
4756_svn:2668 _ wc: 5112_Submitted to AGILE 2010

Intersection of Nonconvex Polygons Using the
Alternate Hierarchical Decomposition

Rizwan Bulbul, Andrew U. Frank

Vienna University of Technology
Department of Geoinformation and Cartography
Gusshausstrasse 27-29 E127, A-1040 Vienna, Austria
{bulbul, frank}@geoinfo.tuwien.ac.at

Abstract. Intersection computation is one of the fundamental operations of
computational geometry. This paper presents an algorithm for intersection
computation between two polygons (convex/nonconvex, with nonintersect-
ing edges, and with or without holes). The approach is based on the de-
composed representation of polygons, alternate hierarchical decomposition
(AHD), that decomposes the nonconvex polygon into its convex compo-
nents (convex hulls) arranged hierarchically in a tree data structure called
convex hull tree (CHT). The overall approach involves three operations (1)
intersection between two convex objects (2) intersection between a convex
and a CHT (nonconvex object) and, (3) intersection between two CHTs
(two nonconvex objects). This gives for (1) the basic operation of intersec-
tion computation between two convex hulls, for (2) the CHT traversal with
basic operation in (1) and, for (3) the CHT traversal with operation in (2).
Only the basic operation of intersection of two convex hulls is geometric
(for which well known algorithms exist) and the other operations are re-
peated application of this by traversing tree structures.

1 Introduction

The intersection operation is of fundamental importance (Shamos and
Hoey 1976) as it provides basis for computing other Boolean operations

2 Rizwan Bulbul, Andrew U. Frank

like union and difference etc. Also, it is the most expensive operation
computationally, roughly taking 80 % of the running time (Greiner and
Hormann 1998). The intersection operation has two problems, intersection
detection and intersection computation. The intersection detection between
two convex objects is a basic geometric operation (Chazelle and Dobkin
1987) and a great account of the topic can be found in (David 1997). We
are not focusing on the issue of intersection detection and for simplicity we
assume hereafter that the objects under consideration for intersection com-
putation do intersect.

The Problem: Given two polygons (convex or nonconvex, with non-
intersecting edges, and with or without holes), compute the intersection re-
gion that may be;

a) Empty (Figure 1a)

b) Convex (Figure 1b)

c) Nonconvex (Figure 1c)

d) A set of convex and/or nonconvex disjoint regions (Figure 1d)

(a) (b) (c) (d)

Fig. 1. Different polygon intersection scenarios

In GIS domain the set-theoretic Boolean operations (intersection, union
and symmetric difference) are extensively used for extracting useful spatial
information out of spatial data modeled as polygons (Margalit and Knott
1989). For example, polygon clipping is a frequent operation in GIS (Liu
et al. 2007). Other Boolean operations in GIS include overlay, windowing,
join and merge etc (Rigaux et al. 2001) (FranciscoMartınez et al. 2009).
The map overlay operations are key operations in the GIS domain.

For convex polygons, optimal algorithms for intersection computation
are known. Although, variety of solutions also exist for Boolean operations
on complex polygons (nonconvex polygons with or without holes), these

Intersection of Nonconvex Polygons Using the Alternate Hierarchical
Decomposition 3

solutions are intricate having complex data structures leading to difficult
implementations.

Our approach for the intersection computation is a simple algorithm
based on the decomposed representation of polygons, AHD (Bulbul and
Frank 2009), that decomposes the nonconvex polygon into its convex
components (convex hulls) arranged hierarchically in a tree data structure
called CHT (more in section 3). The intersection computation involves
three operations;

1) Intersection between two convex objects.

2) Intersection between a convex and a CHT (nonconvex object).

3) Intersection between two CHTs (two nonconvex objects).

This gives for (1) the basic and simple operation of intersection compu-
tation between two convex hulls. For (2), the CHT traversal with basic
operation in (1) and for (3), the CHT traversal with operation in (2). The
approach is further discussed in detail in section 4. Only the basic opera-
tion of intersection of two convex hulls is geometric (for which well
known algorithms exist) and the other operations are repeated application
of this by traversing tree structures.

