
GZ 2690

METAMODELS FOR DATA QUALITY DESCRIPTION

Andrew U. Frank
Dept. of Geoinformation
Technical University Vienna
frank@geoinfo.tuwien.ac.at

Abstract
Data quality descriptions are crucial, but methods to produce and use them have not
significantly improved during the past 10 years. Current quality descriptions are from the
perspective of the producer of the data, not the user. Actual quality descriptions are mostly
verbal and not suitable for rapid comparison with a required standard to make a decision about
‘fitness for use’ of a certain dataset for a task. This limits business with geographic data over
the net.

The paper introduces the concept of a metamodel as a framework to compare data quality
from a producer and a user perspective in a single model. It is based on category theory and
morphisms, which link the model of reality with the model of the GIS data, and their collection
and use. The achieved quality of a decision based on using the data can be derived.

It is shown that data quality descriptions are dependent on the intended use of the data. A
‘use independent’, generic data quality description is not possible. Fortunately, a large set of
GIS functions demand the same data quality description, therefore not every potential use
requires a different data quality description of a data set.

1 Current Data Quality Descriptions Are Inadequate
Data quality descriptions are crucial for a flexible use of GIS. They are the key to the
development of a sizable commerce in GIS data. Data quality descriptions are necessary for
differentiated marketing strategies, and in particular product differentiation (Frank 1995; Frank
1996) . They are also the key to limit liability of data producers. Current practice of data
quality description is inadequate and does not help users to decide if a potentially useful dataset
should be acquired and used.

Overall, data quality descriptions have not improved much in the past 10 years. The
publication of the data quality description in the Spatial Data Transfer Standard (Morrison
1988) and the report of the NCGIA Specialist Meeting in Santa Barbara 1988 (Goodchild and
Gopal 1989) document the research frontier then. The list of parameters to describe geographic
data has not changed in the past 15 years; there is nearly no difference between the parameters
listed in (Robinson and Frank 1985) and the lists published today (Stanek and Frank 1993).
There is no progress to define quantitatively the quality of GIS data - beyond positional
accuracy for well-defined points. Data exchange standards and the practice of data producers
rely heavily on lineage description as replacement for an effective, objective description
(Chrisman 1991).

There is no sizable discussion of data quality transfer functions which link data quality of
inputs to the quality of the results (for a case study see (Zeitlberger 1997). This paper first
reviews the overall situation of data sharing between organisations where data quality
descriptions are necessary. It then reports on a case study assessing the currently available data
quality descriptions for a number of data collections and shows that these descriptions are
formulated from a data producer perspective, but are not suitable to answer the potential data
user’s questions.
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In the second part, a formal model of the relations between reality, geographic data in a
GIS and its use is set up. This metamodel allows to describe the situation using morphism. This
model contains

• an observation function linking reality to the data collected, and
• the decision process which links to a decision, which is termed ‘function of interest’.

A user’s query is a typical example of a function of interest which extracts some data from a
database and the result is used in the decision process. For a data quality description to be
usable, it must be possible for the user to link the data quality statement given for the data used
to the quality of the results it deduces from the database. This presupposes a ‘data quality
transfer’ function related to the function of interest. Each function of interest will in general
have its own data quality transfer function.

For each function of interest, a corresponding error function can be established and the
relations between observation function, function of interest and the error functions involved
described. The relations can be formalized and a simple example is given in this paper.

This paper deals with the data quality description, which forms the input into the data
quality transfer function of a user and demonstrates that there is a linkage between the data
quality description and the ‘function of interest’ (respectively, the data quality transfer
function). A single data quality description is not sufficient for all functions of interest in a
GIS.

From this follows that data quality descriptions must be made to suit the intended use of
the data. A fully general data quality description which is useful to decide on fitness for any
potential use, is not possible. But neither is a specific data quality description for every
possible use necessary: large classes of operations on spatial data can use the same data quality
descriptions. The determination of these classes is an important open research question.

2 Why Data Quality Descriptions?

2.1 Underlying assumption: data sharing
Data quality descriptions are only necessary if data is collected by one organisation and used
by another (Frank 1992). If - as customary in the past - the same organisation collects and uses
the data, a description of the data quality is not necessary. The user can directly influence the
collection process and adjust it so the data are suitable for his needs, and for the process of
collecting and processing minimal cost will accrue. If a direct feedback loop between data user
and data collector within an agency is missing, then an explicit consideration of data quality is
necessary to minimize data collection cost, while fulfilling the data user’s requirements.

When one organisation collects data and another one uses them, the producer must
describe the quality of the data collected and the user prescribe the quality required for the task.
From this follows that the data are fit for the intended use if the quality of the data as produced
is better than the required quality. Unfortunately, today a decision about the fitness for use
cannot be made without the user having a very significant understanding of the processes used
for the data collection; typically a discussion between data producers and users is necessary to
reach a conclusion about fitness for use.

