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Abstract: Spatial processes are the focus of geography and should play a 
prominent role in geographic information systems (GIS). However, current 
GIS focus on the static description of properties in space and do not sys-
tematically support processes. A general method to describe spatial proc-
esses is a prerequisite to including processes in GIS software. This paper 
outlines an attempt to a general and application independent method to de-
scribe processes, limited currently to physical spatial processes. The meth-
odology is based on first modeling a process with a deterministic model. 
The deterministic models employed here divide the region of interest into 
blocks and define the influence of the process on each block. The resulting 
model equations are then related to partial differential equations (PDEs), 
which are an alternative method for describing processes. Thereby, the 
qualitative characteristics of processes are identified. A method for describ-
ing processes has to be capable of covering the identified characteristics of 
the processes. As an example the process of diffusion of a contaminant in 
water is analyzed. The results of this study suggest that this approach allows 
identifying commonalities among spatial physical processes. These insights 
can lead to a set of types of processes on which a method to describe spatial 
processes can be based in the long run.  

Keywords: spatial physical processes, deterministic models, partial differ-
ential equations 



2      Barbara Hofer, Andrew U. Frank 

1. INTRODUCTION 

Most currently available models of space in geographic information sys-
tems (GIS) focus on the representation of the earth in a static way; there is, 
however, an increasing need to systematically support change, dynamics, 
and processes in GIS, representations of data, visualization schemes, etc. 
(MacEachren 1995; Frank 1998; Blok 2000; Yuan 2001; Miller and Wentz 
2003; Worboys 2005; Goodchild et al. 2007). 

Spatial processes are processes taking place in space and may depend on 
location in space. They show different natures and are studied in different 
disciplines like ecology, geography, geocomputation, and physics. Exam-
ples are the spread of forest fires (Yuan 2001), the growth of cities (Batty 
et al. 1999), the migration of species (Seppelt 2005), and the flow of water 
(Mitasova and Mitas 2002). Terminology across disciplines varies. Differ-
ent disciplines describe the process of interest in the application, but no 
commonality between disciplines is achieved. 

Physical spatial processes are governed by physical laws like mass con-
servation. In addition, they are continuous processes and are dominated by 
local influences. They are considered spatial, if they fall into the temporal 
and spatial frequency interval typical for geography.  

The long term goal of the work reported here is to provide the outline of 
a domain and application independent method to generally describe spatial 
processes, limited to physical spatial processes. Such a method is a prereq-
uisite to including processes in GIS software and to extending our current 
concepts of space. 

For describing physical spatial processes on a general level, we need to 
identify the qualitative characteristics, which explain the behavior of the 
process over time. Our methodology is based on modeling a spatial proc-
ess with two different models, namely deterministic block models and par-
tial differential equation (PDE) models. These two types of models are al-
ternative ways to describe processes, having different advantages. Block 
models of processes are useful for conceptualizing processes and for simu-
lating processes computationally. Models of processes based on PDEs are 
useful for identifying generic properties of a process or a family of proc-
esses. The theory of linear PDEs discerns three main types of processes 
that are described by different types of equations: wave-like, diffusion-
like, and steady-state processes. 

Deterministic models formulated as difference equations can be related 
to PDEs. Thereby we establish a link between the two models and have a 
description of a process from both points of view. This procedure allows 
us to gather information about qualitative characteristics of a process, 
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which have to be included in the description of a process. This methodol-
ogy is applied here, as a practical example, to the process of the diffusion 
of a contaminant in water.  

The results of our research show that general insights on a formal and 
qualitative level can be gained. Applying the approach repeatedly on a list 
of spatial physical processes will allow the identification of commonalities 
among processes. This is an important step towards a set of tools for de-
scribing spatial physical processes. 

This article is divided into seven sections. Following the introduction, a 
brief review of the literature related to spatial processes and GIS is given. 
Subsequent to a definition of spatial physical processes in section 3, two 
models for these processes are introduced: deterministic models and PDEs. 
A specific example of modeling a process is given in section 5 and the 
characteristics of the example process discussed in section 6. The section 
on conclusions and future work is the final section of the paper.  