2 Previous Work

Many algorithms for Boolean operations on polygons have been reported
in literature. The preliminary work by Shamos and Hoey (1976) provided a
basis for geometric intersection problems. They have shown that the inter-
section of two simple plane n-gons can be detected in O(n log n). The in-
tersection of two convex n-gons and two nonconvex n-gons can be com-
puted in O(n) and O(n2) respectively. Bentley and Ottmann (1979) gave
the classical sweep line algorithm for counting and reporting all intersec-
tions by extending the work by Shamos and Hoey. They provided an algo-
rithm for reporting all k intersections between two general planar objects in
O (n log n + k log n). The work by Bentley and Ottmann was further ex-
tended by Lauther (1981), and the reported algorithm has the expected
time complexity of O (n log n). Another O (n) time algorithm was pre-
sented by O'Rourke etal (1998). The algorithm is simple but is limited to
convex polygons only.

The two plane sweep algorithms by Nievergelt and Preparata (1982)
compute the geometric intersection of two nonconvex polygons in O ((n+
k) log n) and two convex polygons in O (n log n + k). The polygons can

4 Rizwan Bulbul, Andrew U. Frank

have self intersecting edges but degenerate cases are not tackled. The data
structure is complex and implementation details are not given.

The work by Chazelle and Dobkin (1987) provides lower bounds on al-
gorithms for intersection of convex objects in two and three dimensions.
Their work is based on the assumption that the intersecting objects are
available in random access memory, eliminating reliance on linear input
reading time. The time bounds for two convex polygons in 2D and two
convex polyhedra in 3D cases are O (log n) and O (log3 n) respectively (in
3D case an additional multiplicative factor of log n for data structure pre-
processing for standardization).

The work by Margalit and Knott (1989) presents an algorithm for set
operations on polygon pairs having worst time complexity of O (n2). They
give partial correctness proof of their solution and implementation is dis-
cussed but still complex and not easily understandable.

The work by Rappoport (1991), extended convex difference tree
(ECDT) for representing two n-dimensional polygons (polytopes) and per-
forming intersection and union operations, is similar to our approach. The
differences between our approach and their approach both at data structure
and operations level are given in Table 1.

Table 1. Difference between our and Rappoport’s Approach

Our Approach Approach by Rappoport

A single CHT data structure with build
and process operations

Implementation details of how data struc-
ture is actually built and processed is not
mentioned

Can easily handle holes Nothing said about

Our approach is robust, no special topo-
logical handling

Needs special topological handling for
robustness

Can handle multiple polygons with
slight modifications

Two polygons

Simple structure as the children convex
hulls of a parent node are contained
within the convex region of that parent
node.

Primitives in a right sub-tree of a differ-
ence node are contained within the primi-
tive on the left side of that node.

The state of the art for finding all intersections among segments is given

by (Bernard and Herbert 1992). The algorithm by Vatti (1992) is for clip-
ping arbitrary polygons against arbitrary polygons. The polygons may be
convex, concave or self intersecting. However, the self intersecting poly-
gon is converted to a nonintersecting polygon by inserting the points of in-

Intersection of Nonconvex Polygons Using the Alternate Hierarchical
Decomposition 5

tersection during the clipping process. The algorithm also supports poly-
gon decomposition by allowing the output in the form of trapezoids if re-
quired. The solution is complex and implementation is not easy. Its per-
formance has not been proved asymptotically, rather a comparison with
traditional clipping methods is provided.

The algorithm proposed by Greiner and Hormann (1998) also deals
clipping arbitrary polygons like Vatti’s algorithm. However, it is a simple
algorithm based on the boundary segment manipulation and performs bet-
ter than Vatti’s algorithm over randomly generated general polygons. The
data structure is a doubly link list or lists in case of multiple polygons. On-
ly few degenerate cases are mentioned and it can not treat overlap degen-
eracies, and no complete complexity analysis provided. The solution is
limited for 2D polygons and robustness issues related to the fixed precision
floating point arithmetic are not catered.

