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Abstract The characterization of place and its representation in current Geographic

Information System (GIS) has become a prominent research topic. This paper con-

centrates on places that are cognitive regions, and presents a computational frame-

work to derive the geographic footprint of these regions. The main idea is to use

Natural Language Processing (NLP) tools to identify unique geographic features

from User Generated Content (UGC) sources consisting of textual descriptions of

places. These features are used to detect on a map an initial area that the descriptions

refer to. A semantic representation of this area is extracted from a GIS and passed

over to a Machine Learning (ML) algorithm that locates other areas according to

semantic similarity. As a case study, we employ the proposed framework to derive

the geographic footprint of the historic center of Vienna and validate the results by

comparing the derived region against a historical map of the city.
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1 Introduction

The characterization of place and its representation within Geographic Information

System (GISs) are becoming prominent research topics in the field of geographic

information science (Gao et al. 2013; Goodchild 2011; Scheider and Janowicz 2014;

Kuhn 2001). The notion of place is strictly related to people’s conceptualization of

space, and may correspond to different things, e.g. points of interest, geographic

regions (Montello 2003), or settings (Schatzki 1991) (i.e., aggregations of spatial

features).

A place is generally regarded as a region of space that is homogeneous with

respect to certain criteria. We adopt the taxonomy for geographic regions proposed

in Montello (2003) and focus on the category of so–called cognitive regions: concep-

tual regions derived by people as they experience the world. The geographic inter-

pretation of cognitive regions may (and usually does) differ slightly among several

individuals, as shown, for example, with the cognitive regions of downtown Santa

Barbara (Montello et al. 2003), and Southern and Northern California and Alberta

(Montello 2014).

In this paper we propose a novel approach to derive the geographic footprint

(i.e. the location and extension) of a cognitive region from User Generated Content

(UGC) sources containing textual descriptions of places. We argue that this type of

UGC is a valuable knowledge base to derive an approximated geographic footprint of

a cognitive region from, as it contains the conceptualizations that several people have

of that region. In particular, we focus on a special type of cognitive regions: those

that are conceptualized as homogeneous areas in terms of the activities they allow

to be performed. To derive the geographic footprint of these regions we propose a

novel framework that employs Natural Language Processing (NLP) tools to extract

from textual descriptions of a place a set of named geographic features. These are

used to detect on a map an initial area that the descriptions refer to, and to retrieve

the activities one can perform in it. These activities provide a simplified semantic

representation of the cognitive region of interest that is passed over to a Machine

Learning (ML) algorithm to extend the initial area by locating other areas offering

similar opportunities.

To the best of our knowledge, this is the first computational approach that exploits

NLP and ML techniques based on the categorical attributes to derive an approxima-

tion of the geographic footprint of cognitive regions. As a case study we used the sug-

gested framework to derive the geographic footprint of the cognitive region historic
center of Vienna. Indeed, while the historic center of Vienna is clearly a concept that

is widely referred to by people and has even a dedicated entry in Tripadvisor,
1

it is

generally not retrievable from current GISs, at least at the time of writing this paper.

As a preliminary evaluation we compared the derived area with a historic map of

Vienna dating back to 1850, and we found that the two mostly coincide. Meanwhile,

1
http://www.tripadvisor.at/.

http://www.tripadvisor.at/
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we are designing a questionnaire to assess the quality of the derived region as done

in Montello et al. (2003). A pilot investigation showed that the region we derived

matches very well with the conceptualizations of the subjects interviewed so far. We

plan to publish the final results of this more detailed evaluation in a further paper.

The remainder of this paper is structured as follows. In Sect. 2, we review related

work in the fields of place representation, Geographic Information Retrieval and

Natural Language Processing. We present the framework in Sect. 3 and discuss the

implementation and the results for the case study in Sect. 4. Section 5 concludes the

paper, also discussing limitations of the presented approach and sketching future

work.

