
(a phenomenon that follows and is caused by some previous 
phenomenon; "the magnetic effect was greater when the rod 
was lengthwise"; "his decision had depressing consequences for 
business"; "he acted very wise after the event") 

The definition used by Allen is not the sense ordinary English 
gives to the term. It seems, unfortunately, to be the one generally 
used in Philosophy, AI and in discussion of temporal GI. Given 
that no better terminology is available, I will use it as well. 

An event is defined as an interval of time (not a point in 
time) in which some property is uniform. This is parallel to the 
definition of objects as areas in space, which have uniform 

Terminology: 
Speed a scalar describing the 
magnitude of the velocity vector 
Velocity a vector 
describing speed and direction of 
movement 

 
Figure 602: An accelerated movement 

  
Figure 603: An event as a Boolean fluent 

Note: event in this definition is not a 
time point, but an interval. 



Temporal Objects 363 

properties (chapter 14). The property that is uniform and makes 
us see an object depends completely on the application; what we 
have in mind makes things objects or events—in other 
circumstances other events are identified. 

A definition of events as closed intervals, where both start 
and end point belong to the interval leads to the inappropriate 
consequence; for example that at the begin or the end of the 
interval the state holds and holds not—is both, true and false. We 
have seen this difficulty before when considering open and 
closed sets (chapter 21). For events, it is customary to define 
them as semi-closed: the start point is part of the event, the 
endpoint is not, but is already the start point of the next event. 
This is also the solution the ‘commonsense’ world of everyday 
life has selected: a lesson from 4 to 5 starts at 4:00 and ends at 
4:59 (chapter 8). 

7. SPECIAL CASE—BOUNDED, LINEAR EVENTS 
Some events are approximated with a linear function for a 
limited interval. This is appropriate for the interpolation of 
position of objects that move, or the outside temperature, etc. In 
this first step, we define the event as a single movement, from 
rest at p to rest at q, or a single raise of temperature; continuous 
movement from a through b, c, d to eventually z (Figure 604), or 
the rise of temperature during a day is a sequence of such 
bounded, linear events. 
Outside of the interval, the value is not defined, which makes the 
function at a partial function. The interpolation for values inside 
the interval is a special case of linear interpolation and can be 
dealt with the methods described (see xx). 

8. MOVEMENT OF EXTENDED SOLID OBJECTS 
The movement of an extended object can be combined from a 
movement of the center of gravity and a rotation around this 
center (Figure 605). Rotations of objects are dealt with the same 
concept than translations of points: the angle of rotation is 
changing in time. The position and orientation of the object are 
two functions of time and the object geometry is transformed 
with the combined translation and rotation.  

Events and Objects are similar: 
temporal or spatial intervals 
(respective regions) with uniform 
properties. 

 
Figure 604: Movement of an object along a 
path 
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Using homogenous coordinates, the translation and the 
rotation can be expressed as matrices and the result of both is the 
product of the two matrices. For moving objects, these matrices 
are functions of time (compare with chapter 10): 

9. MOVEMENT OF REGIONS 
Movement of regions does not imply that the form is maintained 
as it is the case for solid objects. A region can move and change 
form at the same time.  

In this section we consider first the change in form caused by 
movements of the corners. We assume here that the region can 
be approximated before and after the move with a polygon with 
the same number of nodes.  

The movement of the center of gravity is superimposed to a 
movement of the center of gravity and represented as changes 
relative to the center of gravity or which may be all what is 
represented of the movement of the region (Figure 606). The 
movement of corners relative to the center of gravity plus the 
movement of the center of gravity gives the total movement of 
each corner. This is an application of addition of movement, 
Figure 600). 

Assume that the region is represented by a polygon. Then the 
movement of the region is a movement of the corners. A region 
that is moving is thus nothing else than a polygon of moving 
points.  

If the region changes form and therewith the number of 
corners changes, it is still a moving region, but not with a fixed 
set of corner points, but a changing set of corner points (Figure 
607). The difference is only whether the functor is applied to the 
single points or to the polygon as a whole.  