The algorithm by Rivero and Feito (2000) to calculate Boolean opera-
tions for general planar polygons (manifold and non manifold, with and
without holes) is based on simplicial chains and their operations. The strat-
egy has been demonstrated for 2D and claimed to be valid for 3D poly-
hedra. The algorithm does not need special treatment of degenerate cases,
and it is shown that its time is similar to Greiner’s algorithm. The slight
modifications in the work of Rivero and Feito by Peng, Yong et al. (2005)
resulted in an algorithm which has been shown to be more efficient (exe-
cution time less than one third of that by Rivero and Feito).

CGAL (Fogel et al. 2006) provides Boolean operations for polytopes in
2-dimensional Euclidian space. Robustness is ensured through the use of
exact arithmetic. The regularized operations are provided for two simple
polygons with or without holes. The time complexity is O (n2) for simple
polygons.

The algorithm by Liu, Wang et al. (2007) is for clipping arbitrary poly-
gons with holes. The algorithm is based on segment manipulation and
works by classification of intersection points into entry or exit points. Un-
like solutions by Vatti and Greiner, this algorithm uses a single linked list
data structure and performs better than Vatti’s solution for smaller number
of input points. The solution is limited to 2D polygons and modifications
are needed for dealing multiple polygons and holes. The degenerate cases
are specially treated and the methods are demanding having difficult im-
plementation.

The algorithm by Martınez, Rueda et al. (2009) is based on classical
plane sweep algorithm for computing intersections performing in time O
((n + k) log (n)). They claim the solution works for general polygons, al-
though its working for polygons with holes is not demonstrated. Algo-

6 Rizwan Bulbul, Andrew U. Frank

rithmic details are given but the implementation issues are not discussed.
The implementation seems difficult and edge overlaps are specially
treated. Dimension independence and robustness issues are not discussed.

3 Preliminaries: Assumptions and Data Structure

Our approach for intersection computation between geometric objects is
based on following assumptions and simplifications;

a) The objects are flat objects i.e. lines, polygons and polyhedra. For
demonstration purposes we will confine ourselves to 2D polygons
only.

b) The objects are simple polygons although the solution can handle
self intersecting edges with few modifications (section 9).

c) We are focusing on the intersection computation problem. The in-
tersection detection problem is not considered that itself is a chal-
lenging problem and algorithms exist in literature (e.g. (Chazelle
and Dobkin 1987; Shamos and Hoey 1976)).

d) The objects may contain holes or nested holes e.g. a hole within a
hole in which case the two regions have opposite orientation of
edges. In Figure 2a, region 5 is within region 4 and both have op-
posite orientation.

e) The edge representations are based on “Left-handed” rule, the
boundary edges are oriented anticlockwise while the hole edges
are oriented clockwise.

f) A region is represented by a single or multiple polygons. We have
demonstrated our solution for intersection computation on a pair of
polygons. Our solution is extendible for intersection computation
involving more than two polygons.

The data structure, CHT, is an arbitrary tree in which every node repre-
sents a convex hull. The AHD process decomposes any nonconvex poly-
gon with or without holes into convex components which are arranged hi-
erarchically in a CHT. Two basic functions build and process are used for
populating the data structure and processing the data structure to retrieve
the original object respectively. For implementation details of the AHD,
CHT and, the associated functions the reader is referred to (Bulbul and
Frank 2009). The example in Figure 2 shows the AHD process and the re-
sulting CHT. Given a nonconvex polygon with nested holes (see Figure
2a), it is decomposed into its convex components using AHD process as

Intersection of Nonconvex Polygons Using the Alternate Hierarchical
Decomposition 7

shown in Figure 2b, and the resulting data structure, CHT, is shown in
Figure 2c.

(a) (b)

(c)

Fig. 2. Input polygon (a) decomposed input (b) convex hull tree data structure (c)

The nodes (convex hulls) in CHT at different levels are given positive
and negative signs alternately as shown in Figure 2. The positively signed
convex hulls represent the regions to be included while the negatively
signed convex hulls represent regions to be excluded from their parent re-
gion represented by a positive convex hull. For example in Figure 2, the
input nonconvex polygon is decomposed into five convex components, its
convex hull node 1, two delta regions or concavities or notches (node 2,
and node 3) and two nested holes (node 4, and node 5).