2 Related Work

In this section, we discuss related work in the fields of Place and Vague Regions and

Geographic Information Retrieval and Natural Language Processing.

2.1 Place and Activities

The notion of place plays a relevant role in everyday life (Winter et al. 2009; Winter

and Truelove 2013). In the field of geographic information science, different research

directions have emerged which investigate the representation of places (Goodchild

2011), classify and categorize various forms of places (Schatzki 1991), and model

places according to their relations to activities and affordance theory (Jordan et al.

1998). According to Schatzki (1991): “[. . . ] places are defined by reference to human

activity”. Such a statement is supported by further research (Alazzawi et al. 2012;

Montello et al. 2003; Rösler and Liebig 2013; Scheider and Janowicz 2014) implying

that place semantics are closely related to activities.

In Schatzki (1991) it is argued that places organize into settings, local areas,

and regions. This general notion of a hierarchical structuring of space is relatively

undisputed and supported by findings of other researchers (Couclelis and Gale 1986;

Freundschuh and Egenhofer 1997; Montello 1993; Richter et al. 2013). More specifi-

cally, Schatzki (1991) distinguishes two types of settings: those demarcated by barri-

ers (e.g. apartment building), and those identified by bundles of activities that occur

in them (e.g. playing in a park, shopping at a mall). Recently, the idea of equipping

next-generation geographic search engines and recommendation systems with mod-

els that view places as aggregated entities has been receiving increasing attention

(Ballatore 2014; Hobel et al. 2015).
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2.2 Geographic Information Retrieval and Natural
Language Processing

Geographic Information Retrieval (GIR) is a specialization of traditional informa-

tion retrieval supported by geographic knowledge bases that enables the retrieval

of geographic information and geotagged objects. The respective tools enable the

identification and disambiguation of place names, the mapping of place names onto

spatial features and vice versa, and the derivation of place semantics. Regarding

the latter, the literature is mainly focused on the identification and classification of

places (Tversky and Hemenway 1983; Smith and Mark 2001) and on the automatic

generation of ontologies (Popescu et al. 2008).

To enhance the capabilities of the next generation of geographic search engines,

different approaches are currently being pursued to facilitate the retrieval of geo-

related content. Applications range from the conceptualization of space into a metric

space algebra (Adams and Raubal 2009), to the contextualization of unstructured

text (Adams et al. 2015; Adams and McKenzie 2012) to relate concepts to places, to

the development of content-rich knowledge bases and vocabularies (Ballatore 2015),

and to semantic similarity measures for geographic terms (Ballatore et al. 2013).

Interesting approaches of automatically mapping spatial content is pursued in

different fields. Jones et al. (2008) focused on modeling vague regions by statisti-

cal density surfaces and mining place descriptions in natural language to infer the

approximate region. Grothe and Schaab (2009) exploited freely available georefer-

enced photographs to derive the geographic footprint of imprecise regions by using

Kernel Density Estimation and Support Vector Machines. Cunha and Martins (2014)

derived imprecise regions by exploiting machine learning for interpolating from a set

of point locations. Lüschner and Weibel (2013) concentrated on using characteristics

of topographical data to delineate regions.

The current focus on similarity measures for geographic terms (Ballatore 2015;

Ballatore et al. 2014) is further proof that there is an interest in the disambiguation of

places and place descriptions. One of the goals is to prepare shared and universally

accepted vocabularies to facilitate the interpretation and the resolution of spatial

requests. For instance, if the task is to search for a place where one can get something
to eat, there are more possible matches than just restaurants. Coffee shops, pubs, or

even supermarkets may also fulfill the requirements of the request.

The availability of mature Natural Language Processing (NLP) tools (Manning

et al. 2014) allows for advanced processing of textual spatial descriptions (Chang

et al. 2015, 2014; Chang 2014; Coyne and Sproat 2001) where tokenization and part-

of-speech taggers are used to automatically break text into meaningful symbols—a

selection of Part-of-Speech Tags (POST) is shown in Table 1. Two recent interest-

ing approaches are presented in Alazzawi et al. (2012) and McKenzie et al. (2013).

