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Abstract

A natural language interface can improve human-computer interaction with Geographic In-

formation Systems (GIS). A prerequisite for this is the mapping of natural language expressions

onto spatial queries. Previous mapping approaches, using, for example, fuzzy sets, failed because

of the flexible and context-dependent use of spatial terms. Context changes the interpretation

drastically. For example, the spatial relation “near” can be mapped onto distances ranging

anywhere from kilometers to centimeters. We present a context-enriched semiotic triangle that

allows us to distinguish between multiple interpretations. As formalization we introduce the

notation of contextualized concepts that is tied to one context. One concept inherits multiple

contextualized concepts such that multiple interpretations can be distinguished. The interpre-

tation for one contextualized concept corresponds to the intention of the spatial term, and is

used as input for a spatial query. To demonstrate our computational model, a next generation

GIS is envisioned that maps the spatial relation “near” to spatial queries differently according

to the influencing context.

1 Introduction

A fundamental question in the field of Geographic Information Science concerns the development

of a natural language interface for GIS [25]. In order to establish a natural language interface for

GIS, spatial terms (i.e. spatial relations and spatial regions [26]) have to be mapped onto spatial
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queries. In this paper we address the mapping of spatial relations. Previous approaches to model

spatial terms concluded that their interpretation is mostly context–dependent [31, 43, 48]. For

example, the spatial relation “near” can be mapped onto distances ranging from thousands of

kilometers (e.g. “the moon is near the Earth”) to a few centimeters (e.g. “the cup is near the

milk bottle”).

A central question is always: what is context? In the scope of this work we consider context

to be any piece of ancillary or surrounding information that influences the interpretation of a

concept of interest. The semiotic triangle [29] (reviewed in Sect. 2) explains the process of inter-

pretation in a triadic mode, including an object in reality, a concept formed by a cognitive agent,

and a term. We introduce an enriched version of the triangle that also includes context, and

show how such a modification allows for disambiguating the interpretation of spatial concepts.

A cognitive agent refers to objects in reality by externalizing a context-influenced concept.

A concept is, by its very nature, an abstract entity that only exists in the human mind. It

therefore cannot be measured in terms of, or categorized by, physical properties. Concepts

have been proven [35] to be fuzzy, and to include prototypes. This also holds true for spatial

concepts, e.g. downtown1 [26], north south [27], near [12, 43]. Prototypes change with the

influence of context [2, 30]. For example, a prototypical example for the concept tree is different

in Sweden and in Greece. We argue that the interpretation of a spatial term relates to the

prototype of a concept. To account for the possibility that a concept can inherit multiple

prototypes we introduce the notion of contextualized concepts. One concept is represented by

many contextualized concepts, where each contextualized concept has one prototype and is

linked to one context. A contextualized concept is built from grounded observations of reality

[20] observed in a particular context.

Many possible interpretations are narrowed down to a single one by making context explicit

for concepts and observations. This resulting interpretation is used as mapping from a spatial

term onto a spatial query.

In summary the contributions of this paper are:

• enrichment of the semiotic triangle with context

• derivation of an abstract model

• formalization of the abstract model as a computational model

This paper is structured as follows: First, the semiotic triangle is reviewed to show how

representations (terms) are connected with concepts that refer to observations in reality in

Sect. 2. Next the properties for concepts are pointed out, and we emphasize the influence

1Throughout the paper we will use special formatting to indicate when a term is used to denote a concept
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context has on concepts. Second, the idea and a formalization of it are presented in Sect. 3.

Third, this formalization is translated into a computational model in Sect. 4. Fourth, the

model is initialized with data, and the usage of the algorithms is demonstrated in mapping the

spatial relation “near” according to contexts: walking, driving, and going uphil are mappedl

into different spatial queries in Sect. 5.