2.2 Regular GIS assumption: sharing reduces cost
The discussion pointing to the need for data quality description is situated in the regular GIS
assumption, which is that data is expensive to collect and maintain, but data once collected can
be used for many purposes. Cost reduction in avoiding duplication in data collection initially is
important, but cost reduction later by avoiding the duplication of the maintenance of the data is
usually much larger.

Data sharing is a crucial concept for GIS (National Research Council 1980). The
argument is more complex than the simple argument for reduction in cost of administration as



it was initially put (Clapp, Moyer, and Niemann 1988; Gurda et al. 1987). If each agency uses
its own dataset - collected and maintained individually - these data sets will necessarily differ
within the error margins set for their collection process. This results in problems:

• in border line cases, two decisions based on these data collections may contradict each
other; citizens affected by these decisions become aware of the errors, loose faith in the
administrative decision process, etc.

• the integration of other data related to the spatial data sets cannot be integrated quickly,
because the spatial reference objects are not the same.

2.3 Data quality description crucial for geographic data business
Data quality descriptions should assure the user that the data are fit for the intended use
(‘fitness for use’ (Chrisman 1983)). If the quality described is better than required, the data can
be acquired and used for the intended task. Data quality descriptions are necessary to facilitate
the emerging commerce in geographic data:

The data quality description is part of the metadata which is part of the information a data
producer makes available to prospective users of his data. Clear description of data quality
brings:

• More use of data: The decision about fitness for use by a possible user (buyer) of data
can be made quickly and objectively. As more data is made available using the Internet,
users (or programmed agents on behalf of the user) must be able to make automatically
a decision which data set can be used for a particular task (Voisard and Schweppe
1996).

• Limits to liability: If a data set is labelled by the producer with an objectively measured
data quality, users who use the data for uses which cannot be achieved with this quality
are clearly warned. This effectively limits liability by the producer for damage resulting
from errors in the data larger than acceptable within the stated quality. Data quality
descriptions are necessary to assign liability - who is liable for damage occurring as a
consequence of using the data? Did the producer deliver data which was of lower quality
and thus caused the damage (and incurs possibly a legal liability) or were the data
according to the quality asserted, but errors in processing caused the damage (for which
the user would be responsible)?

3 Critique of Current Description Methods
Data quality descriptions should be

• independent of production method,
• operational, and
• quantitative.

By the first we mean that the description of the data quality must not refer to the
production method, but use a neutral formulation independent of how the data were produced.
Second, a data quality description is operational if it can be used in a formalised (automated)
process and does not depend on human interpretation of the terms. Third, the data quality must
be measured on an (at least) ordinal scale, which allows the comparison of the quality of two
data sets.

3.1 Case study - metadata according to standards
A class of surveying engineering students collected metadata on commercially available data
sets in Austria, described the metadata according to the CEN (Comité  Européen de la

Normalisation) metadata standard, and collated the metadata in a commercial database (Timpf,
Raubal, and Kuhn 1996).

The goal of the study was twofold. First, the students gave feedback to the responsible
working group at CEN about the usage of the metadata standard. Second, they assessed if



potential users of the metadatabase can understand the information provided and if it is
sufficient for decision-making by professional users.

The usability of the metadata was low: they found that the metadata described the data
from the data producer’s point of view and did not help the user to make a decision about the
suitability of a data set for an intended task (Timpf and Frank 1997). Users need information
on a higher level of abstraction, the information given often was too detailed and too
confusingly presented. Most importantly they need to know what operations are supported by
the data.

3.2 Data quality descriptions are producer oriented
The data quality descriptions are most often provided as ‘lineage’, which describes the process
that was used for the collection and processing of the data. This implies a very detailed and
accurate description of the quality of the data. The description is objective as the same process
can be duplicated and should result in a data collection with similar quality characteristics.

The description of data quality as lineage is easy for the producer - it is knowledge which
is available: one just describes what one has done. It shifts the burden of the interpretation of
the data quality description and the decision about fitness for use to the potential user of the
data, who must make the connection between the production method - unknown to him - and his
intended use.

3.3 Data quality descriptions are not operational
A description can be called operational if there are standardized procedures, which can be used
to determine the data quality values. These can be used without requiring interpretation.
Operational methods are described in various standards to measure hard to determine values
for ‘noise production of a car’, ‘intellectual ability’ etc. In every case, a well defined set of
observation methods in a completely determined environment are used to assess the property,
e.g., the procedures used to determine the SAT (Scholastic Aptitude Test) scores for entering
students. The result of operational procedures are comparable, even if the individuals measured
are incomparable.