Hole

8 Rizwan Bulbul, Andrew U. Frank

Generic Intersection Operation
 (GINT)

Convex-Nonconvex Intersection
(CNINT)

Basic Intersection Operation
Convex-Convex Intersection (CCINT)

4 Our Approach

The closure of the basic intersection operation (Convex-convex intersec-
tion, CCINT) over convex sets is the most important property. Thus our
approach exploits this property for computing convex-nonconvex Intersec-
tion, CNINT, by recursively applying CCINT between convex hull of the
convex object and the component convex hulls of the nonconvex object.
Similarly, the intersection between two nonconvex polygons (Nonconvex-
nonconvex intersection, NNINT) is computed by recursively traversing
CHT of one of the nonconvex objects with CNINT.

The NNINT is the generic intersection operation, GINT, because it deals
all the three cases as it is based on CNINT, which in turn is based on
CCINT as shown in Figure 3.

Fig. 3. Our approach for intersection computation

4.1 Basic Intersection Operation: Convex-Convex Intersection

The basic operation is closed under intersection and the result is always a
convex region. The intersection computation between two convex poly-
gons is the basic operation (for which known solutions exist). Any of the
existing solutions can be used but we have provided an algorithm for inter-
section computation between two convex polygons using convex hulls.

Intersection of Nonconvex Polygons Using the Alternate Hierarchical
Decomposition 9

(a) (b) (c)

Fig. 4. Two convex polygons (a) CHTs of intersecting convex polygons (b) resul-
tant CHT of A∩B

We have provided an algorithm for convex-convex intersection, the
pseudocode of which is provided in section 5.1. Figure 4 shows two con-
vex polygons and demonstrates their intersection at data structure level.

4.2 Convex- Nonconvex Intersection

The process of intersection computation between a convex polygon and
a nonconvex polygon involves the repeated application of basic operation
between the convex hull of the convex polygon and the convex hull com-
ponents of the nonconvex polygon that are traversed recursively in CHT.
The resulting convex hull of each basic operation is then placed in the re-
sultant CHT at position same as the position of component convex hull of
the nonconvex polygon involved in the basic operation. The further recur-
sive processing of children trees of a component convex hull is stopped if
the basic operation involving that component convex hull is null. This
avoids unnecessary computations reducing the overall number of opera-
tions.

For example, Figure 5a shows a convex polygon A and a nonconvex po-
lygon B and Figure 5b shows the decomposed inputs with their compo-
nents numbered. Figure 5c shows the data structure representation of the
input polygons A and B. The process starts by computation of basic opera-
tion between convex hull of convex polygon A (that is a1) and the convex
hull of the nonconvex polygon B (that is the root b1). Since b1, the com-
ponent convex hull of the nonconvex polygon is at root the result of basic
operation between a1 and b1 will form the root of the resultant CHT as
shown in Figure 5d. The process is then recursively applied to the children
trees of b1. Since the intersection between convex hull a1 and b3 is null,
the child tree of b3 containing convex hull b4 will not be processed further

10 Rizwan Bulbul, Andrew U. Frank

a1∩b1

a1∩b2

(Figure 5e). The resultant intersection is a nonconvex region that is repre-
sented by two convex hull components as shown in Figure 5f. The process-
ing (merging) of the resultant CHT, containing two component convex
hulls results in the resultant intersection region as shown in Figure 5g.

(a) (b)

(c) (d) (e)

(f) (g)

Fig. 5. Input polygons (a) decomposed inputs (b) CHTs of input polygons (c) in-
tersection of convex hull of A, a1 and the CHT of B (d) CHT of intersection (e)
intersection tree component hulls (f) intersection region A∩B (g)

Intersection of Nonconvex Polygons Using the Alternate Hierarchical
Decomposition 11

Since the intersection of a convex and a nonconvex polygon may be a
set of disjoint convex and/or nonconvex regions (e.g. see Figure 1d), the
resultant CHT (if it does not represent a single convex region) is further
processed for simplification, that results in multiple CHTs each represent-
ing the disjoint intersection region.