2 State of the art

To achieve mapping from spatial relations or general spatial terms to spatial queries, it is

necessary to understand how spatial terms represent reality. Spatial relations are symbols that

refer to spatial configurations, such as near or above. The semiotic triangle by Ogden and

Richards [29] is a conceptual model that links symbols (e.g. a word, a drawing, a map, or a

gesture), reality, and concepts (see Fig. 1). Each edge of this triangle represents one of the

three main phases of representation: abstraction, externalization, and interpretation. On the

right corner of the triangle lies physical reality. Physical reality is experienced in the form of

exemplars, and abstracted to form a concept in our mind (represented by the top corner of

the triangle). When we want to externalize a concept, for example during a communication

process, we use a symbol. Symbols are located on the left corner of the triangle, and are

successfully interpreted (as are the corresponding concepts) if they are grounded [20] to the

subsets of physical reality (the exemplars) that we intended to refer to (indicated by the dotted

line).

symbol
Interpretation

exemplar

Abstraction

concept

Extern
alization

Figure 1: Semiotic triangle from Ogden and Richards [29]

Possible misunderstandings or misinterpretations arise if the same symbol does not evoke

the same typical exemplar in different subjects. One reason is the many-to-many connection

between a symbol and the exemplars that it refers to [7]. For example, in mathematics there is

the concept of neutral element for a binary operation. Without specifying the operation (e.g.

addition, multiplication) it is not clear which exemplar it refers to (e.g. 0, 1). Another reason

is that concepts are formed and adjusted over time from repeated observations of reality [41].
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Since no two persons have identical experiences, the “same” concept can never be completely

aligned in two person’s minds.

It was already suggested in the past [11, 41, 47] that context plays a role in aligning concepts.

Fisher [11] studied the case of directional concepts and suggested that one way to avoid (or

reduce) misinterpretations is to make explicit the frame of reference (context) that the given

directional concepts are embedded in. More generally, Von Glasersfeld [41] states that successful

interpretation is only possible if the context of the speaker and that of the listener are compatible;

which means that the speaker and the listener must have experienced exemplars of a concept

in “similar” contexts (cf. [44]).

2.1 (Spatial) Concepts

A concept is an abstract entity that only exists in the human mind; according to Seiler [36], it

is “primarily a cognitive structure” that helps us to make sense of the world. The entities from

which a concept is derived are called, throughout this work, instances or exemplars.

According to Freksa and Barkowsky [15], spatial concepts are all those “notions that describe

spatial aspects of a subset of the world”. Examples of spatial concepts are near, downtown,

and lake. Spatial concepts are central to human cognition [23] as they help us to distinguish,

categorize, and thus make sense of the physical stimuli we perceive trough our senses.

Psychological experiments showed that concepts include prototypes. By using a category–

membership verification technique, cognitive psychologist Rosch [33, 34] showed that concepts

posses a graded structure. Within this structure, a prototype is abstracted from the experienced

exemplars [35] based on a typicality judgment function. Another modeling approach represents

a concept as multiple experienced exemplars [28]. Both theories share that the membership of

an exemplar to a concept is judged within their typicality to the existing concept.

In the field of geographic information science, several studies have previously aimed at char-

acterizing (geo)spatial concepts. Mark et al [24] empirically demonstrated that people judge

mountains, lakes, and oceans as typical exemplars of the generic concept geographical feature.

Further studies [23] revealed that spatial concepts are typically organized according to a hierar-

chical structure, and have vague boundaries. For example, it was shown by Smith and Mark [37]

that geographical factors like size or scale induce conceptual hierarchies—as in the case of bodies

of water: pond, lake, sea, ocean. Also, it has been shown [21, 22] that linguistic, cultural, and

individual variability influences the creation and the structuring of spatial concepts. Montello

et al [26, 27] investigated the fuzziness of the extension of spatial concepts. They showed that

the spatial concept downtown Santa Barbara is conceived differently by different subjects.

In the field of geoinformation, multiple approaches have been used to model spatial concepts,
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such as, for example: qualitative spatial reasoning [13], fuzzy sets [32, 43], multi-valued logic

[8, 11, 46], formal concept analysis [14], and more. All these formalizations do not account for

context explicitly, and scientists concluded that context has a major impact. In contrast, we

use context as the base formal drive to determine the interpretation.

2.2 Context and its Influence on Concepts

According to Kuhn [19], “context is an overloaded term and has many aspects. Some of them are

relatively easy to handle through domain separation [...]. Others are much harder to deal with

[...]”. Bazire and Brézillon [4] analyzed 150 different definitions of context collected on the Web.

