
�����������	�
���������������������� �

HIGHER ORDER FUNCTIONS NECESSARY

FOR SPATIAL THEORY DEVELOPMENT
1

Andrew U. Frank
Dept. of Geoinformation
Technical University Vienna
frank@geoinfo.tuwien.ac.at

Abstract
The tool we use influences the product. This paper demonstrates that higher
order functions are a necessary tool for research in the GIS area, because higher
order functions permit to separate the treatment of attribute data from the
organisation of processing in data structures. Higher order functions are
functions which have functions as arguments. A function to traverse a data
structure can thus have as an argument a function to perform specific
operations with the attribute data stored. This is crucial in the GIS arena, where
complex spatial data structures are necessary. Higher order functions were
tacitly assumed for Tomlin’s Map Algebra.

The lack of higher order functions in the design stage of GIS and in the
implementation is currently most felt for visualization, where the problems of
the interaction between the generic computer graphics solutions and the
particulars of the application area preclude advanced solutions, which combine
the best results from both worlds. Similar problems are to be expected with the
use of OpenGIS standardized functionality.

This paper demonstrates the concept of higher order functions in a modern
functional programming language with a class based (object-oriented) type
concept. It shows how the processing of data elements is completely separated
from the processing of the data structure. Code for different implementations of
data structures can be freely combined with code for different types of
representation of spatial properties in cells. The code fragments in the paper are
executable code in the Gofer/Haskell functional programming language.

1� Introduction
The tool used influences the product. This is true for industrial production as
well as for research. Nevertheless, there is little discussion in the research
community about the tools they use - e.g., formalization methods - and how
they influence the research directions. Most research in Spatial Information

1 Frank, A.U. 1997. "Higher order functions necessary for spatial theory
development". In Proceedings of Auto-Carto 13, in Seattle, WASH. (April
7-10, 1997), Published by ACSM/ASPRS, Vol. 5, pp: 11-22.

gruber
Textfeld
Frank, A.U. "Higher Order Functions Necessary for Spatial Theory Development." Paper presented at the Auto-Carto 13, Seattle, Wash. (April 7-10, 1997) 1997.

�����������	�
���������������������� �

Theory (Frank and Campari 1993) is carried out using first order languages. I
feel that this restriction is an unnecessary limitation, which makes researchers
focus on static relations and precludes adequate treatment of processes. Higher
order functions can take this hurdle, but are generally useful to help with the
design of GIS architecture. This paper introduces the concept of higher order
functions and demonstrates their use for the separation of treatment of data
structure and object data. Other beneficial uses of higher order functions are
left to be treated in other papers.

Higher order functions are functions which have other functions as
arguments. Many programming languages (e.g., Pascal, C, C++) allow such
constructions, but generally they are added ������ and not fully integrated.
Higher order functions are well understood mathematically and functional
programming languages cleanly implement these concepts.

Research in GIS has been hindered by a mixture of discussion levels:
application specific issues, problems of efficient implementation and topics
from spatial theory are all treated at once. The connection between these topics
is clearly necessary to avoid developing theories for which there is no use in the
real world, or the development of tricky solutions without the benefit of a
theoretical understanding. But the resulting breadth of the arguments makes it
often difficult to detect the essential features.

The formalization in GIS is most often carried out only at the
implementation stage. The programmer must resolve all details, from
application details to fundamental issues in mathematics. Different concerns are
unseparably intertwined: GIS code is complex to understand, loaded with detail,
and seldom useful to gain insight. If any formalization is attempted, GIS
research has used most often first order languages for formalization (Egenhofer
and Herring 1991; Frank 1996a; Pigot 1992; Worboys 1992). It is tacitly
assumed that the described functions are integrated in a program system, but
the overall architecture of this system cannot be described in a first order
language.

Higher order functions are a powerful conceptual tool to separate concerns
at different levels, for example data structure and processing of data elements
embedded in the data structure. This is crucial for GIS, which are large data
collections and require specific, highly optimized and, in consequence, complex
data structures (Samet 1989a; Samet 1989b). The design of the operations
treating the attributes of the features and the design of the processing of the
data structure must be separated and solutions freely combined. For computer
cartography, higher order functions open a door for the separation of the
different concerns in the map rendering process: graphical issues, management
of screen real estate, geometric map projection etc.