Data quality descriptions using lineage descriptions are not operational: two data sets can
have very similar characteristics, but result from different data collection efforts (e.g.,
photogrammetry or field survey) and their lineage descriptions are very different. The
comparison of lineage descriptions is difficult and requires intimate knowledge of the different
data collection methods and the applied techniques, instruments used etc.

Given a dataset of unknown origin, a lineage description cannot be produced. This implies
that a lineage description given cannot be tested by the user independently of the data producer;
one can only check the production records to see if the stated method was followed correctly.

3.4 Data quality descriptions are not quantitative
Data quality descriptions should be quantitative measures of the quality of the data. This is
necessary so that a user can decide if the quality provided is better than the minimal quality
required for a particular use. For a decision about fitness for use, qualitative quality description
on an ordered scale is sufficient. To allow the propagation of data quality through the potential
user’s data analysis, data quality measures should be on a ratio or absolute scale (Stevens
1946).

Operational, quantitative measures for data quality are only given for the positional
accuracy for sharply defined points (RMS error); statistical methods to determine a sample etc.
are well known (Cressie 1991). These quality descriptions can be used to predict the quality of
derived values, applying the law of error propagation.



4 Data Quality Description as ‘Product Specification’
Data quality descriptions are like other product specifications: They describe the property of
the goods to be exchanged (in this case data) such that the user can decide if the goods are
‘good enough’ for the intended use and the producer can point to the asserted properties. The
limits are important in case a problem occurs where the user claims that the good caused
damage or was faulty and had to be replaced.

Product specifications are typically written as limits of the intended use or describe simple
properties of the good which are of importance to the user: operating ranges for temperature or
humidity, weight of the product, speed of processing etc.

The specifications are written

• in terms relevant for the use of the product rarely do they describe the methods of
manufacturing the product,

• the specifications are quantitative values measured with an accepted method, such that a
decision can be made if the product is within these limits or not.

Both these points are not fulfilled for data quality descriptions.

5 A Metamodel as a Framework
Data quality seems to be an elusive concept. The clear idea of a ‘fitness for use’ decision is
hard to operationalize as a comparison of two figures on an ordinal scale.

The difficulty with the formalization of data quality is due to the definition of data quality
as ‘correspondence to reality’. Data of high quality corresponds well to reality, for data of low
quality, the deviation from reality is larger. The approach here is centered around functions and
the composition of functions. Category theory (Asperti and Longo 1991; Walters 1991) is
‘algebra with functions’. The objects are functions and the only operation is composition. h = f
. g means the function h which results from applying g to a set of data and applying f to the
result; it can be written as h (x) = f (g (x)). Category theory often uses diagrams, which show
functions as arrows leading from a domain to a co-domain. Diagrams are said to commute if f .
g = h . j (see Figure 1).

5.1 The GIS model
The model implied is characterized by the following diagram:

Figure 1  -  The GIS model

Some value is necessary for a decision - e.g., the distance between two points. In lieu of
measuring the distance in the real world, previously collected data describing the real world is
used to calculate the distance. The value determined from the collected data must correspond
with the result in the real world. It is easy to check the result, and often such checks occur



automatically, e.g., if a plan for a building is staked out in the building process. The data in the
GIS are usable, if the error between the value determined based on the data corresponds within
an acceptable tolerance to the true value.

The real world is not a formal concept and thus a formalization based on the GIS model is
not possible, a higher level model - termed metamodel - is required.

5.2 The Metamodel for GIS
The metamodel for GIS is a model of the GIS model: it consists of an abstract, formalized
model of the real world, a model of the data, the models of the observation and correspondence
processes which link the world with the data and the models of the function of interest of a
potential user (see Figure 2).

Figure 2  -  The metamodel for GIS

The formalized model of the world is not known and need not be known - it is only
necessary that formal models of the observation processes can be established and that the
difference between data and true value can be expressed. The model is ‘categorical’ as it deals
with the functions linking the models and makes statements about the composition of these
functions.

In the following formulae, letters will be used with the meaning: W for world, D for data,
o for observation operation, f for the function of interest of the user, q for the function to
determine the quality of the result of f, v for values, e for errors. The data are the result of the
observation of the world, the result of interest to the user is computed with the function f from
the data.

f (o1 (W)) = f’(W)
dist (p1, p2) =~ dist (P1, P2)

The function of interest computed in the model is (within a tolerance) the same as the
measured value. For a concrete example assume that the distance between two points in reality
(P1, P2) is needed; it can be measured as dist (P1, P2) or it can be computed using the
coordinate data for the two data sets (p1, p2), using Euclid’s formula. p1, p2 represent the result
of observing P1 and P2 (p1 = o1 (P1), p2 = o1 (P2)).