They find that, although different, they all share some common structure, and conclude that

the definition of context is highly domain–dependent. This is also true for the spatial domain

[18].

According to Freksa and Barkowsky [15], there are three main types of relations that deter-

mine the meaning of a concept: (i) relations between a concept and its exemplars, (ii) relations

between concept and context, and (iii) relations between concept exemplars and context.

Like any other type of concept, spatial concepts are influenced by context. Several studies

have been carried out to study the context–concept influence. Burgio et al. [6] and Tversky [39]

investigated the influence of context on spatial terminology. Both studies show that context

influences spatial descriptions at the level of scale and granularity. Egenhofer and Mark [9]

investigated how different contexts influence the concept geographic space. They found, for

example, that in a “city” context the interpretation evokes typical exemplars such as streets,

buildings, and parks, while in a “country” context these become mountains, lakes, and rivers.

Talmy [38, p. 231] argued that the spatial relations “on” and “in” are used for vehicles differently,

depending on the existence of a walkway in the vehicle — e.g. on a bus vs. in a car. Smith

and Mark [37] showed that the relation “in” in the context “the island is in the lake” means

the island protrudes from the surface of the lake while in the context “the submarine is in

the lake” the interpretation is the submarine is completely submerged within the corresponding

three-dimensional volume.

Aerts and Gabora [2] presented a quantum-mechanical model for concepts and influencing

contexts. Their model showed that context is also the driving factor in modeling concept

combination.
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3 An Abstract model for Context–dependent Con-

cepts

In the scope of this work we consider context to be any piece of ancillary or surrounding infor-

mation that influences the interpretation of a concept of interest. This means that the same

concept is possibly associated to different typical exemplars in different contexts.

The core idea is to establish a one-to-one connection between a symbol (with ambiguous

semantics) and an observed exemplar based on the context. Context selects from the many in-

terpretations of the symbol a single applicable one — i.e. it reduces a many-to-many relation to

a simple one-to-one. This idea is schematized in Fig. 2, which describes the process of abstract-

ing one spatialConcept2 from two experiences (exemplars) observed in two different contexts:

context 1 and context 2 . Exemplar 1 is experienced in context 1 , while exemplar 2 is experienced

in context 2 . This generates for the given concept what we call contextualized concepts, de-

noted by spatialConcept@context 1 and spatialConcept@context 2 , respectively. Externalizing

spatialConcept without also giving context does not allow for a definitive interpretation, as the

symbol used can refer to many of the exemplars we have experienced. If, conversely, we clearly

state that the spatial term is in a particular context, the ambiguity vanishes, and it becomes

clear that we intend either exemplar 1 or exemplar 2.

spatial term
exemplar 1 in context 1

Abstraction

Interpretation

exemplar 2 in context 2

Abstraction

Interpretation

spatialConcept

spatialConcept@context 1

Ex
te

rn
ali

za
tio

n

spatialConcept@context 2

Extern
aliza

tion

Figure 2: Semiotic triangle from Ogden and Richards [29] used for geographic information science

by Kuhn [19], enriched with context. The exemplars of the same concept, observed in different

contexts. If the context is not explicitly reported with symbolic externalization, the symbol can

be misinterpreted (many-to-many relation). Misinterpretations vanish if the context is specified,

because a one-to-one connection between an exemplar and the symbol is created

2In order to remove ambiguity we use special formatting to indicate a context, an exemplar of a concept, or a

concept in a specific context (denoted concept@context).
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Through the use of contextualized concepts, context structures observed exemplars. The

use of contextualized concepts falls into the class of “compose-and-conquer” of context uses [5].

This compose-and-conquer approach “takes a context to be a theory of the world that encodes

an agent’s perspective of it and that is used during a given reasoning process” [3]. Every context

partitions the mental contents, which is similar to Fauconnier’s idea of mental spaces [10].

In order to formalize the idea sketched in Fig. 2 we model context with a lattice structure.

In general, a lattice is a partially ordered set under a partial order relation with two binary

functions: ∧ called meet and ∨ called join [16]. Given two elements a and b of the lattice,

the function meet creates an infimum such that a∧ b = inf{a,b} meaning that there exists a

greatest element that is lower or equal to a and b. The function join creates a supremum of two

elements: a∨ b = sup{a,b} meaning that there exists a least element that is bigger or equal to

both elements. A bounded lattice is a lattice with an upper bound element (i.e. >) and a lower

bound (i.e. ⊥) element.