This suggests that higher order functions are a necessary tool for
systematic research in geographic information systems and their theory. Tomlin
in his Map Algebra (Tomlin 1983a; Tomlin 1983b; Tomlin 1989) has tacitly
used higher order functions and one can attribute some of the success of this

�����������	�
���������������������� �

concept to the clarity of the resulting framework. Map Algebra cannot be
formalized without higher order functions (or some rectification of it). Higher
order functions are important also to design visualization systems for
cartography, where computer graphics tools and cartography demands must be
linked. They will be important to combine the generic GIS operations in the
forthcoming Open GIS modules.

This paper demonstrates the concept of higher order functions in a modern
functional programming language. As an example for demonstration, the
separation of operations on pixels and the traversal of the data structure (e.g.,
quadtree) are explained. It shows how the processing of data elements is
completely separated from the processing of the data structure. Code for
different implementations of quadtree structures can be freely combined with
code for different types of representation of spatial properties in cells.
Fragments of actual executable code are given in the Gofer/Haskell
language(Hudak et al. 1992; Jones 1991). This is a modern functional
programming language, which is class based to provide an object-oriented type
concept.

The paper is structured as follows: the next section introduces the concept
of higher order functions. Section 3 introduces functional programming
languages and gives some examples for higher order functions. The next section
introduces the fundamental operations map and fold, which apply a function to
a data structure. Section 5 applies this to operations from the Map Algebra and
Section 6 sketches an application to GIS query language and visualization,
followed by conclusions.

2� Higher Order Functions
Higher order functions are functions which take functions as arguments. Higher
order functions are the discriminating property of higher order languages, which
means that first order languages do not permit to pass functions as arguments
into functions.

As a metaphor, higher order functions can be seen as mechanical power
tools, into which different drills or blades can be inserted to perform different
operations. A simple example: a traversal operation is accessing every element
of a list and applies an operation which is passed as an argument to every list.
This operation can be used to double the value of every element in the list
(when a function which multiplies by 2 is passed), can set all values to 0 (when
the function returns always the value 0), reduce the values by 1, etc. This is
similar to the instruction in everyday life to clean dishes (‘take each dish in
sequence and wash and dry it’). It is also the operation to draw a map: “Take
these (selected) objects and draw each of them according to the scale and
legend”.

A formal language is called first order, if the symbols can range only over
individuals (this precludes quantification over functions and functions which
have functions as arguments). It is called second (or higher) order if symbols

�����������	�
���������������������� �

can range over relations and functions. The ordinary (first) order predicate
calculus is a first order language; relational database and Prolog are using first
order languages as bases.

The concept of higher order functions is so powerful that even standard
programming languages (like C (Stroustrup 1986 p.127), C++ (Ellis and
Stroustrup 1990) or Pascal (Jensen and Wirth 1975)) contain it. There are
constructs provided which allow to pass a function (or procedure) into another
procedure or function as an argument, but the integration of this element of
higher order logic with the remainder of the programming language is typically
restricted. In Pascal (Jensen and Wirth 1975), the use of this tool is limited: 1)
functions cannot be assigned to variables, 2) passing functions circumvents
some type checking and is therefore insecure. In C++ a special ‘iterator’
concept is provided (but tricky to use) to save the programmer the difficulties
with passing functions as parameters. The programming languages used for
implementation are based on variables and statements and functions remain
second class citizens.

3� Functional Programming Languages
The function is the fundamental building block of a Functional Programming
Language: everything is a function; functions with arguments, functions without
arguments (which are constants) and functions which produce functions as
result. Functional programming languages are as old as Fortran. The functional
languages, which are strictly typed, use a type system in which functions have
proper type and type checking includes the passing of functions as arguments
(Milner 1978). Examples of functions are the function add (+), which has two
arguments and as a result computes the sum of the two arguments. Its type is
written as (+)::Int -> Int -> Int. A function can also be user defined, e.g., a
function f (x) which computes 3x + 2 and has type f:: Int -> Int. The
constant π is a function with type pi::Float.