10. ASYNCHRONOUS OPERATIONS FOR MOVEMENTS 
Movements of point objects are important in life, but not always 
do we pay attention to all details. A number of abstractions from 
the complexity of the movement in time are used. Many of them 
can be seen as projects. For example, we identify the start and 
the end, the distance along the path or between start and end, the 
trajectory, which is independent of time. Intersections of 
trajectories are because they are potential points of interaction—
desirable, when we meet in a restaurant to have lunch together, 
or undesirable, when cars collide. These operations with 

 
Figure 605: Object rotating and moving 

  

 

 
Figure 606: The movement of the center of 
gravity (red) plus the differential movement 
of the corners of the region (violet) give the 
total movement of each corner (black). 

 
Figure 607: A polygon changing position 
and shape 

 
Figure 608: A point movement in x-y-time 
space and the corresponding trajectory in 
x-y 
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trajectories are asynchronous, they combine points the object 
passes through from different times.  

10.1 PROJECTIONS TO SPACE DROP TEMPORAL ASPECTS 
The trajectory of a moving point is the path the point covers; it is 
the projection of the 2d + time space to 2d space, ignoring the 
temporal behavior. Take as an example the trajectory of 
airplanes (Figure 608).  

The visualization as a space – time diagram (Figure 609) 
helps the intuition: in the 2d plane we show location, in the third 
dimension, we show time. Moving points are then inclined lines, 
synchronous operations compare and combine points in the same 
(time) horizontal plane. 

After projection into the space dimension we have the 
trajectories. We can see intersection of trajectories and we can 
ask questions like, how close did two trajectories ever come. 
Intersection of trajectories is not a collision, and the distance 
between two trajectories is not the same question as ‘how close 
did two moving objects ever come’. The two trajectories in 
Figure 610 have an intersection point, but the two objects did 
pass at that point at different times, not colliding. The length of a 
trajectory is usually the length of the projection. In the projection 
we can also determine start and end points of a trajectory. 

Questions of whether a moving object did ever enter a 
region, or stayed completely within a region or was always 
outside of a region are also answered best when considering the 
trajectory (Figure 611). If the trajectory is closed, meaning the 
projection of start and end point are the same, then we can 
calculate the area enclosed. 

Only a single operation to project a space-time path to the 
space is necessary. Then all the above described operations are 
operations with the resulting line, using previously defined 
geometric operations. 

projectToSpace :: SpaceTimePath -> Line 

10.2 OTHER PROJECTIONS 
A path has extreme points. For a flight path of an airplane, we 
can ask, where is the highest point and what height did the plane 
ever reach. Such questions are answered in other projections.  

 
Figure 609  Space - time diagram 

 
Figure 610: Two moving objects and their 
trajectories 

Terminology 
path  a space time line 
Trajectory the projection of a path 
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10.2.1 Projection to a surface along the trajectory 
A path has a natural parameterization along the path by time or 
the length of the path. One can project the path to a surface 
perpendicular through the path (Figure 612). In this projection 
many question are immediately answerable: 

Speed of movement is the derivative of the curve in the 
length-time space.  

Highest and lowest points are maximum and minimum 
(Figure 613). 

More complicated questions like: how long was the airplane 
between 1000 and 200 m above sea level can be answered. They 
are again as the intersection of this projection with regions. 

11. SUMMARY 
Storing data with type changing object in a database extends the 
database beyond the current snapshot database to a (world) 
temporal domain. We can not only ask questions like "where is 
object O" but also "Where was object O at time T" and a number 
of related questions. The functor changing is the methods to deal 
with moving objects and other changing aspects of an object. 
Projection from a path gives a trajectory. The structural strength 
of a functor allows us to use moving objects in complex queries 
wherever queries in a snapshot database refer to static objects. 

12. REVIEW QUESTIONS 
• Explain how the functor changing is applied to vector. What 

is the result? 
• Why is changing vector of Float different from vector of 

changing float? Which one of the two is representing a 
movement? 

• Demonstrate that the intersection point of two trajectories is 
not always the point where the distance between the two 
moving object is smallest. 

 
 
 
 
 

 
Figure 611: The animal did not enter the 
forest A 

  

  
Figure 612: A path and a projection to the 
surface through it 

 
Figure 554-1: Perpendicular surface 
through path 

 
Figure 613: Highest point of a path 



 

Chapter 32 SPATIO-TEMPORAL DATABASES CONSTRUCTED 
WITH FUNCTORS 

The extension of the current snapshot GIS to spatio-temporal 
data is a practical demand. The previous chapter has shown how 
to extend a database to cope with moving and changing objects.  