4.3 Generic Intersection Operation

The intersection operation for a convex polygon and a nonconvex polygon
is used to compute the intersection between two nonconvex polygons rep-
resented by CHTs. Suppose two intersecting nonconvex polygons A and B
as shown in Figure 6a. Figure 6b shows the decomposed convex hull
components of both nonconvex polygons and their CHTs are shown in
Figure 6c. The intersection process starts by taking the convex-nonconvex
intersection between convex hull of nonconvex polygon B (b1) and the
CHT of the nonconvex polygon A (Figure 6d).

(a) (b)

(c) (d) (e) (f) (g)

(h) (i) (j) (k)

Fig. 6. Generic intersection operation

Since the intersection between b1 and a2 convex components is null (Fig-
ure 6e and Figure 6f), the result is a single node CHT (Figure 6g) having
the convex hull (a1∩ b1) which is then intersected recursively with all the

12 Rizwan Bulbul, Andrew U. Frank

children trees of convex hull b1 of the nonconvex polygon B . Since, b1
has only one child (which is also a single node representing a convex hull)
the intersection of (a1∩b1) and child tree (Figure 6h) results in a convex
hull (a1∩b2) represented in a single node CHT as shown in Figure 6i and
Figure 6j. The resultant CHT containing (a1∩b2) is then added (grafted)
back to the parent intersection CHT containing single node (a1∩b1). Thus,
the result is a nonconvex region shown as shaded in Figure 6 b and the re-
sultant CHT shown in Figure 6k.

If the result of convex-nonconvex intersection is a set of disjoint regions
(a set of CHTs, each representing a region) then for each CHT of the dis-
joint region, the same process is repeated independently of the other CHTs
representing the disjoint intersection regions.

5 Algorithms

In this section we provide the pseudocode of algorithms for each of the
three operations discussed in previous section. An example is shown with
each algorithm to describe algorithm.

5.1 Pseudocode: Convex- Convex Intersection

The pseudocode of the basic intersection operation between two convex
polygons is shown in Figure 7. The algorithm uses the QuickHull algo-
rithm (O'Rourke 1998) for convex hull computation and compIntPoints
routine computes the intersection points by pairing the intersecting delta
edges.

Input: Two convex polytopes (convex hulls)

1: Initialize set of intersection region points I as an empty set

2: ch ← convexHull (poly1 + poly2)

3: de ← ((poly1 edges) + (poly2 edges)) – (ch edges)

4: ip← compIntPoints (de)

5: irp ← (poly1 – poly2) + (poly2 – poly1) + ip

6: I ← convexHull (irp)

Output: Set of intersection region points I (always a convex hull)

Fig. 7. Pseudocode of convex-convex intersection

Intersection of Nonconvex Polygons Using the Alternate Hierarchical
Decomposition 13

The algorithmic steps of basic intersection are shown in the example in
Figure 8.

(a) Input convex polygons (b) Convex hull of (poly1+ poly2)

(c) Delta edges (d) Intersecting edges

(e) Poly1 – poly2 (f) Poly2 – poly1

(g) Intersection points (h) Intersection region

Fig. 8. Convex-convex intersection example

14 Rizwan Bulbul, Andrew U. Frank

B

A
a1

b3
b4

b2

b1

5.2 Pseudocode: Convex –Nonconvex Intersection

As mentioned earlier, the intersection operation between a convex and a
nonconvex polygon is not closed under intersection. The pseudocode of
the CNINT is shown in Figure 9 and the example is shown in Figure 10.