To introduce the concept of a higher order function, a function which
applies a given other function twice is used. It is demonstrated with the
functions to increment inc. The code is written in the language Gofer (Jones
1991), which is related to Haskell (Hudak et al. 1992)2

twice :: (Int -> Int) -> Int -> Int
twice x a = x (x (a))
inc :: Int -> Int
inc x = x + 1
twice inc 4 --->> 6

The fundamental operation is the evaluation of an expression, composed of
some functions. An if-then-else expression and recursion are the fundamental
control structures. Recursive data structures like sequence or tree fit best. The
power of functional programming language is often attributed to built-in
operations to treat lists; dynamic arrays were predefined with a very powerful

2Functional programming languages write functions and their arguments without parentheses: f x.
Parentheses are only used for grouping expressions and do not indicate function application as in C++.

�����������	�
���������������������� �

set of operations in APL. As an example, a list and a tree are defined
recursively (these data types are typically predefined). Code to sum the
elements in the list and to count the leaves of a tree are given

data List a = Empty | Element a (List a)
data Tree b = Leaf b | Branch (Tree b) (Tree b)
sumList (Empty)= 0
sumList (Element x xs) = x + (sumList xs)
countTree (Leaf b) = 1
countTree (Branch a b) = (countTree a) + (countTree b)

4� Higher Order Functions to Map Operations to Data
Structures
Complex objects are described by a collection of values, collected in a data
structure. Much of the GIS literature is concerned with data structures for
geographic data and the efficiency of particular operations on these data
structures. The introductory examples here are a polygon as a list of coordinate
pairs and a tree with the names and populations of towns in a county.

Operations on a data structure consist typically of code to traverse the data
structure, i.e. code which decides which data element is considered next, and
code which deals with a single data item. There are two variants, which are
often used :

• map: e.g., each coordinate pair of a list is to be scaled.
• fold: e.g., the total population of all the towns in the tree of towns is

summed.
Both these operations could be written easily in Pascal as loops over an

array, but for realistic applications, more complex data structure will require
more code. This code is essentially the same for any operation of this kind for a
given data structure. Many lines of Pascal or C++ programs are filled with code
controlling the traversal of data structures.

Higher order functions permit to separate the coding of the traversal of the
data structure from the operation on the data element. In a functional
programming language, the code for these two operations is:

scaledCoordList coordList scale = map (scaleTransformation scale)
coordList where

scaleTransformation scale (Coord x y) = Coord (scale * x)
(scale * y)
totalPop statePop = fold ((+).pop) 0.0 statePop

Here, the CoordList contains the coordinate pairs to scale,
scaleTransformation is the operation to change the scale; statePop contains
the state population by county, pop gets the population figure from the record
for a county. The population values are then summed up (starting the count
with 0). The two higher order functions map and fold are defined in the next
subsections.

4.1 Map Function

An operation ϕ is applied to each element in a structure and yields a new data
value. The result is a data structure of the same characteristics, but with

�����������	�
���������������������� �

different values possibly of different type. Examples: a list of reals can be
rounded into a list of integers, coordinates in a list can be scaled (as above), or
the record structure changed, e.g., to replace records with county name,
population and area with records, which contain county name and population
density.

The higher order function map applies function with signature phi::(a->b)
to a data structure f with elements of type a. The result is a data structure f with
elements of type b3.

map :: (a -> b) -> f a -> f b

In many cases ϕ is a function which returns the same type as its input
(phi:: a->a) and the result of mapping a on the data structure f a is again a
data structure with type f a. This is, for example, the case, if coordinate pairs
are scaled and the result is again a coordinate pair.

The map function defined above must be specialized for the data structure
used. Assuming the definition for list and tree given above, mapping an
operation phi to the list is simply applying it recursively to each element,
mapping the operation phi on a tree is applying it to each leaf:

map phi (Empty) = Empty
map phi (Element x xs) = Element (phi x) (map phi xs)
map phi (Leaf b) = Leaf (phi b)
map phi (Branch x y) = Branch (map phi x) (map phi y)

With these definitions the code for scaling a list of coordinate pairs given
above works. It can be used to update the population count of a list of cities
with an operation updatePop, which is then mapped to the list of Cities4:

updatePop (City name area pop) = City name area (pop*1.1)
updatePop listOfCities = map updatePop listOfCities

4.2 Fold Function

To compute the total population of a county the population of its cities must be
added. The input is a data structure, not a data structure as for map above. This
operation is called fold, because it reminds of folding a piece of paper over and
over (Figure 1):

1 2 3 4

1

2
3
4

0

10

+

Figure 1: Folding operation

3 In order to use higher order functions effectively, the type system must allow parametrized types, i.e.
lists of integers, lists of reals etc. In the example f a means a data structure of f with elements of type
a.
4 updatePop is used here in a polymorphic fashion: updatePop applied to a data element of type
city uses the operation definition of the first line, updatePop applied to a list of cities, uses the second
definition, which calls the first for each city in the list. The type system of a polymorphic language
controls this.