In this chapter the requirements of administrative and legal 
procedures to establish when a fact was known is dealt with. In 
legal procedures it is not only when actions were performed and 
events occurred ("when did X kill Y, when did A sell property P 
to B"), but also, when did others obtain knowledge of a fact – 
when did I learn that A has sold his property. If the database 
shows only the state of the world at any given time, I cannot 
demonstrate later, what was known at the time I made a decision. 
Consider the decision of a bank employee to give a loan to A on 
March 1; he uses the database to check that A is the owner of 
property P that is used as collateral for the loan. Later, A default 
on the loan and the bank learns, that the property was sold to B, 
and this sale was completed on Feb. 25, which is prior to 
granting the loan and therefore the bank has no valid security for 
the loan. Has the employee made an error? No, on March 1, the 
database did show that A owns parcel P; the sale was recorded 
only on March 5 (and the mortgage on property P therefore in 
most countries valid). We see that it is not only to know when 
something happened, but also, when it was known, or became by 
registration 'public knowledge' (principle of giving notice). 

A database must answer therefore two types of temporal 
questions: 
• What was the case at time T (valid time)? 
• What was known at time T (transaction time)? 

In this short chapter, we show that this step is – with the 
preparation achieved now—simple: we apply the functor 
'changing' twice to the database, once to obtain a database with 
values changing with the time in the world and once to obtain a 
database where previous states of the database can be retrieved 
to satisfy the 'giving notice' principle of administration. 
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1. INTRODUCTION 
A temporal database must provide two time perspectives:  
• Valid time, in which values describing reality are changing 

(sometimes called World time(Tansel, Clifford et al. 
1993p.623), and 

• Transaction time (sometimes called database time), in which 
the knowledge in the database is changing. 

Temporal extension for data storage seem to face two major 
issues: a consistent and realistic calculus for intervals, including 
the special, ever changing constant 'now' (see xxx) and concept 
of a stable object. 

A relational database can easily include a concept of user-
time, which is a time, but without a defined semantics for the 
database; user-time is used to represent the time a snapshot was 
valid or to report time points like date of birth or date of hiring.  

Note: temporal database literature uses the word event often 
as synonymous to instant or time point(Tansel, Clifford et al. 
1993p.625), which is different from the definition of event as a 
interval for which a state obtains (see previous chapter).  

The extension of a database which has objects with 
identity—relational or using another data model - to support time 
points and intervals of time is not difficult, it is mostly to 
construct a calculus for time points and time intervals.  

The pure relational database cannot provide a stable object 
concept. The keys used to identify a tuple can change (Codd 
1970) surrogates (Codd 1979) or time-invariant keys must be 
added to the model. For temporal relations additional, not well-
understood rules of normalization seem necessary to avoid 
complications during updates. Much of the discussion argues for 
different types of granularity what changes with time: do we 
store changing relations (i.e., the full relation is time-stamped), 
changing tuples or changing values (Figure 614.), sometimes 
referred to as object versioning versus attribute 
versioning(Tansel, Clifford et al. 1993). This is primarily a 
question of implementation, which should not become visible at 
the user interface. Logically, time intervals for relations, tuples 
or single values are equivalent and can be transformed loss-less. 
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Figure 614: Different granularity for recording cahnge 

2. CONCEPT OF TIME 
A temporal database is built around a discrete time where a fixed 
granularity of time is assumed. "A chronon is the shortest 
duration of time supported"(Tansel, Clifford et al. 1993p.624). 
Such time points are isomorphic to integers and relate to Galton's 
discrete time (chapter 6). Wuu and Dayal (Tansel, Clifford et al. 
1993) point out shortcomings and limitations caused by these 
assumptions and propose a concept of time that permits other 
specifications, for example non-metric or partial order.  

We will use here time points that are isomorphic to integers 
and the previously defined algebra over intervals, which assume 
total order. 

3. WORLD TIME PERSPECTIVE 
The world is changing. We can differentiate two types of 
changes:  
• new objects emerge and previously existing objects disappear, 

and  
• property values of objects change. 
The first type of change affects the lifespan of an object and the 
relevant changes are discussed under the heading lifestyle of 
objects, the second are changes in properties, including 
geometric properties of objects, and is dealt with using the 
functor changing (previous chapter). 

Note: the term object in this section means the representation 
of something that is continuing in time. It is not necessarily a 
physical object. 