Input: A convex polytope (convex hull) poly1 and a nonconvex polytope poly2
(CHT). poly1 = ch and poly2 = Node x xts where x is the convex hull of poly2
and xts is the set of children CHTs

1: Initialize I as an empty tree

2: if xts is empty

3: then

4: t ← Node (intersection of ch and x) []

5: I ← set of trees containing only t

6: else

7:
 ct ← map (CNINT ch) xts // set of trees by recursively tra-

versing xts with (CNINT ch)

8: it ← Node (CCINT of ch and x) ct

9:
 eir ← process it // set of edges of intersection region ob-

tained by processing it

10:
 ir ← splitRegions eir // set of disjoint regions obtained by se-

parating closed regions

11:
 I ← build ir //set of trees obtained by building each region in

ir

Output: Set of disjoint intersection regions I represented in CHT

Fig. 9. Pseudocode of convex-nonconvex intersection algorithm

(a) Input polygons (b) Decomposed input

Intersection of Nonconvex Polygons Using the Alternate Hierarchical
Decomposition 15

(c) a1 and b1 (d) a1∩ b1

(e) a1 and b2 (f) a1 ∩b2

(g) a1∩b3 =NULL (h) A∩B

Fig. 10. Convex-nonconvex intersection example

5.3 Pseudocode: Generic Intersection Operation

The algorithm for generic intersection operation incorporates the previous
two intersection operations. It is generic in the sense that it computes the
intersection of two polygons (convex or nonconvex and with or without

16 Rizwan Bulbul, Andrew U. Frank

holes). The pseudocode of the GINT is shown in Figure 11 and an example
is shown in Figure 12.

Input: Two polygonal regions (convex/nonconvex, simple or nonsimple) in
CHT notation. Poly1 = Node x xts and poly2 = Node y yts where x and y are
the convex hulls and xts and yts are the set of children trees of polygon 1 and
polygon2 respectively

1: Initialize I as an empty tree

2: if xts is empty //poly1 is convex

3: then return CNINT x poly2

4: else if yts is empty //poly2 is convex

5: then return CNINT y poly1

6: else

7: oi ← CNINT y poly1

8: if oi is empty

9: then return I

10: else for every tree tx in oi

11: for every tree ty in yts

12: ct ← compute GINT tx ty

13: nt ← addtrees ct in tree tx

14: I ← addtree nt into I

15: return I

Output: Set of disjoint intersection regions I in CHT

Fig. 11. Pseudocode of generic intersection algorithm

(a) Input polygons (b) Decomposed input (c) CNINT:CHT of A
 and convex hull of B

Intersection of Nonconvex Polygons Using the Alternate Hierarchical
Decomposition 17

r1

r2

(d) Result of (c) (e) result in (c) is simpli-
fied and two disjoint re-
gions result

(f) r1 ∩ first child
of B

(g) Result of (f) (h) Remove (g) from r1 (i) Result in (h) ∩ sec-
ond child tree of B

(j) r2 ∩ first child of B (k) Result of (j) (l) Remove result in
(k) from r2

18 Rizwan Bulbul, Andrew U. Frank

(m) Result in (l) ∩ sec
ond child tree of B

(n) Result of (m)

(o) Remove (n) from
(l)

(p) Disjoint intersection regions

Fig. 12. Nonconvex-nonconvex intersection example

6 Implementation

The algorithms introduced in previous section are implemented in Haskell
(Jones 2003). It is a functional programming language that supports lazy
evaluation, higher order functions, and big numbers (big integers, big ra-
tional etc.). In Haskell, the CHT is defined recursively as;

data Tree = Node CHull [Tree]

The CCINT and CNINT operations are computed by recursively trav-

ersing the CHT of nonconvex polygon using map higher order function.
Also, all the points are represented by their homogenous big integer coor-
dinates. Big integers in Haskell are represented as “Integer” data type and

Intersection of Nonconvex Polygons Using the Alternate Hierarchical
Decomposition 19

they allow arbitrary precision arithmetic limited by the size of the main
memory. Thus, the use of big integers allows robust intersection computa-
tions operations avoiding rounding errors.

7 Special Cases

The intersection of two polygons may be a point (Figure 13c), a line (Fig-
ure 13b), polygon or a combination consisting of the three (Figure 13f). In
cases where the intersection region is not a polygon or a set of polygons,
special treatment is needed. A variety of special cases for the basic inter-
section have been shown in (O'Rourke 1998) and few are shown in Figure
13.