2. SPATIAL PROCESSES AND GEOGRAPHIC 
INFORMATION SYSTEMS 

Numerous attempts to describe spatial processes exist. In the sequel of the 
quantitative revolution in geography a focus on detailed treatment of proc-
esses in geography became feasible. Abler, Adams, and Gould (1977, 
p.60) define spatial processes as “…mechanisms which produce the spatial 
structures of distributions”. For them the task of geography is to answer 
the question: “why are spatial distributions structured the way they are?” 
(Abler et al. 1977, p.56). Getis and Boots (1978) and Cliff and Ord (1981) 
worked in this direction. They were interested in understanding the con-
nection between a process and the resulting form of patterns on a map. 
They intended to connect the static, observable state of geographic space 
with the process that shaped the geographic reality, linking the snapshot 
with the dynamics.  

The work on spatial processes in the field of geographic information 
systems and science is extensive and can be driven by very different objec-
tives. The following listing briefly mentions various related achievements 
and research contributions: 

- Development of software packages like Map Algebra (Tomlin 1990) 
and PCRaster (Van Deursen 1995) for analyzing and simulating spa-
tial phenomena. 
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- Development or extension of data models for handling the dynamics 
or particularities like continuity of spatial phenomena (Kemp 1992; 
Reitsma and Albrecht 2005; Worboys 2005; Goodchild et al. 2007).  

- Analysis of analytical GIS operations and investigation of the links 
between processes manipulating GIS data and processes in reality 
(Albrecht 1998). 

- Investigation of the linkage of modeling tools and GIS (Kemp 1992; 
Van Deursen 1995; Abel et al. 1997; Hornsby and Egenhofer 1997; 
Bivand and Lucas 2000). 

- Investigation of a single process like diffusion (Hornsby 1996) or ge-
ographic movement (Tobler 1981). 

- Investigation of network geography and the representation of network 
related process in GIS (Batty 2005).  

- Modeling of geographic phenomena with existing respectively proto-
type GI systems (Yuan 2001; Mitasova and Mitas 2002). 

Despite all the efforts to analyzing and classifying spatial processes, 
these have not been widely accepted yet. Part of the confusion, making 
discussion of processes so difficult, is the sheer variability. The scope of 
the discussion is overwhelming and grouping in arbitrary many ways pos-
sible. The paper addresses this issue by aiming at a domain and application 
independent method of analyzing physical spatial processes. The novel 
contribution of this work is the use of PDEs and deterministic models in a 
qualitative study of spatial processes.  

3. WHAT ARE PHYSICAL SPATIAL PROCESSES 

Generally speaking, spatial processes happen in space and may depend on 
location in space. Getis and Boots (1978, p.1) define spatial processes as 
“…tendencies for elements to come together in space (agglomeration) or 
to spread in space (diffusion)”. These definitions indicate that nearly every 
spatial phenomenon is a process and discussing processes seems to be dis-
cussing everything.  

In order to avoid this trap, the approach here concentrates first on physi-
cal processes. This links to the tiered ontology Frank (2001) has used in 
other contexts successfully: physical processes cover a very large part of 
geographic processes, but not all of them. If this restriction is useful it 
must lead to conceptual clarity and extending some of the insight beyond 
the limitation possible. 

Ontologically we separate the physical reality as the part of reality 
which is governed by physical laws from the tier of our reality which is 
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socially constructed and governed by social (legal) rules. Ontologists as-
sume that physical processes have all their effects continuously in space 
and their influences restricted to the neighborhood. Therefore, physical 
processes are strictly local and do not depend on global knowledge. Frank 
(2001) pointed out that physical processes are describable by (partial) dif-
ferential equations.  