The former builds upon current state-of-the-art NLP to extract spatial activities from

unstructured text; the latter presents a model to derive user similarity from spatial

topics they discuss on social media.
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Table 1 A selection of part-of-speech tags (POST) (Santorini 1990)

POST POST

Tag Definition Tag Definition

CC Coordinating conjunction DT Determiner

IN Preposition or subordinating conjunction WRB Adverb

JJ Adjective WP Pronoun

NN Noun, singular or mass TO To

NNP Proper noun, singular VB Verb

3 Deriving the Geographic Footprint of Cognitive Regions

In the following, we outline a processing workflow (see Fig. 1) to derive the geo-

graphic footprint of a given cognitive region from textual descriptions of that region.

Details of the single steps involved are given in further sections.

The proposed approach relies on two types of data sources (depicted as white

databases in the figure): (i) a User Generated Content (UGC) database containing

Fig. 1 Schematic illustration of the proposed workflow to derive the geographic footprint of cog-

nitive regions
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textual descriptions of a given cognitive region, and (ii) a Geographic Information

System (GIS).

The workflow consists of three main stages labeled in Fig. 1 as Natural Language
Preprocessing, Geo Matching, and Machine Learning, respectively. First, the tex-

tual descriptions undergo a natural language processing phase in order to extract

from them a set of nouns referring to geographic features. In the next step, this set is

compared to the geonames available in the spatial database in order to assign each a

location on the map. Finally, a grid of regular cells is superimposed onto the map and

the cells containing at least one of the geographic features mentioned in the textual

descriptions are selected. These, together with a different set of cells selected ran-

domly from the grid as counterexamples, are used as training samples for a machine

learning algorithm that categorizes all other cells according to the activities they

allow. As a result, each cell is associated to either of the two training sets, unless too

little information is known about it—in which case it is marked as “unclassified”.

3.1 Natural Language Preprocessing

The natural language preprocessing stage relies on the Stanford CoreNLP Natural

Language Processing Toolkit (Manning et al. 2014). More specifically, it relies on

three of the tools it provides: the sentence splitter, the part-of-speech tagger, and the

dependency parser.
The sentence splitter tokenizes each UGC description into sentences (step 1 in

Fig. 1) that are passed over to the part-of-speech tagger and the dependency parser

(step 2 in Fig. 1). The tagger classifies every word in a sentence according to its

syntactical class, e.g. noun (NN), verb (VB), adjective (JJ) (see Table 1 for a more

complete list of syntactical classes and tags). The parser generates a so–called depen-

dency tree whose nodes denote the syntactical class of each word in a sentence, with

edges representing the hierarchical structure of grammatical relations between the

words. For example, given the sentence “The Karntner Strasse2 is a bit touristy, but
generally the area is where one could spend most of one’s time in Vienna.”, the part-

of-speech tagger and the dependency parser produce the tree shown in Fig. 2. Note

that each term is also lemmatized, i.e. it is transformed into its base form.

Given a dependency tree, it is easy to extract from it the set N of common and

proper nouns—tagged NN and NNP, respectively. Possibly, this set contains any

reference to geographic features contained in the textual description that we are

interested in locating on the map. Since the name of a geographic feature may be

a compound noun (e.g. Kärntner Straße, St. Stephen’s Cathedral), we need to further

process the set of nouns before trying to match them with geonames available in the

geographic database.