(a) (b) (c)

(d) (e) (f)

Fig. 13. Some special cases for intersection computation

Since our approach is based on basic intersection operation, we need not
to tackle the special cases for convex-nonconvex or nonconvex-nonconvex
intersection operations. If the special cases are tackled for basic operation,
other operations based on it will also tackle the special cases.

For special cases like complete or partial overlap our approach do not
need any special treatment. However, for cases when the intersection is a
point or a line we need special treatment which is achieved by making
changes not in the main intersection algorithms but in the QuickHull mod-

20 Rizwan Bulbul, Andrew U. Frank

ule and the build function of the AHD process. Table 2 lists special cases
and whether these cases are specially treated in our algorithm or not.

Table 2. Special case treatment

Case Specially treated?

Complete overlap No

One is inside other No

Edges overlap No

Points overlap No

Intersection is a line Yes
Intersection is a point Yes

8 Solution Characteristics

Our generic solution to perform Boolean intersection operations on general
polygons has following properties;

1. Our approach is based on the basic intersection operation between
two convex polygons. Thus it exploits the benefits associated with
convexity.

2. It uses a single hierarchical tree data structure called convex hull
tree which is an arbitrary tree of convex hulls. The data structure
has two methods build and process for populating and accessing
the stored data in the data structure.

3. The tree data structure allows reduced number of computations.
We process the children trees of a node only if the intersection is
not null. We proceed in a branch in CHT if the intersection is not
null. Rule is “an object A can not intersect with the component
hulls of object B, if object A is not intersecting with the convex hull
of object B”.

4. Our approach is robust as we are using homogenous big integer
coordinates for representing points. Robustness is an important is-
sue in geometric computations (David 1997). Most of the algo-
rithms, as discussed in previous work section, do not cater the ro-
bustness issue. Only few address the issue (David 1997; Smith and
Dodgson 2007).

5. In some applications, the result of Boolean operation may be
needed to be decomposed e.g. Vatti (1992) mentions a case when

Intersection of Nonconvex Polygons Using the Alternate Hierarchical
Decomposition 21

decomposed output is useful. So our approach is useful for appli-
cations where the decomposed output is needed in the form of
convex components.

6. Our approach is easily implementable. The approach is imple-
mented in Haskell and the code is compact having only 137 lines
of code. Less code means less errors and ease of maintenance.

7. Most of the special cases need no special treatment like overlap-
ping edges etc. Some require few modifications like when the re-
sult has dangling edges or points etc.

8. It is easily extendible for n-dimensions.

9 Suggestions for Improvement and Future Work

The approach can be improved by slight modifications. For example;
a) For cases where region is represented by multiple polygons we

have to make the representation of a polygonal region as a list of
convex hull trees rather than a tree.

b) For the self intersection cases, some preprocessing can be done in-
volving the computation of intersection points of intersecting
edges, updating the intersecting edges and then ultimately segre-
gating the closed regions formed, so as to represent it with multi-
ple simple polygons. The idea is to convert/decompose a nonsim-
ple polygon with multiple simple polygons or use any established
method to deal nonsimplicity first and then continue with our solu-
tion.

The future goal is to devise a solution which has following properties;
1) Supports other Boolean operations union and symmetric difference

etc. We have implemented the union and symmetric difference op-
erations based on AHD and the work will be presented soon.

2) Dimension independent having single implementation. For imple-
menting the dimension independent Boolean operations on poly-
topes, the dimension independent AHD (Bulbul et al. 2009) will
be used.

22 Rizwan Bulbul, Andrew U. Frank

References

Bentley, J. L. and T. A. Ottmann. 1979. "Algorithms for Reporting and Counting
Geometric Intersections." IEEE Computer Society.

Bernard, Chazelle and Edelsbrunner Herbert. 1992. "An optimal algorithm for in-
tersecting line segments in the plane." Journal of the ACM (JACM) 39(1):1-
54.

Bulbul, Rizwan and Andrew U. Frank. 2009. "AHD: The Alternate Hierarchical
Decomposition of Nonconvex Polytopes (Generalization of a Convex Poly-
tope Based Spatial Data Model)." In 17th International Conference on Geoin-
formatics. Fairfax, USA.