This argument is used here in the reverse direction: the physical proc-
esses studied here are exactly those describable by differential equations; 
this restriction enforces the focus on strictly local processes. This restric-
tion seems to be acceptable in geography; Tobler’s first law of geography 
says: ”everything is related to everything else, but near things are more re-
lated than distant things” (Tobler 1970, p.236). 

Processes are considered geographic if their frequency in time or space 
falls into the frequency interval typical for geography. Geography focuses 
on spatial objects of size between 0.1m and 40.000km and processes where 
change is noticeable in minutes to 10.000 years. Typical examples for geo-
graphic physical processes include: soil erosion, migration, groundwater 
flow, stream flow, sediment transport, forest fires, floods, saltwater intru-
sion, surface runoff, flux of pesticides. 

Excluded as non physical are processes which are not controlled by 
physical causation, but by information causation (Frank 2007). If a com-
puterized or human information processing unit at one place is the cause of 
a physical spatial process at a possibly distant other place, we speak of in-
formation causation. Information causation is not limited to neighborhood: 
a decision by a single person in a “center of power” can be transmitted for 
and have devastating effects at a very distant location. Such information 
caused processes are excluded from the current discussion. 

4. TWO MODELS OF SPATIAL PHYSICAL PROCESSES 

Two fully general and equivalent models for the description of spatial 
physical processes are presented in this section: deterministic models 
based on blocks and partial differential equation (PDE) models. The block 
model describes the process and its characteristics with respect to blocks of 
finite size. These models are useful for conceptualizations of processes and 
communication about processes but also a useful approach to computa-
tional simulation. The theoretical analysis of physical spatial processes is 
helped by the focus on making the blocks smaller and smaller till they be-
come infinitely small; this leads to continuous models of processes, which 
are here represented by partial differential equations. The two models are 
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equivalent and every process can be described in either of them and the 
translation between the two models is always possible.  

4.1. Deterministic Models Based on Blocks 

An important principle of physical systems is the conservation of some 
quantity like mass or energy. Fundamental conservation laws state, that the 
amounts of a quantity going in, going out, and being created or destroyed 
in a region, have to correspond to the amount of change in a certain region 
(Logan 2004). Besides these laws of conservation that describe the storage 
of a quantity, the transfer of a quantity is described by transport laws or 
flow laws (Thomas and Huggett 1980). Thomas and Huggett (1980, p.64) 
define a deterministic model as “a storage equation in which the input and 
output rates are defined by suitable transport laws.” The following expla-
nations of deterministic models are based on (Thomas and Huggett 1980). 

A physical spatial process occurs in space and we can cut out a small 
piece of space, a block or an element, and describe the change in the rele-
vant parameters describing the process. We thereby define the spatial do-
main as a set of blocks (Fig. 1(a)). Blocks can be combined in various 
ways, depending on the process; for studying, e.g., water flow in a river, 
blocks may be arranged in a line (Fig. 1(b)).  

 
 
 
 
 
 
 
 
 
 

Fig. 1. (a) a block as spatial unit, (b) a sequential alignment of blocks for studying 
for example water flow in a river.  

After selecting the process of interest and defining the spatial domain, 
storage equations are established for every block in the spatial domain. As 
said above, the storage equations state the change of a quantity qΔ  in the 
block; this change is determined by the difference of the flow in if  and the 

flow out of  of the block in a given time interval tΔ  (see Eq. 4.1.1).  

(b) (a) 
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( ) tffq oi Δ−=Δ  (4.1.1) 

For defining the input and output terms of the quantity, we need trans-
port laws. These laws are derived from physical characteristics of the proc-
esses. Conservation laws apply again, which means that the outflow of a 
block through one face must be equal to the inflow in the neighboring 
block. Important transport laws are Fick’s first law of diffusion, Fourier’s 
law of heat transport, and Darcy’s law of water flow. Fick’s law, for ex-
ample, states that the negative gradient of the concentration of the quantity 
( CΔ ) times the diffusion coefficient D  of the quantity, is proportional to 
the quantity flow rate f . Eq. 4.1.2 states the gradient of the concentration 

of a quantity in x direction with 
x
C
Δ
Δ

.  