�����������	�
���������������������� �

The operation applied in fold combines the current value with the result
of the previous application. A start value must be given5 (for the sum above, it
must be 0). The standard example is the calculation of the values of the figures
from 1 to 100:

fold :: (a -> b -> b)-> b -> f a -> b
fold (+) 0 [1..100]

The higher order function fold has as a first argument the function, as a
second argument the start value and as a third argument the data structure. It
may be necessary to have two fold operations, which operate from right to left
and from left to right. The function which is used to fold the data structure must
have the signature psi :: a -> b -> b, having one argument which is the
same type as the data in the data structure and a second argument, which has
the same type as the result (these two types can be the same, and most often
are). This is necessary to make the result of one application the input for the
next application of the function (with the next data value from the data
structure).
The definitions for the list as defined above is:

fold :: (a -> b -> b) -> b -> f a -> b
fold f z (Empty) = z
fold f z (Element x xs) = fold f (f x z) xs

4.3 Combinations of Operations

To compute the total population from a tree of records with county name and
population count one can proceed in two steps: 1) map from the record a single
population count (with an operation pop) and 2) fold with (+).

pt = map pop popTree
totPop = fold (+) 0.0 pt

Most functional programming languages are referentially transparent. Therefore
equals can be substituted with equals. This makes reasoning about programs
similar to reasoning in ordinary mathematics and avoids the complications of
the temporal reasoning with pre- and post-conditions necessary for commercial
programming languages like Pascal or C++. The rule given in the next line can
be applied to the combination of the two functions above (in totPop) and yields
the simplification totPop’.

fold f z (map g xs) = fold (f.g) z xs
totPop = fold (+) 0.0 (map pop popTree)
totPop’ = fold ((+).pop) 0.0 popTree

There is a similar rule to combine multiple mappings:
map f (map g x) == map (f.g) x

In general, these simplifications are automatically done by the compilers for
modern functional languages.

5� Application to GIS: Map Algebra
Map Algebra does not rely on a raster data structure, but is typically
conceptualized as operating on a set of arrays of pixels with the same origin and

5 The start value is typically the ���������	�for the operation used, for (+) the value must be 0, for
folding with (*), it should be 1 etc. Mathematicians call a group an algebraic structure, consisting of a
set of values, an operation and a ���������	�
, for which the axioms ����
���� and
�������� hold.

�����������	�
���������������������� �

orientation. The local operations in Map Algebra (Tomlin 1989) apply an unary
operation (an operation with a single argument) to a single array, by applying it
to each cell, or apply a binary operation to two arrays, by applying the operation
to corresponding pixels from each array.

The operations in Tomlin’s Map Algebra are independent of the data
structure and the particulars of the implementation. They can be applied to
rasters stored as a full array, run length encoding or as a quadtree. The different
storage methods influence performance, but do not change the result. A
rewriting of the Map Algebra using a functional language with higher order
functions can bring two advantages:

• Potential for optimization: multiple operations can be executed together
using the rules for combination given above. The combination of
operations in a single pass over the data can greatly speed up
performance as the time consuming access to the data is done only once
and thus much disk access (or access to the data over the net) is saved.

• Generalization of the operations to work uniformly over raster and
vector data in different data structures and to formally analyze the
differences between vector and raster operations in the results and the
error propagation.

5.1 Separation of Data Structure and Processing of Elements

To demonstrate the separation of treatment of data elements and traversal of
data structure, the calculation of the area of a region stored in a quadtree is
shown. An example using run length encoding works along the same lines, but
cannot be shown due to the space limitations.

Quadtrees (Samet 1989b) are based on the principle of a 4-way branching
tree data structure. It is customary to interpret a quadtree structure as a
representation of space, in which the leaf nodes are pixels in a square array
(Figure 2). Pixels of higher level represent four times the area of the pixel one
level lower.

Figure 2 - Example of a quadtree

Recursively, a quadtree is either a leaf (QL) or it is a tree with four quadtrees. To
keep the code simple, the size of the pixel is included with each leaf of the
quadtree; this can be left out in optimized code.