2
The correct spelling in German language is Kärntner Straße. This comment has been retrieved

from the web and is purposely reported in its original, wrongly spelled, form.
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Fig. 2 The dependency tree generated by the Stanford’s part-of-speech tagger and dependency

parser (Manning et al. 2014) for the sentence “The Karntner Strasse is a bit touristy, but generally
the area is where one could spend most of one’s time in Vienna”

Algorithm 1 Finding candidate compound geonames

Input
N = {nouns in UGC descriptions},

x = maximum number of words making up a compound geoname
Output C = {Cn, n ∈ N } = {candidate geonames for each noun n in N }

1: procedure COMPOUNDGEONAMES

2: C ← ∅
3: for all n ∈ N do
4: Cn ← ∅
5: D ← {n} ∪ RetrieveDependencies(n, x)
6: for all d ∈ 2D do
7: Cn ← Cn ∪ {PermutationsOf (d)}
8: C ← C ∪ Cn

We propose the procedure reported in Algorithm 1 that, given the set of nouns

N , produces a set C consisting of simple and compound nouns that we refer to as

candidate geonames. For each noun n ∈ N we access again the dependency tree to

retrieve other nouns that, together with n, might make up a compound noun. This is

done through the function RetrieveDependencies(n, x) (line 5) which, starting from

the node corresponding to n, traverses the tree upwards (towards the root) and down-

wards (towards the leaves) and retrieves up to x ∈ ℕ other nouns in both directions.

These nouns, together with n, are stored in the set D . The final set Cn of candidate
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compound nouns associated to n consists of all possible permutations of the power-

set of D (lines 6–7). The complete set of candidate geonames consists of the union

(line 8) of all such sets of candidate geonames: C =
⋃

n∈N Cn.

In our example, from the dependency tree in Fig. 2 we derive:

N = {Strasse, Karntner, bit, area, time, Vienna}

And for the noun n = Karntner we have:

DKarntner ={Karntner, Strasse}
CKarntner ={∅,Karntner, Strasse, Karntner Strasse, Strasse Karntner}

Note that in this case the number x of dependencies to be retrieved does not influence

the sets of candidate compound names, as far as x > 0.

3.2 Geographic Matching

This stage does not rely on any external tool. The objective is trying to match every

candidate geoname obtained in the previous stage against a unique feature in the

geographic database according to name comparison (step 3 in Fig. 1). The result is

a set G that, for each noun n ∈ N , contains at most one geographic feature from

the database: the one whose name best matches the candidate geonames for n (i.e.,

in Cn). This implies that we also discard nouns referring to categorical features (e.g.

street, square), as our final goal is to pinpoint an initial area on the map that the

textual descriptions refer to.

Algorithm 2 Geographic matching

Input
N = {nouns in UGC descriptions},

C = {Cn, n ∈ N } = {candidate geonames for each noun n in N },

𝜀 = threshold
Output G = {matched geonames}

1: procedure GEOMATCHING

2: G ← ∅
3: for all n ∈ N do
4: P ← patternMatch(n)
5: (p, d) ← (nil,+∞)
6: for all (c, p) ∈ Cn ×P do
7: d ← Levenshtein(c, p.name)
8: if d ≤ 𝜀 ⋅WordsIn(c) ∧ d < d then
9: (p, d) ← (p, d)

10: if p ≠ nil ∧ IsUnique(p) then
11: G ← G ∪ {p}
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We propose the procedure reported in Algorithm 2 that works as follows. For

each noun n ∈ N we retrieve (line 4) from the geographic database a set P of

features whose names pattern-match (i.e. via regex expression) against n. In defining

the regex expressions, particular attention must be given to encode case-insensitivity

and special characters (e.g. vowel mutations) to deal with spelling issues occurring

when people write place names in a non-native language (e.g. the German word

Straße vs. Strasse). Of all the retrieved features P we are only interested in selecting

(lines 5–9) one whose name best matches against the set Cn of candidate geonames

associated to n. For each candidate geoname c ∈ Cn and for each feature p ∈ P
we compute the Weighted Levenshtein distance

3
between c and the name of p (line

7). The Weighted Levenshtein distance is a reasonable choice in case of UGC as

it allows to cope with incompleteness and irregularities typical of UGC. To find

possible matches (line 9) we enforce (line 8) the distance not to be bigger than a given

threshold 𝜀. Since a candidate geoname might be a compound name, we multiply

𝜀 by the number of words making up the candidate geoname. The best matching,

then, is the one with the smallest Levenshtein distance. At the end of the loop the

variable p is either empty or it contains a geographic feature. In the first case no

match has been found. Otherwise we must make sure that the feature is unique in the

geographic database (line 10). This might not be the case for features like e.g. shops

or restaurants that have several branches in the same city.