3.1 LIFESPAN 
Objects have a lifespan, a time in which they exist. The lifespan 
is an interval, in which the object representation is valid (Figure 
615). After a record becomes invalid, it still exists in the 
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database and its value can be accessed; care must be taken, that 
such 'old' object representations are not mixed with data that is 
maintained. Consider for example a database with employees for 
whom the address is stored: after an employee has quit, his last 
address is still available, but it is not likely updated. Here special 
support by the query languages is required to express a query to 
obtain the last known fact, separated from data that is current. 

Technically, lifespans are asymmetric: before an object is 
created, nothing is known about it, not even that it will later 
exist. When the object is not-existing anymore, the data is still 
stored and it is possible to detect that the object has existed. This 
asymmetry is reflected in the implementation; if object 
identifiers are distributed in increasing order, then the test if an 
object O1 does exist consists of two tests 
• Is O1 less than the highest assigned object identifier – if not, 

the object does not yet exist; 
• Has O1 been destroyed, which is recorded in a relation? If 

not, then the object currently exists. 

3.2 LIFESTYLES 
The creation and destruction of objects is not the only two 
operations that can affect an object in its identity. Al-Taha and 
Barrera (Barrera, Frank et al. 1991) (Al-Taha and Barrera 1994) 
have identified a total of 11 situations that change the identity of 
an object.  

 
Figure 615: Lifespan of an object 
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Figure 616: The 11 lifestyles(Al-Taha and Barrera 1994) 

Not all these possible changes apply to all objects. Medak 
has identified lifestyles that restrict what changes are possible to 
certain ontological classes(Medak 1997; Medak 1999; Medak 
2001). For example, liquids can be identified (poured together), 
but not aggregated, because liquids can be spawned (we can 
pour from a pitcher), but it is impossible to disaggregate two 
liquids once poured together. Similarly, for living things, it is 
ordinary not possible to suspend 'life' and reincarnate a person 
again (fairy tales and comic-books exempt), but a machine or car 
can be disassembled and does not exist as a whole and can be 
reassembled to exist again, which is either the changes killed and 
reincarnated, or disaggregated and aggregated (which is also 
not acceptable for living things—do you regularly disaggregate 
your cat?). 

The lifestyle changes can be carried over from physical 
objects to geographic objects or objects created by social 
construction. Hornsby (Hornsby and Egenhofer 1997) has 
discussed lifestyles specifically for geographic objects like 
countries. 

3.3 CHANGING VALUES 
The properties describing the object, including the property 
'existing', do change over the life of the object. These are 
changing values. 



Frank: GIS Theory Draft V15                             Feb.05          372

We have so far used the functor changing and applied it to 
values that changes continuously, but it is not restricted to this. 
Changing values can be of any type, including Boolean (Figure 
617). A changing value of Boolean is true for some intervals and 
false for others (we have seen that it is an event—previous 
chapter); a changing Boolean can be converted in a sequence of 
intervals for which the value is true and an interval can be 
converted in a changing Boolean. 

4. DATABASE OF CHANGING VALUES 
Using parameterized types, the relation database used for 
snapshots of the world was a 'database of values'. Applying the 
functor changing to values (as shown in the previous chapter), 
gives 'database of changing values'.  

The interpolation of administrative values is different from 
values for physical properties: physical properties change most 
often smoothly and we can interpolate between two states 
(Figure 618). Administrative facts are valid from a data till 
further notice (Figure 619). 

The query language (see chapter 16) remains the same, but 
returns now lists of changing values, from which the value for 
the time of interest is retrieved with the operation 'at' (see chapter 
11). Selection of objects is now not with a single value, but a 
value and the time it is valid; instead of a condition to apply for 
the name of a town ("Geras" ==), we have to write 
("Geras"==.at now), where the condition 'name equals "Geras"' 
is composed with the conversion from a changing value to the 
value valid at time now.  

5. DATABASE TIME 
A database changes with time: new values are added, values are 
changed or objects are deleted. It is sometimes necessary to 
know in what state a database has been earlier—for example to 
determine if a user could have known a fact, or if he could have 
known if he had been careful. This is a principle of law and was 
introduced earlier as 'giving notice' (see example with bank 
granting a loan in the introduction). 