⎟
⎠
⎞

⎜
⎝
⎛

Δ
Δ

−=
x
CDf  

(4.1.2) 

The transport law applies to all blocks except those at the boundary of 
the region of interest. Special flow conditions known as boundary condi-
tions are defined for blocks at the region’s boundary.  

The equations that are formed by applying this modeling technique de-
scribe the storage change in discrete time intervals t1, t2, t3 etc. Therefore, 
they are difference equations. In a difference equation the change of a 
quantity over time can be expressed by the relation between successive 
values of the quantity. For running the models, initial conditions for the 
storages at the start, boundary conditions and parameter values have to be 
given. The difference equations can then be solved, the results evaluated 
and the model adjusted. 

4.2. Differential Equations to Model Processes 

A differential equation is an equation where variables and derivations from 
variables are brought into a relation. The general solution to a differential 
equation is a function or a family of functions describing some aspect of a 
process. Ordinary differential equations (ODEs) depend on one independ-
ent variable and contain derivatives with respect to this variable only.  

Spatial processes are described by partial differential equations (PDEs), 
because they depend on more than one independent variable like space and 
time, or several spatial dimensions. PDEs allow modeling the change of a 
variable of interest that depends on more than one independent variable 
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(Logan 2004); the derivatives in PDEs are partial in the independent vari-
ables. 

Partial differential equations (PDEs) have long been used for modeling, 
analyzing, and simulating continuous physical phenomena as well as spa-
tial phenomena (Tobler 1981; Giudici 2002; Mitasova and Mitas 2002). 
PDEs are widely applicable, because they show how processes evolve. 

In this paper, PDEs are used for describing generic or theoretical infor-
mation about spatial processes. Theoretical characteristics of PDEs are 
therefore more important here than computational issues related to PDEs. 
The focus is on basic, linear PDEs of at most third order. In the theory on 
PDEs, three main types of processes are differentiated: wave-like, diffu-
sion-like, and steady-state processes. Different equations are used for de-
scribing these types of processes. The following specifications of the types 
of processes are based on (Logan 2004).  

The types of equations used for modeling wave-like processes, are hy-
perbolic PDEs. These equations are evolution equations and model how a 
process evolves over time. One example for a wave-like process is advec-
tion or convection. The advection process describes the bulk movement of 
particles in some transporting medium like water or air. A boat floating 
downstream in a river is an example for an advection process.  

Diffusion-like processes are modeled with parabolic equations, which 
are evolution equations like the hyperbolic equations. Diffusion describes 
the random motion of particles, which generally diffuse from regions with 
a higher to regions with a lower concentration of particles. The example of 
a contaminant diffusing in water is discussed in section 5 of this paper. 

In the case of a steady-state process, we deal with an elliptic equation. 
These types of equations do not contain a time variable and are therefore 
independent of time. They are known as equilibrium equations that model 
processes like the steady-state flow in fields where a balance between in-
put and output in the systems exists. An example for a steady-state process 
is the flow of groundwater in a certain region with fixed boundary condi-
tions.  

An important difference between wave-like and diffusion-like processes 
is how the quantity of interest is affected over time. Wave-like processes 
preserve the quantity, whereas diffusion-like processes tend to smear out 
the initial configuration of the quantity. Wave-like and diffusion-like phe-
nomena are two important types of phenomena that occur in different dis-
ciplines. Combinations of these two types of motions are also possible 
(Table 1).  

An important part of the methodology in this work is relating difference 
equations to PDEs and thereby deriving theoretical insights about a proc-
ess. For this purpose, a list of linear PDEs was compiled based on (Hohage 
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2004; Logan 2004; Markowich 2007). The recurrence of equations in the 
different sources suggests that it gives an overview of basic linear PDEs, 
although the list may not be complete.  