The partial order relation “is stronger than or equal to”, denoted ≤, applies for context.

An example for a context lattice is shown in Fig. 3. The > element is called universal context,

meaning the absence of context. The contexts “stronger” than the > element are called basic

contexts (e.g. ctx 1 , ctx 2 , and ctx 3 in Fig. 3) and these are used to derive through the

meet operation any other context combination (e.g. ctx 1 ∧ 2). The last element (“strongest”

context) of the lattice is the ⊥ element which is called empty context and indicates nonsense—i.e.

meaningless context.

Note that not all the infima in the lattice of contexts correspond to contexts that make sense,

or that are realizable. In Fig. 3, these contexts are represented in grey. One is ctx 1 ∧ 3 , and,

consequently, every infimum of this context does not make sense. In Fig. 3 there is only one

such infimum: ctx 1 ∧ 2 ∧ 3 . An example for two contexts that do not make sense is included

in the example presented in Sect. 5.

The number of contexts (including top and bottom elements) in the lattice obeys the rule

2n + 1, where n is the number of basic contexts. Let us look at the lattice as consisting of

n+ 2 levels: level 0 corresponds to the top element and level n+ 1 corresponds to the bottom

element. Level l comprises the lattice elements corresponding to l-combinations of the base

contexts. Then, the number of elements at level l is equal to
(

n
l

)
and the total number of

elements is
∑n

l=1
(

n
l

)
= 2n−1. This is the number of all possible combinations except the void

ones. Counting top and bottom elements as well, we obtain the formula: 2n +1, which is in the

order of O(2n).

Contexts are linked to concepts via contextualized concepts. One context links to one con-

textualized concept, which is composed of a set of exemplars. The selection of the exact subset
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Figure 3: Relation between observations of exemplars in reality (on the right) and contexts (on the

left) for one concept. Contexts are organized in a lattice where infimum contexts corresponds to

intersections of the former contexts. Some infima can be impossible in reality, which results in an

empty mapping λ. Impossible contexts (ctx 1 ∧ 3 and ctx 1 ∧ 2 ∧ 3) are reported in gray

of exemplars is achieved by the mapping λ [2]. In Fig. 3 the mapping λ is represented by styling

the borders of contexts in the lattice and subsets of exemplars for one concept in the same

way. The mapping λ can be used to represent a concept in a tabular form. We call this table

observation table because the exemplars are observed in reality. The connection to reality guar-

antees that other agents can make the same observations grounded in reality [20]. The columns

of this table denote contextualized concepts, the rows denote exemplars. The entries indicate

how many times a given exemplar has been observed in a given context. For example, Table 1

represents an observation table for the spatialConcept abstracted from observations shown in

Fig. 3.

Frequency values for each exemplar in the contexts ctx 1 ∧ ctx 3 and ctx 1 ∧ ctx 2 ∧ ctx 3

are zero. A zero frequency value reflects that no exemplar was observed. This can occur either

in the case of a meaningless context, or if there has been no observation yet. The model does

not distinguish between meaningless contexts and not-yet-experienced contexts. It resembles

what can also be found in child learning processes [40].

The observation frequencies from the observation table are used to calculate the prototypi-

cal exemplar for a contextualized concept. As a typicality measure for exemplars, the amount

of observations per exemplar is used. The exemplar with the most observations is considered

the prototypical exemplar for the contextualized concept. Depending on the context, differ-
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ent typical exemplars can be calculated. For example, consider the data from Table 1, the

typical exemplar for the contextualized concept spatialConcept@> is exemplar 2, and for the

spatialConcept@context 3 it is exemplar 3.

The prototypical exemplar of a contextualized concept is used as a mapping from a spa-

tial term onto a spatial query. By making the context explicit, a one-to-one relation between

grounded observations and the spatial term is achieved. Having a one-to-one relation, the ob-

servations experienced in the same context are selected and used to calculate the prototypical

exemplar. The prototypical exemplar is then used as input for a spatial query.