The database itself is a changing value, which changes its 
value discretely and is valid from the change onwards till the 
next change. It behaves like administrative data (Figure 619) and 
the current state is valid, is the best knowledge till a new update 

 
Figure 617: Changing Boolean 

  
Figure 618:. Smoothly changing physical 
value  

 
Figure 619: Stepwise change of 
administrative value 
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is received. This does not preclude that for certain smoothly 
changing value, an extrapolation in world time is possible (for 
example, airplanes moving), but this is the best 'current 
knowledge' and the extrapolation may change. At 11:00 we may 
ask where do we expect airplane at 12:00, if we receive an 
update in the airplane position at 11:15 and then ask at 11:20 
again where we expect the airplane to be at 12:00, we get 
different information. In database that has a transaction time we 
can later ask "what was at 11:00 the expected location for the 
airplane at 12:00" and get the original estimate (Figure 620). 
Care must be used to separate extrapolated data from 'known' 
facts based on observations. 

The database is changing with every update. It is a changing 
value! The database perspective is achieved by applying the 
functor changing to the database as a whole: a temporal database 
with the database perspective is a changing database of values, a 
database with both time perspectives is a changing database of 
changing values (the functor changing applied twice).  

Most queries will use the current state, but it must be 
possible to access previous states, the state as it was known at a 
previous time (our knowledge "as of March 1"). For these cases, 
the function 'as of time' applied to the changing database returns 
a snapshot database for the indicated time, i.e., the database that 
was valid at that time. To this snapshot of the database, which is 
in the case of a bi-temporal database a database of changing 
values, i.e., a database with only world time perspective. To the 
result of the 'as of time' question, a query with the at  function 
can be applied. One can think of this two step execution of a 
query as two projections: first to the transaction time with 'as of 
t1' and then a second projection to valid time with 'at t2'. 

6. ERRORS AND CORRECTIONS 
Databases can contain erroneous data. We have seen that 
internally with the use of logic, we can only ascertain that the 
database is consistent with respect to the rules fixed (see chapter 
18). In a database with a database (transaction) time perspective, 
it could be possible to record if a change is inserting a new value 
or a change is the result of observing that a previously inserted 
value is in error(Tansel, Clifford et al. 1993). This will require 
two kinds of transactions, namely those that change values and 
those that correct values. I have not seen implementations of this 

 
Figure 620: Observation of airplane at 
10:30 and 11:15 with estimates for location 
at 12:00 
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idea in database software, but the concept is included in 
instructions and laws, for example for the maintenance of land 
registries, where rules establish how new facts are recorded with 
reference to time and how special procedures are use to correct 
errors (again with a time annotation) (Schönenberger 1976) 

 
 
 
 
 
 
 
 



 

PART TWELVE  AFTERWARDS 

This book has shown an eclectic collection of parts of 
mathematics. The inclusion of each piece was motivated by 
some function relevant for GIS applications. Many open 
problems of GIS research have been excluded, especially 
approximation, semantics and user interfaces, including 
graphical output. The material shown is the foundation onto 
which solutions to these difficult questions can be grafted.  

1. FORMALITY LEADS TO CONSISTENCY 
The approach I selected was very formal. My experience with 
the design of software is that the decisions early in the process 
have much effect later and errors in the beginning of a design are 
very difficult and very costly to correct later.  

The same methods can serve many times in a GIS. In current 
commercial products, the same methods are implemented 
multiple times—justified (perhaps) with different 
optimizations—but with slightly different assumptions. These 
pieces are not consistent with each other. Extensive 'fixes' are 
later used to join the essentially similar but in detail dissimilar 
pieces. Coherences have been advocated, but difficult to achieve. 
It is necessary to clarify the foundation and to use systematic 
methods to combine modules. 

The formal approach made the foundation evident and 
documented the decisions. Modules designed later are then 
linked to the previous decisions: the pieces are consistent and 
work together.  

2. IS THAT ALL? 
Are these all the parts? Is that all the mathematics necessary for a 
GIS? How could one demonstrate this? Can one proof the 
completeness? 

I have advocated that "the proof is in the pudding" and 
started the implementation of the methods shown here. This can 
be useful to demonstrate that these methods are sufficient to 
solve a set of typical GIS application problems. This will 
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demonstrate that the core is covering what a GIS does (minus 
interface and nice output); it will also demonstrate, that the 
pieces are internally complete—what one module assumes 
another module provides. 