Let us resume the example sentence introduced in Sect. 3.1 and whose depen-

dency tree is shown in Fig. 2. Assume that for the noun n = Karntner and for

the case-insensitive regex expression “k(a|ae|ä)rntner” the function patternMatch
(line 4) returns only one feature named ‘Kärntner Straße’. The following table then

shows the resulting Levenshtein distance for each candidate geoname in Cn and the

threshold (assumed to be 𝜀 = 3) multiplied by the number of words in each noun:

c ∈ Cn Levenshtein distance 𝜀 ⋅WordsIn(c)
∅ 15 0

‘Karntner’ 8 3

‘Strasse’ 11 3

‘Karntner Strasse’ 3 6
‘Strasse Karntner’ 12 6

It is easy to see that there is only one entry in this table whose distance is admis-

sible and is minimum: the entry ‘Karntner Strasse’.

3
The Levenshtein distance is a string metric that measures similarity by the minimal number of

required editing steps to transform one string into the other string.



76 H. Hobel et al.

(a) (b)

Fig. 3 A schematic representation of the classification process—given training vectors for the

cognitive region of interest (purple cells in (a)) and for the counter-examples (orange cells in (a)),

the machine learning classifier associates each other cell to one of the two classes (light purple and

light orange in (b)). a Initial configuration. b Classified area

3.3 Machine Learning

This stage relies on a machine learning model called Multinomial Naïve Bayes: a

probabilistic approach mainly used for text classification that learns from a given set

of pre-classified samples (called training vectors) how to classify other, unclassified

feature vectors according to their similarity with the given training vectors.

We adapt Multinomial Naïve Bayes to classify geographic areas as either being

part of the cognitive region of interest (class 1) or not being part of it (class 2). The

training vectors are obtained by tessellating the map with a regular grid (step 4 in

Fig. 1) and retrieving the cells I1 containing at least one of the geographic features

G derived in the previous stage. Such cells are the training vectors for the first class.

The training vectors I2 for the second class consist of the same number of randomly

selected cells that do not contain any of the geographic features in G .

We adopt a bag-of-words model
4

to obtain a simplified ‘semantical’ represen-

tation of the training cells by extracting certain categorical attributes from all the

geographic features contained in each such cell (step 5 in Fig. 1). Let T ∶= {ti∶ i =
1,… , n} be a vocabulary containing all categorical attributes of interest from the

whole map. Then, each cell is represented by a vector (x1,… , xn), where xi is the

4
The bag-of-words model is typically used for text classification. A text is represented as the bag

(multiset) of its words and the frequency of occurrence of each word is used as a feature vector for

training a classifier.
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frequency of the categorical attribute ti in this cell. Since our focus is on cognitive

regions conceptualized as homogeneous areas in terms of the activities they allow

to be performed, we only (so far manually based on an educated guess of the most

typical activities for a cognitive region such as historic city centers
5
) select cate-

gorical attributes proper of geographic features that offer a service (e.g. bars, shops,

restaurants, banks, . . . ).

Given the two training sets I1 and I2 as described above, the machine learn-

ing procedure is capable of classifying all the remaining cells (step 6 in Fig. 1) as

graphically exemplified in Fig. 3.

4 Evaluation

This section describes an implementation of the processing workflow described in

Sect. 3 and the results we obtained for the case study of the cognitive region historic
center of Vienna.