4 A Computational model for Context-dependent Con-

cepts

The formalization of the previous approach results in a computational model. The implemen-

tation includes three parts: the context lattice, the mapping (λ) from contexts to observations,

and the calculation of the prototypical exemplar. The necessary operations and data structures

are described with pseudocode and can be implemented in a variety of programming paradigms

(e.g. object-oriented, relational algebras, functional). Our implementation using a functional

paradigm can be downloaded here: https://hackage.haskell.org/package/ContextAlgebra

Context is implemented as a list of elements:

context : [contextName1, contextName2, . . . , contextNamen]

Table 1: Observation table for a spatialConcept for different contexts according to the example

depicted in Fig. 3. Values indicate how many times an exemplar of a spatialConcept (in the rows)

has been observed in different contexts (in the columns)

spatial concept @> @ctx
1

@ctx
2

@ctx
3

@ctx
1 ∧

ctx
2

@ctx
2 ∧

ctx
3

@ctx
1 ∧

ctx
3

@ctx
1 ∧

ctx
2 ∧

ctx
3

exemplar 1 10 5 7 3 3 2 0 0

exemplar 2 13 6 6 7 0 6 0 0

exemplar 3 12 1 9 10 0 8 0 0
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An element is an arbitrary data type that supports equality comparison, for simplicity assume

that these are names (e.g. character or string). Basic contexts include one entry in the list (e.g.

[context 1 ]), while infima contexts include multiple entries (e.g. [context 1 , context 2 ]). The

context lattice is implemented as a container for all contexts as well as the empty and universal

contexts. The lattice operations meet3 and join are implemented as an intersection and union

of lists.

A contextualized concept is implemented as a multiset4 of observations that map to a context

in the context lattice. The observation data type is realized as a pair consisting of the observed

exemplar and a context:

exemplar : exemplarName

observation : (exemplar,context)

The context is built with the same structure and types as the contexts included in the context

lattice which provides the mapping λ. A particular contextualized concept of interest is the

spatialConcept@> which includes all observations for all contexts. All other contextualized

concepts refer to a subset of observations.

The calculation of the prototypical exemplar for a contextualized concept is achieved by the

functions: Filter and ComputeTypicality.

The function Filter takes a context (ctx) as input parameter and returns a contextualized

concept (spatialConcept@ctx). All the observations listed in the spatialConcept@> are checked,

and if one is found whose context coincides with the filter context it is added to spatialCon-

cept@ctx . This function relies on the equality operator and on a function Context that returns

the context of an observation given in input. All contextualized concepts can possibly be stored

for ease of accessibility.

The function ComputeTypicality takes an exemplar and a contextualized concept as input

parameters, and returns the typicality of the given exemplar for the context corresponding to the

contextualized concept in input. This is called contextual typicality and takes values in the range

[0,1]. It is computed by counting the number of exemplars equal to the one given, and by dividing

this number by the number of elements in the contextualized concept. This function relies

on the equality operator for exemplars (denoted ==), the Amount( ) function to enumerate

exemplars, and on the function Exemplar( ) returning the exemplar of an observation given

in input. ComputeTypicality is further used to calculate the prototypical exemplar of a

contextualized concept.

3Algorithms are indicated with a small caps typeface.
4The multiset is capable of holding the same entry multiple times, in contrast to a set.
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Algorithm 1 Given an exemplar and a contextualized concept, the function ComputeTypicality

computes the typicality of the exemplar in the context associated to the contextualized concept.
1: function ComputeTypicality(exemplar, spatialConcept@context)

2: obsForExemplar ←∅

3: for ∀ observation ∈ spatialConcept@context do

4: if exemplar == Exemplar(observation) then

5: obsForExemplar ← obsForExemplar ∪ observation

6: return Amount(obsForExemplar) / Amount(spatialConcept@context)

5 Case study: mapping the spatial relation “near”

onto spatial queries

There exist many scenarios where context plays an important role, and to which the presented

model could therefore be applied. Some of these include:

• Detection of landmarks has to be context-aware because landmarks depend on context

(e.g. night or day [45]).

• Different map layers can be displayed depending on context, e.g. the request “I need a

map to find the pub” intends a city street map, in contrast to the request “I need a map

for hiking” where hiking paths should be included.