Table 1. Linear PDEs assigned to the three main types of processes  

Types of phenomena Type of equation PDEs 
Wave-like phenomena Hyperbolic  
  Wave equation 
  Advection equation 
  Advection-decay equation 

  
McKendrick or von Foerster  
equation 

  Continuity equation 
  Boltzmann equation 
Diffusion-like phenomena Parabolic  
  Heat equation 
  Diffusion equation 

  
Diffusion-decay equation/  
Diffusion-growth equation 

  Advection-diffusion equation 
  Advection-diffusion-decay equation 
  Continuity equation 
Steady-state phenomena Elliptic  
  Poisson’s equation 
  Laplace’s equation 
  Helmholtz equation 

5. EXAMPLE: DIFFUSION OF A CONTAMINANT IN 
WATER 

The two types of mathematical models introduced in the previous section, 
are now applied to the specific example of the diffusion of a contaminant 
in water. Section 5.1 gives the deterministic block model of the process as 
difference equations. This block model provides a conceptualization of the 
process. In section 5.2 the difference equations are related to the corre-
sponding partial differential equation, which sheds more light on generic 
properties of the process. The insights about the example process are dis-
cussed in section 6.  
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5.1. A Block Model of the Example Process 

The derivation of the conceptual deterministic model of the diffusion of a 
contaminant in water is based on examples discussed in (Thomas and 
Huggett 1980). We assume that the diffusion of a contaminant follows the 
law of mass conservation. Fick’s law of diffusion defines the rate at which 
the contaminant diffuses along the contaminant concentration gradient. 

The spatial domain in which the process takes place is an enclosed and 
stationary water body like a basin. We divide the water body into a set of 
blocks that are placed one next to another and also one above and below 
another. The following storage equation is formulated for a block sur-
rounded by other blocks at all of its six faces. The contaminant can enter 
the block of interest from any of its six faces. There is a certain amount of 
the contaminant in the water body, which is conserved under the law of 
mass conservation, and no sources or sinks of contaminants exist in this 
example. The symbols used in the following equations are: 

C …  concentration of the contaminant 
D …  contaminant diffusion coefficient 
A …  area of a face of the block 
V …  volume of a block 
f …  flow rate due to diffusion 

if …  contaminant inflow in a block 

of … contaminant outflow of a block 
∆ …   a difference 
∆q … change in contaminant storage in a block in a time interval 
∆t …  time interval 
∆x … distance interval in x direction 
∆y … distance interval in y direction 
∆z … distance interval in z direction 

The change of the contaminant storage in a block of water over a time 
interval is specified by the following equation (Eq. 5.1.1): 

( ) tAffq oi Δ−=Δ  (5.1.1) 

The input and output of the contaminant are due to diffusion, which is 
the “movement of [the contaminant] along the concentration gradient be-
tween two blocks” (Thomas and Huggett 1980, p.119). Fick’s law defines 
the flow rate in the case of diffusion as “proportional to the negative gradi-
ent of [contaminant concentration] through the face of the block” (Thomas 
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and Huggett 1980, p.119). Eq. 5.1.2 states the flow rate in all directions of 
a block. 
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(5.1.2)

A second way of identifying the changes in the storage of the contami-
nant is multiplying the change in the concentration of the contaminant by 
the volume of the block. The change in the contaminant concentration cor-
responds to the difference in the contaminant concentration at the begin-
ning and at the end of a time interval (Eq. 5.1.3).  

VCq Δ=Δ  (5.1.3) 

 
We equate the two equations describing the change in the storage of the 

contaminant (Eq. 5.1.1, Eq. 51.3), simplify them and get: 
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(5.1.4) 

 
Eq. 5.1.4 can be rewritten in the following way: 
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(5.1.5) 

This difference equation (Eq. 5.1.5) describes the diffusion of a con-
taminant in a water basin. The conceptual model is complete with the deri-
vation of the difference equation. For an actual simulation of the problem, 
parameters, initial conditions and boundary conditions would have to be 
specified. 