As data sources (see Fig. 1) we selected two well-known UGC and Volunteered

Geographic Information (VGI) projects: TripAdvisor
6

and OSM.
7

By means of a

customized crawler we retrieved English textual descriptions of the historic center
of Vienna from a dedicated comment page on TripAdvisor. For the geographic data-

base we used the OSM extract of Vienna as provided by Mapzen Metro Extracts.
8

OSM provides spatial data in the form of points (e.g. a park bench), ways (e.g. streets

and buildings), and relations (e.g. spatial entities consisting of several parts). Seman-

tic information such as name and categorical attributes are defined as ‘tags’, which

are key-value pairs. For example, OSM contains an entry for the “Hofburg Imperial

Palace” that includes the name of the feature in several languages and is described

by the following tags (among others): (building, yes), (historic, castle), (castle_type,
palace), (tourism, attraction). The spatial dataset (see Fig. 4) was stored in a ded-

icated database where the geometry of ways and relations was simplified by their

centroid.

Finally, for the implementation of the machine learning stage (see Sect. 3.3) we

resorted to a hexagonal grid with uniform cells with an edge-length of 0.0025◦,
9

and

we used the MatLab implementation of the Multinomial Naïve Bayes
10

classifier.

5
We are working on an extension to select activities from textual descriptions.

6
http://www.tripadvisor.com/.

7
https://www.openstreetmap.org/.

8
https://mapzen.com/.

9
The cell size can be shrinked or enlarged to obtain finer-grained or coarser results, respectively.

10
http://de.mathworks.com/help/stats/naive-bayes-classification.html.

http://www.tripadvisor.com/
https://www.openstreetmap.org/
https://mapzen.com/
http://de.mathworks.com/help/stats/naive-bayes-classification.html
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Fig. 4 Visualization of the OpenStreetMap (OSM) dataset of Vienna as used in our experiments—

the whole dataset consists of 290,586 nodes, 368,112 ways, and 810,145 relations, for a total of

1,468,843 features

4.1 Experimental Results

We ran our workflow implementation on two experimental scenarios. Both scenarios

use the same data sources with the following difference: in the first scenario (see

Fig. 5), the training vectors have been kept in their integrity. In the second scenario

(see Fig. 6), we manually removed outlier cells from the training vector associated

to the cognitive region—i.e., those cells that fall far away from the actual city center

(compare the distribution of dark purple cells in Figs. 5 and 6).

For the pictorial representations of the results we adopted the following color

scheme: dark purple cells represent training vectors for the cognitive region historic
center of Vienna as extracted from the textual descriptions; dark orange cells rep-

resent training vectors for the counter-example. Light purple and light orange cells

show the areas classified as historic center of Vienna and counter-example, respec-

tively. White cells denote areas that have not been classified because of insufficient

semantic information.

Since counter-examples are selected randomly from the grid we decided to per-

form several runs for each scenario. Figure 5 shows the results obtained for five runs

on the first scenario. Figure 6 shows similar results for the second scenario, where

outlier cells were removed from the training vector of the cognitive region. The

results for the two scenarios mostly coincide, and the cells classified as similar to the

cognitive region historic center of Vienna form a region approximately correspond-

ing to the central district of the city and its immediate surroundings. Interestingly,
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Fig. 5 Visualization of classification results for the first scenario (several runs)—dark purple cells
represent training vectors for the cognitive region historic center of Vienna; light purple cells are

classified as historic center of Vienna; dark orange cells represent training vectors for the counter-

example; light orange cells are classified as counter-example; white cells are unclassified

the cells that were manually removed in the second scenario are associated to the

class corresponding to the cognitive region anyway.

To mitigate the effects of using randomly selected counter-examples, we per-

formed ten runs for each scenario and intersected the results to obtain ‘robust’ results:

only cells classified as historic center of Vienna that occur in the result of each run

form the robust results, as shown in Fig. 7.