• Interpreting spatial relations has to make use of context for mapping to a metric distance.

In the following section we apply the model as a case study of the spatial relation “near”,

and show how such a concept can be encoded in spatial queries according to context. The aim

is to show how “near” is mapped onto different metric distances according to the influencing

context.

5.1 The case study of “near”

In general, spatial terms are influenced by many contexts, e.g. weather, mobility, time of the

day, neighborhood, transportation mode, terrain. In this case study the reasonable set of ex-

emplary basic contexts are the following: walking , driving , and uphill . These contexts can be

derived by information obtained from sensors commonly available in modern smartphones. For

example, the difference between walking and driving can be derived from speed data computable

either from GNSS or accelerometers, while the uphill context can be derived by matching po-

sition and elevation information. The whole lattice of contexts that can possibly influence the
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drivingwalking uphill

walking∧driving∧uphill

driving∧uphillwalking∧drivingwalking∧uphill

Figure 4: Bounded context lattice for the case study of “near”. Grey boundaries indicate impossible

contexts

interpretation of near is generated by recursively executing the function meet on the available

contexts—shown in Fig. 4. Note that the context walking ∧ driving obtained by combining the

basic contexts walking and driving is not realizable, as one cannot drive and walk at the same

time. This is indicated by the grey border. Accordingly, any infima deriving from this context

(in this example walking ∧ driving ∧ uphill and ⊥ ) are also not realizable.

The corresponding observation table is given in Table 2. The reported observations are an

educated guess driven by common sense and by the results presented by Wallgrün et al [42], who

evaluated the interpretation of near in a corpus of web documents. How observations can be

reliably collected is not the focus of this work, however in Sect. 6 we outline some possibilities

that could lead to future work.

Given the context lattice and the observation table, typicality values and prototypical ex-

emplars for the contextualized concepts are generated through the functions Filter and Com-

puteTypicality (introduced in Sect. 4) as follows. The observation sets for each contextualized

concept (near@ctx) are obtained by executing the function Filter(ctx) for each context ctx in

the lattice. The contextual typicality values are then computed by executing the function

ComputeTypicality(e, near@ctx) for each ctx in the lattice and each observed exemplar e

in near@>. The exemplar with the highest contextual typicality is selected as the prototypical

exemplar. Typicality values for the contextualized concepts we will be using in our example are

plotted in Fig. 5, where the prototypical exemplars are colored in black.

12



Table 2: Observation table for the concept near for different contexts. The last row shows the sums

of observations in different contexts, and is provided to compute exemplar typicality

near @> @walk
ing

@up
hil

l

@dri
vin

g

@walk
ing
∧

up
hil

l

@dri
vin

g ∧
up

hil
l

@walk
ing
∧

dri
vin

g

@walk
ing
∧

dri
vin

g ∧
up

hil
l

50 m 4 4 4 0 4 0 0 0

100 m 10 5 7 3 3 2 0 0

150 m 10 6 3 4 2 1 0 0

300 m 13 7 6 6 1 5 0 0

450 m 13 6 6 7 0 6 0 0

1000 m 14 4 8 9 0 7 0 0

5000 m 12 1 9 10 0 8 0 0

10000 m 7 0 5 7 0 5 0 0

sum 83 33 48 46 10 34 0 0

5.2 Examples for the mapping of “near” onto spatial queries

Imagine a next–generation personalized geographic information system (PersonalizedGIS [1])

installed on a user’s smartphone. The GIS part has access to classical geographic information

(particularly, points of interest and elevation data). The personalized part is an implementation

of the computational model presented in Sect. 4. Also, imagine that the system has seen the

same situations as its user, in the sense that the observations given in Table 2 match with a

high level of precision the concept near in the user’s mind.