An informal proof that the components shown are sufficient 
is using the rational decision mode (chapter 3): Every application 
of a GIS is to make a decision. A decision process can be 
formalized as a selection of the optimal variant. The following 
steps are necessary: 
• Create all variants; 
• Delete variants that are not acceptable based on properties of 

them: 
• Evaluate each variant; 
• Find variant with optimal value. 
The methods to represent objects with spatio-temporal properties 
and to retrieve them have been shown in part 5. The construction 
of new geometries using vector operations was the topic of part 3 
and 6. Properties of objects can be described with the methods in 
part 7 and 8, for networks in part 9. The evaluation combines 
methods from map algebra (part 4) and overlay computation 
(part 10). To sort the variants by evaluation value and pick the 
best is trivial.  

3. CATEGORIES AND GIS THEORY 
In a GIS many different parts of mathematics are combined. I 
have used here logic, algebra, set theory, topology, linear algebra 
to name but a few. Each comes with its own terminology and 
assumptions and the same theorems exist in different 
terminology in different part. The integration is difficult. I have 
used category theory as the unifying framework, in which all 
parts of mathematics of importance here can be integrated. This 
uses very little of category theory, but is sufficient to identify 
commonalities between some fields of mathematics and express 
them in a common language (see part 5).  

All computer programs are functions that change the 
computer state (mostly the memory of the computer); they are in 
the category of Sets, where arrows are functions. This category is 
so dominant for implementation that I have assumed this 
category whenever no special category is used.  

Different parts of mathematics use different categories, as is 
shown in the following table. Any implementation in a computer 
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program must translate a mathematical construction in some 
field and using some category to the category of sets and 
functions, because only these can be implemented. The language 
of category theory documents this transformation. 
The commonality found in category theory is the key to identify 
the same constructions everywhere in a GIS and to establish 
consistency in the programs and unification of the seemingly 
disjoint mathematical theories applied. 

4. REVIEW 
It came together nicely. The first parts were heavy, detailed, and 
sometimes painful. As compensation, the end was easy and 
swift. This justifies the hypothesis that a GIS is built from 
components. If the components are well-designed, they combine 
easily. 

Let us review the components: 
• The language and the conceptual framework: Algebra, second 

order functions, and category theory. This gave us functors 
that cover (nearly) all of spatial and temporal computations. 
We have found a generalization of map algebra to the 
temporal domain. 

• Typed measurements and functions that connect them (like 
population density, connecting count of people with area). 
These functions were lifted to work with layers in a GIS, but 
also with time series—without additional new concepts for 
users of the GIS to learn. 

• Simplification of data storage beyond the Relational Data 
Model, which itself is a considerable reduction in concepts 
and rules compared to the earlier Network Data Model. The 

Category objects Morphism Part in this book 

Set sets functions Chapter 6 Measurements 

Top topological spaces continuous functions Part 7 

Vect vector spaces linear transformations Part 3: Space time,  
Part 6 Proj Space 

Grp groups group homomorphism  

PO partial ordered sets monotone functions  

Graphs edges and nodes graph morphism Part 8 

Rel relations join Part 5 DB 
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use of relations gives access to category theory, which results 
in a query language with only 2 essential elements, which are 
connected by function composition.  

• An algebra of intervals and topological relations between 
them. This gives spatial and temporal topological predicates 
for a spatial query language but also the methods to express 
temporal conditions in the database query language. 

• Projective geometry gives geometric computations without 
exceptions, which would then produce complication when 
combining with other concepts. 

• Simplex and complex from combinatorial topology is the 
realm in which all geometric operations can be carried out. It 
gives a closed algebra for intersection and union of regions; it 
includes as a special case graphs and triangulations. 
Triangulations are the place where metric computations come 
together with combinatorial topology.  

• Objects as the entities that continue in time and have changing 
attribute values (but not changing attributes). 

I also think that I have achieved two steps forward for GIS: 
• A bi-temporal GIS is constructed in a principled way by using 

the functor 'changing' for values, which gives the valid time 
perspective, and for the database as a whole, which gives the 
database time perspective. 

• Unification of operations to apply for raster and vector 
representation alike; there are few areas where a full 
unification is not yet achieved and I give not up yet.  

I conclude the first complete draft of this book on one of the 
last sunny fall days of the year: harvest time, leaves fall, apples 
are ripe and walnuts must be collected. 

Geras, Oct. 17, 2004
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