4.2 Preliminary Evaluation

A sound evaluation of the results would require investigating how the derived cog-

nitive regions fit to human conceptualization. To that end we are currently in the

process of designing a questionnaire similar to that used in Montello et al. (2003).
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Fig. 6 Visualization of classification results for the second scenario (several runs)—dark pur-
ple cells represent training vectors for the cognitive region historic center of Vienna; light purple
cells are classified as historic center of Vienna; dark orange cells represent training vectors for the

counter-example; light orange cells are classified as counter-example; white cells are unclassified

(a) (b)

Fig. 7 Visualization of robust results. a Scenario 1. b Scenario 2
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A pilot study with a small user group already showed that the footprint derived for

the cognitive region historic center of Vienna fits well to human conceptualization.

We plan to publish the final results of this study in a future publication.

Meanwhile, we present here a preliminary qualitative evaluation of the outcomes

by comparing the obtained robust results with a historical map of the city of Vienna

that dates back to 1850. For that, we geographically overlaid the derived regions with

the map, as shown in Fig. 8 for the first scenario. It is easy to see how the shape and

extent of the derived region nicely fit with the city boundaries of 1850: The outer

boundary of the main part of the classified area coincides with a physical separation

which is now a major street of the city, while the few outlier cells correspond to his-

torical sites that are not reported in the historical map (e.g. the Schönbrunn Palace).

In summary, the approach, which relied solely on a knowledge base derived from

VGI and crowdsourced information sources, shows promising results.

Fig. 8 Approximate overlay of the robust result (Scenario 1) over a historic representation of

Vienna (map retrieved from http://www.valentina.net)

http://www.valentina.net
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5 Conclusion and Future Work

We presented a novel automated approach to derive the geometric extent of “cog-

nitive regions” by utilizing solely crowd-sourced geographic information as the

fundamental knowledge bases. Based on Natural Language Preprocessing and a

combinatorial place matching procedure tailored to identify unique geonames, the

conceptualization of regions perceived as a whole based on the activities they allow

is translated into a machine-processable form.

The proposed approach builds upon a representation of semantic attributes of

geographic features, and allows for the automated clustering of cities into “cognitive

regions”. We pointed out that the classification problem can be efficiently solved by

utilizing the Multinomial Naïve Bayes model as classifier. For that, a bi-classification

approach was discussed that operates on initial seeding cells identified by the com-

binatorial place matching procedure. Counter-examples are derived using a Monte

Carlo approach.

While the method presented in this paper reveals promising results, it presents a

number of limitations that we plan to overcome in future work.

First, our approach relies on uniquely identifiable places to derive the initial cells

for the machine learning model, while non-unique features (like shops with several

branches) are completely discarded and not used to create the training vectors. Dif-

ferent approaches can be devised to also exploit such non-unique features, according

to wether they are mentioned in a comment together with uniquely identifiable fea-

tures or not. In the first case, one approach would be to use the dependency tree to

locate the syntactically closest unique feature mentioned in the text. This could be

used as a reference point to locate on the map the spatially closest feature matching

the non-unique reference. In the second case, a solution would be to run a two-step

geomatching. In the first step only uniquely identifiable features are used (as done

in the current approach) to generate a starting set of training cells. In the second

step this initial set is recursively extended by disambiguating non-unique features

according to their vicinity to the training cells.

It could be argued that the random selection of counter-examples for the machine

learning model can be improved by applying sophisticated methods. For example,

one could derive an ontology of cognitive regions and select counter-examples from

those that are semantically furthest away from the region of interest.

We adopted a bag-of-word model as a semantical approximation of the training

cells. This is a rather coarse semantical representation, as it only accounts for the

frequency of categorical attributes in a given cell. An improvement would be to resort

to a model that also takes into consideration the ontological relations among the

attributes as well as their spatial distribution and configuration.

Finally, we are working on a further extension of this approach that also exploits

verbs and other syntactical classes to derive the activities that can be carried out

at a given place. This extension may allow for a variety of more advanced applica-

tions such as the enrichment and/or validation of semantic attributes in geographic
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databases, as well as enabling natural language interfaces for Geographic Informa-

tion Retrieval (GIR) systems.
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