The user attends a conference in Lisbon (Portugal) and needs to find a restaurant near his

or her current position. The user asks the PersonalizedGIS: “Please show all the restaurants

near me”. Imagine a natural language processing algorithm that extracts the spatial relation

“near” as well as the influencing contexts for such inputs. The result for this input is “near”

and no influencing context. The absence of context indicates that every observation from the

observation table (Table 2) has to be considered, which is represented by the contextualized

concept near@>. The prototypical exemplar for near@> is 1000 m (conduct Fig. 5) which is

included as a metric value in the following (pseudo SQL) spatial query by the PersonalizedGIS:
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Figure 5: Contextual typicalities for the concept near in different contexts; different line styles

denote different context as reported in the legend. Points with filled markers indicate prototypical

exemplars, and thus the interpretation for the concept in a given context

SELECT coords FROM restaurants

WHERE distance ( actual_coords , coords ) <= 1000 m;

Assume further that the smartphone with the PersonalizedGIS is equipped with an ac-

celerometer that detects the mode of transportation. Now the user asks the above query while

moving with the smartphone. The acceleromters detects the motion “walking”, which prompts

the PersonalizedGIS to influence near by walking . So, rather than retrieving the prototypical

exemplar for near@>, it retrieves the prototypical exemplar for near@walking . The prototypical

exemplar is 300 m which can be used in the spatial query shown above by the PersonalizedGIS.

The PersonalizedGIS can narrow down the interpretation even further by traversing the

context lattice automatically. Assume the function getStrongerContexts for the context

lattice outputs all infima for a given context. For this example the function is executed with

getStrongerContexts(walking) which outputs the infima: walking ∧ uphill and walking ∧

driving . The walking ∧ driving context is nonsense and is not taken into further account. The

walking ∧ uphill context is used to narrow down the interpretation of the spatial term. For

both contexts (near@walking ∧ uphill and near@walking) prototypical exemplars are 50 m and

300 m. These metric values are used as input to a refined spatial query. The refined query

the PersonalizedGIS then executes, retrieving all those restaurants that are closer than 300 m,

but excluding those that are uphill in respect to the current location (actual elevation <=
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rest.elevation), unless they are closer than 50 m:

SELECT rest .* FROM (

SELECT coords , elevation FROM restaurants

WHERE distance ( actual_coords , coords ) <= 300 m

) AS rest WHERE

actual_elevation <= rest. elevation

AND distance ( actual_coords , rest. coords ) <= 50 m

6 Conclusions and Outlook

In this paper a computational model to map spatial terms onto spatial queries is introduced.

In the review of the semiotic triangle, the problem of the many-to-many relation of symbols

to objects in reality is identified as a main problem for computational models. We argue that

context establishes a one-to-one connection between symbols and objects in reality. Our formal-

ization is inspired by a quantum-mechanical approach presented by Aerts and Gabora [2]. The

computational model integrates context and connects it to a concept underlying the externalized

spatial term. In an envisioned next-generation GIS, the computational model is used to map

the spatial term “near” onto different spatial queries dependent on context.

The envisioned GIS for the spatial relation “near” draws upon a set of observations that

were assumed to be given. This is an important aspect that must be addressed in future work.

In a realistic scenario the contexts can be derived from smartphone sensors. For example, the

contexts: walking, driving, biking, etc. can be detected through accelerometer data or a mix

of sensors, provided that ranges for the sensor values are detected that correspond to different

contexts. Another mechanism that remains to be solved is aligning the observation base with

the observations in the mind of a user. Feedback from the user can be used to gradually align

the observations with the concepts in a user’s mind, as for example: “Was this distance near for

you?”. It remains an open question how to get a user properly involved in such a mechanism.

Perhaps via some sort of gamification process?

A more theoretical direction for future work concerns the investigation of the relations be-

tween the model presented in this paper—especially the distributions that exemplars take in

a given context—and fuzzy membership functions [49]. Can the model be reinterpreted with

classical fuzzy set theory? Would this add some benefits to operations and inferences that can

be made when considering several contexts? Some previous work that addressed the problem of

modeling concepts like near and far with fuzzy membership functions is presented by Wang [43].

15



Wang finds that near cannot be opportunely represented with a unique membership function.

Rather, he suggests that more functions must be conceived as context information changes.

The mutual influence of several (contextualized) concepts warrants further investigation.

Some previous work about concept combination for GIS is presented, for example, by Hahn and

Frank [17] where thematic maps are selected on the basis of context.

Finally, for real usage of the model in applications it would be necessary to determine which

contexts must be considered that can effectively influence a spatial concept.
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