�����������	�
���������������������� �

data QuadLeaf p = QuadLeaf Int p -- the leaf size and the pixel
value
data Quad p = Q (Quad p)(Quad p)(Quad p)(Quad p) | QL p

Code to compute the area uses the corresponding operations for the pixels and
corrects for the size of the area.

area (Pixel Inside) = 1
area (Pixel Outside) = 0
area (QuadLeaf j p) = j * (area p)

fold f s (QL p) = f p s
fold f s (Q2 q1 q2 q3 q4) = fold f (fold f (fold f (fold f s q1)
q2) q3) q4
area x = fold ((+).area) 0 x -- x is of type Quad

5.2 Operations with two Arguments

The standard map function maps a function with a single argument. For the
zonal operations of the Map Algebra, functions with two arguments must be
mapped. An higher order function map2 and fold2 must be defined.

map2 :: (a -> b -> c) -> p a -> p b -> p c
map2 f (Empty) x = Empty
map2 f x Empty = Empty
map2 f (List x xs) (Element y ys) = Element (f x y) (map2 f xs ys)

With this the corresponding values from two lists can be added or subtracted.
Assume you have a list with the population per census block and with the
population under 20. The list of the population count (age > 20) is simply

map2 (-) totPopulation children

The combination of two quadtree or run length encodings is more involved:
there are cases when one of the two structures must be expanded to meet the
detail level of the other. In order to write this function only once to be used for
map2 and fold2, it is factored out in a function zip, which takes two data
structures as arguments and makes a data structure with pairs of the values
found in both structures. Map2 and fold2 then use the regular map and fold, and
the function passed as an argument is applied to the two paired values.

zip (QL p) (QL q) = QL (p,q)
zip (Q p1 p2 p3 p4) (QL q) = Q (zip p1 q’) (zip p2 q’) (zip p3 q’)
(zip p4 q’) where q’= pushdown q
zip (QL p) (Q q1 q2 q3 q4) = Q (zip p’ q1) (zip p’ q2) (zip p’ q3)
(zip p’ q4) where p’= pushdown p
zip (Q p1 p2 p3 p4) (Q q1 q2 q3 q4) = Q (zip p1 q1) (zip p2 q2)
(zip p3 q3) (zip p4 q4)
map2 f p q = map f’ (zip p q) where f’ (a,b) = f a b
fold2 f s p q = fold f’ s (zip p q) where f’ (a,b) = f a b

With these operations, all the focal operations from Map Algebra can be written
and applied to arbitrary data structures and feature data types. A choice of
functions can be provided in a single program and polymorphism will select the
appropriate operations to traverse the data structure and the operation to suit
the data type of the feature.

6� Application to Computer Cartography
The examples so far were low level operations in a GIS, very close to the details
of the implementation. In this section, I show that higher order functions are
also very powerful tools to understand complex, large systems at the highest
level of abstraction:

�����������	�
���������������������� �

The classical computer graphics program consists of a list of data objects
and a visualization loop, which applies the visualization transformation to each
object (Foley and Dam 1982; Newman and Sproul 1979) and puts it on the
screen. The visualization loop applies a series of transformations to the objects:
perspective projection from 3D object coordinates to the 2D coordinates on the
screen, clipping of parts which are outside of the viewing area etc. Other
transformations apply to the lines or the symbols and produce the desired line
style, according to the map legend selected.

These transformations can be written as functions applicable to objects. If
the objects to display are in the listOfFeatures, the total operation is

map display.(scale 50).(clip xmin ymin xmax ymax).(symbolization
symboltable) listOfFeatures

This can be expanded to a query language for cartographic application.
Simplifying the problem, one can start with a query language which has two
query inputs - the selection criteria for the objects to display and the map
legend to be used. This operation can be combined from a filter operation - a
second order function - and map (as defined above):

filter criteria (Empty) = Empty
filter criteria (Element a as) = if criteria a then Element a
(filter as) else filter as
query legend criteria database = (map (display legend)) . (filter
criteria) db

7� Conclusions
This paper introduces higher order functions, i.e. functions which take
functions as arguments, in the GIS literature. Such functions are well known in
mathematics, but were not explicitly used for formalization of spatial
information theory so far. First order languages are well suited for the analyses
of static relations between objects, but they fail when dynamic behavior must
be described. GIS must increasingly deal with dynamic objects and higher order
functions are therefore necessary, but the same functionality is necessary when
describing the behavior of complex, dynamic software systems, like GIS.