Bulbul, Rizwan, Farid Karimipour and Andrew Frank. 2009. "A Simplex based
Dimension Independent Approach for Convex Decomposition of Nonconvex
polytopes." In 10th lnternational Conference on GeoComputation (GeoCom-
putation 2009). UNSW, Sydney, Australia.

Chazelle, B. and D. P. Dobkin. 1987. "Intersection of convex objects in two and
three dimensions." Journal of the ACM (JACM) 34(1):1-27.

David, M. Mount. 1997. "Geometric intersection." In Handbook of discrete and
computational geometry: CRC Press, Inc.

Fogel, Efi, Ron Wein, Baruch Zukerman and Dan Halperin. 2006. "2D Regular-
ized Boolean Set-Operations." In In Cgal-3.2 User and Reference Manual,
Cgal Editorial Board, Ed.,
http://www.cgal.org/Manual/3.2/doc_html/cgal_manual/Boolean_set_operatio
ns_2/Chapter_main.html.

FranciscoMartınez, Antonio Jesus Rueda and Francisco Ramo´n Feito. 2009. "A
new algorithm for computing Boolean operations on polygons." Com-
puters&Geosciences.

Greiner, Gunther and Kai Hormann. 1998. "Efficient Clipping of Arbitrary Poly-
gons." ACM Transactions on Graphics (TOG) 17(2):71 - 83

Jones, Simon. 2003. Haskell 98 Language and Libraries: The Revised Report:
{Cambridge University Press}.

Lauther, Ulrich. 1981. "An O (N log N) algorithm for Boolean mask operations."
In Proceedings of the 18th conference on Design automation. Nashville, Ten-
nessee, United States: IEEE Press.

Liu, Young Kui, Xiao Qiang Wang, Shu Zhe Bao, Matej Gambosi and Borut Za-
lik. 2007. "An algorithm for polygon clipping, and for determining polygon
intersections and unions." Computers & Geosciences 33(5):589-598.

Margalit, Avraham and Gary D. Knott. 1989. "An Algorithm for Computing the
Union, Intersection or Difference of two Polygons." Computers & Graphics
13:167-183.

Martınez, Francisco, Antonio Jesus Rueda and Francisco Ramo´n Feito. 2009. "A
new algorithm for computing Boolean operations on polygons." Computers &
Geosciences.

Nievergelt, J. and F. P. Preparata. 1982. "Plane-sweep algorithms for intersecting
geometric figures." ACM.

Intersection of Nonconvex Polygons Using the Alternate Hierarchical
Decomposition 23

O'Rourke, Joseph. 1998. Computational Geometry in C (Cambridge Tracts in
Theoretical Computer Science): Cambridge University Press.

Peng, Yu, Jun-Hai Yong, Wei-Ming Dong, Hui Zhang and Jia-Guang Sun. 2005.
"A new algorithm for Boolean operations on general polygons." Computers &
Graphics 29(1):57-70.

Rappoport, Ari. 1991. "The n-dimensional extended convex differences tree
(ECDT) for representing polyhedra." In Proceedings of the first ACM sympo-
sium on Solid modeling foundations and CAD/CAM applications. Austin,
Texas, United States: ACM.

Rigaux, Philippe, Michel Scholl and Agnes voisard. 2001. Spatial Databases: With
Applications to GIS: Morgan Kaufmann Publishers Inc. San Francisco, CA,
USA.

Rivero, M. and F. R. Feito. 2000. "Boolean operations on general planar poly-
gons." Computers & Graphics 24(6):881-896.

Shamos, Michael Ian and Dan Hoey. 1976. "Geometric intersection problems." In
Proceedings of the 17th Annual Symposium on Foundations of Computer Sci-
ence: IEEE Computer Society.

Smith, J. M. and N. A. Dodgson. 2007. "A topologically robust algorithm for Boo-
lean operations on polyhedral shapes using approximate arithmetic." Butter-
worth-Heinemann.

Vatti, Bala R. 1992. "A Generic Solution to Polygon Clipping." Communications
of the ACM 35(7):57-63.