5.2. Relating the Block Model to a PDE 

In section 5.1 we derived a deterministic model of the process of diffusion 
of a contaminant in a water basin. This model is based on discrete tempo-
ral and spatial units, with the spatial units being blocks. If we imagine we 
make these units smaller and smaller until they are infinitely small, we can 
understand the difference equation as a continuous differential equation. 
This idea is used here for relating the deterministic model of a process to a 
PDE; the set of PDEs available was listed in Table 1. Usually, this proce-
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dure is used in the reverse, and continuous PDEs are approximated with 
difference equations to find their solution. Seen from a conceptual, rather 
than a mathematically precise point of view, the difference equation (Eq. 
5.1.5) corresponds to the following partial differential equation (Eq. 5.2.1): 
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(5.2.1) 

This partial differential equation is known as the diffusion equation 
without sources in three dimensions. This equation is a second order, linear 
PDE. The meaning of the PDE is of course equivalent to the meaning of 
the difference equation derived in the previous section, but independent of 
the block structure assumed in section 5.1. The state variable C(x,y,z,t) de-
pends on time and three spatial dimensions. It defines the concentration of 
the contaminant in space over time. The right hand side of the equation de-
fines the flow of the quantity at a certain moment in time. The next section 
discusses the insights we gain through applying the presented methodology 
on the example process.  

6. QUALITATIVE INSIGHTS ABOUT THE EXAMPLE 
PROCESS 

As a physical spatial process, the process adheres to physical principles of 
mass conservation and Fick’s law for determining the rate of diffusion. 
Particles always diffuse from areas with higher to those with lower con-
centrations of particles; if there is no difference in the concentration of par-
ticles between two blocks, no flow takes place. Expressed differently, dif-
fusion takes place down the concentration gradient of the contaminant in 
water.  

The modeling of the example process with difference equations, allows 
us to easily determine the components that make up a process. In our ex-
ample we have: 

- the concentration of the contaminant, which depends on time and 
space and is defined by the flow of the contaminant over time. 

- the flow of the contaminant, which is specified by the contaminant 
diffusion coefficient times the negative contaminant concentration 
gradient across a face.  

The related partial differential equation is the diffusion equation, which 
is a parabolic equation showing the behavior of a process over time. The 
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behavior of the process we can expect is that the original contaminant con-
centration spreads throughout the cells in a random manner and gets lower 
in specific cells the more blocks are affected by the process. An exemplary 
two-dimensional representation of the behavior of this process is shown in 
Fig. 2.  

 
 
 
 
 
 
 
 
 
 

Fig. 2. Exemplary two-dimensional representation of a substance diffusing in 
space; the darker the color the higher the concentration of the substance.  

7. CONCLUSIONS AND FUTURE WORK 

In this paper we presented our approach to gaining insight in spatial physi-
cal processes on a qualitative level. We employ simple deterministic mod-
els based on blocks for modeling processes and getting conceptualizations 
of processes. The resulting model equations are then related to types of 
partial differential equations (Table 1).  

The methodology was presented exemplarily for the process of con-
taminant diffusion in water and general properties of this process were 
identified. In a next step, this methodology will be applied repeatedly to 
different spatial physical processes; thereby a catalog of components for 
describing qualitative characteristics of processes will be created. This 
catalog will allow the domain and application independent description of 
physical spatial processes on a qualitative level. One characteristic of the 
components in the catalog has to be that they can be composed in order to 
form more complex processes out of basic components.  

Having in mind the extension of models of space and GIS with general 
functionality for handling processes, such a catalog could serve the follow-
ing purpose in the long term: it could serve as a toolbox for describing a 
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process qualitatively and for generating a concept for modeling a process. 
Such a concept of a process model would contain the required data sets, 
parameters and equations describing the general behavior of a process. In 
the case of the example of the diffusion of a contaminant in water, the re-
quired data set is the distribution of the contaminant, which serves as ini-
tial condition. For solving the diffusion equation, the diffusion parameter 
and boundary conditions have to be given.  
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