As a first example for the importance of higher order functions, this paper
demonstrates how higher order functions allow to separate the part of
operations specific to the data structure from the code of the operations which
is specific to the data type stored. GIS are large data collections and must use
complex spatial data structures. It is beneficial to separate the code which
traverses the data structure from the code which operates on the feature data.

This is shown using a modern functional programming language and
applied to Map Algebra (Tomlin 1989). The examples given are actual code as
it can be executed. It shows convincingly the elegance and power of higher
order functions. With this tool, the overall architecture of complex systems,
e.g., Map Algebra or a cartographic query language, can be described in a single
executable system without using ������ tricks. More examples can be found in
(Frank 1996b; Frank 1996c)

�����������	�
���������������������� �

The examples given here make clear that it is not sufficient to add a few
higher order functions as fixed functions to a programming language, but that
the full capability of writing new higher order functions is required. It is further
necessary to allow data types with parameters, e.g., ��	
�����
���� must be
differentiated from ��	
�������� and a generic ��	
����� or even ������ (� and �
being type variables) must be possible.

References
Egenhofer, M. J., and J. R. Herring. 1991. High-level spatial data structures for GIS. In

��������	
��������	�������������	
	������������	
��	��, edited by D.
Maguire, D. Rhind and M. Goodchild: Longman Publishing Co.

Ellis, M. A., and B. Stroustrup. 1990. ����������������������
�������. Reading,
Mass.: Addison-Wesley.

Foley, J. D., and A. van Dam. 1982. �������������������
�	 ����������������	
�,
����������������	�����	��. Reading MA: Addison-Wesley Publ. Co.

Frank, A. U. 1996a. Qualitative Spatial Reasoning: Cardinal Directions as an Example.
������	����!������������������	
��������	��������� 10 (2).

Frank, A. U. 1996b. Hierarchical Spatial Reasoning: Internal Report. Dept. of
Geoinformation, Technical University Vienna.

Frank, A. U. 1996c. Using Hierarchical Spatial Data Structures for Hierarchical Spatial
Reasoning: Internal Report. Dept. of Geoinformation, Technical University
Vienna.

Frank, A. U. , and I. Campari, eds. 1993. ����	����������	�����������������	
���"��	�
�������. Edited by G. Goos and J. Hartmanis. Vol. 716, #�
�����$�����	
����������
	�
�. Heidelberg-Berlin: Springer Verlag.

Hudak, P., et al. 1992. Report on the functional programming language Haskell, Version
1.2. ����#�$�$��	
�� 27.

Jensen, K., and N. Wirth. 1975. �����#�%�������������������. Second Edition.
Berlin-Heidelberg: Springer-Verlag.

Jones, M. P. 1991. An Introduction to Gofer: Yale University.
Milner, R. 1978. A Theory of Type Polymorphism in Programming. !�����������������

�����������
	�
�� 17:348-375.
Newman, W. M., and R. F. Sproul. 1979. ��	
	�������������
�	 ����������������	
�.

New York: McGraw Hill.
Pigot, S. 1992. A Topological Model for a 3D Spatial Information System. In

Proceedings of 5th International Symposium on Spatial Data Handling, at
Charleston.

Samet, H. 1989a. ����	
��	����������	���&��������
�����'���������������	
�(������
���
���	��������. Reading, MA: Addison-Wesley Publishing Co.

Samet, H. 1989b. ����&��	����������	���������	���&��������
�����. Reading, MA:
Addison-Wesley Publishing Co.

Stroustrup, B. 1986. ����������������	��#������. reprinted with corrections July
1987. Reading MA: Addison-Wesley Publishing Co.

Tomlin, C. D. 1983a. Digital Cartographic Modeling Techniques in Environmental
Planning. Ph.D. thesis, Yale University.

Tomlin, C. D. 1983b. A Map Algebra. In Proceedings of Harvard Computer Graphics
Conference, at Cambridge, Mass.

Tomlin, C. D. 1989. ��������	
��������	����������������������	
������	�. New
York: Prentice Hall.

�����������	�
���������������������� �

Worboys, M. 1992. A Model for Spatio-Temporal Information. In Proceedings of 5th
International Symposium on Spatial Data Handling, at Charleston.