The actual functions and the actual values are not important in this model. We assume
only that functions can be composed i.e. that the result of an observation can be input into the
function of interest etc. and we are interested that the diagram ‘commutes’, i.e. that the value
derived from the observed data is, within tolerance, the same as the value directly measured.



This is, incidentally very similar to the approach taken in statistics: the world is
represented by a ‘true’ value - which cannot be observed in most cases - and processes to
observe the true value with certain behavior, typically normal distribution of error.

5.3 Observation functions with error
The observation of the world is with error and the result of the observation is a reduced,
generalized and abstract model of reality. In this very abstract model, we call error any
difference between the world (the true value) and the observed value. The observation function
o maps the world to data W > D and it introduces an error e.

With each data value v for any property of an object in the world or in the data an error e
is associated. The world has obviously the error 0

q (W) = 0

The observation function consists of two functions, one mapping values (o), one mapping
the errors (o’)

Dv = o (W)
De = o’ (W)

There are no assumptions made about the type of data, the type of observation or the kind
of data quality considered. Data quality can be described with a set of values (for example, to
characterize attribute quality, update level etc.) and the error function in the observation
function then consists correspondingly of a vector of functions, each computing the
corresponding term.

5.4 The user’s function of interest with error
The function of interest, for example, the distance calculation formula, must be extended with
an error propagation function, which takes the error term associated with the data and
calculates the error term of the result.

v =f (D) = f (o(W))
e = q (D) = q (o’ (W))

5.5 Decision about fitness for use
The computed value of interest v can be compared with the true value t. The true value can be
observed with an observation process o2 with the corresponding error function o2’, resulting in
an observed value t with the error u.

t = o2 (W)
u = o2’ (W)

5.5.1 When is the GIS an acceptable model?
The GIS is a ‘good’ model of reality within the stated data quality if the value computed from
the model does agree with the true value, within a tolerance which is a function of the data
quality. In general, the value with which one compares is measured with a process which
introduces error, and a more complex comparison is necessary. This function compares the
error terms and values: the set of possible values for v and t are compared and a level of
accordance is determined and compared with the level desired.

5.5.2 Fitness for use as a comparison of data quality
The GIS is usable if the results produced are good enough for the decision process. Assume
that the decision process requires a result v’ of quality e’. A dataset D is ‘fit for use’ if the error
e resulting from using D is e < e’. In order to make this decision quickly, the potential user
must convert his desired quality of the result back to the quality of the input data De: the
desired quality of the input data De results from the inversion of e = q (D) giving De’ = q (e).
A dataset is then ‘fit for use’ if the data quality of the data set De is better than the worst
acceptable quality De’ (i.e. De < De’). A potential user can then quickly compare his desired
data quality with the available quality and make his decision.



The data quality description must be selected such that the data quality transfer function
preserves order, which means that for any two data sets with errors De’ and De” the quality of
the results for the same ‘function of interest’ f is

if e’ = f (De’) and e” = f (De”) then De’ ≤  De” implies e’ ≤  e”

6 Data Quality for Spatial Data
The model developed is fully general and does not imply that the data describe spatial objects
or situations. For spatial data, the model can be made more specific:

• space consists of spatial elements,
• observation functions group (typically nearby) elements (Tobler 1979b) and determine a

single value for the group of elements.

6.1 Model of space
For modeling purpose the model of space for the world and for the observed representations of
the world have the same structure:
Space is modeled as set of spatial objects - which will be called resels (Tobler 1979a), which
are jointly exhaustive and mutually disjoint (JEPD). For each of these spatial objects a value is
known (or observed). For each resel the area is known.

The resels are arranged in a data structure S, which allows the traversal of all resels to
apply a certain function (map) and to merge resels.

S = a1, a2, a3 , …, an

Σ a’ = a1 + a2 … + an

This model of space is not the most general one - it does not include values given as
functions over the space, (this is left to future work) - but covers a very large set of situations
and includes at least raster and vector models as customary used in GIS.

6.2 Model of Observation
A spatial observation function determines the value of the observed quantity for an area which
is larger than a single resel. It assumes that there exists some grouping function, which groups
sets of resels (JEPD). The grouping function returns a set of resels (Bruegger 1995). The
function ‘instant-field-of-vision’ determines then a generalized value for this group of resels.

The concept of an ‘instant field of vision’ has been applied to the discussion of error
treatment by Bruegger (Bruegger 1994). It mimicks the human visual system, which perceives
a locally aggregated form of the real world. This is usually an averaged value of the values
encountered in this field of vision. This is directly related to the concept of an averaging filter
for convolution (Horn 1986).

This concept is essentially spatial because it relies on spatial correlation. Only if the
values within an instant field of vision are highly correlated, the resulting picture is informative.
A situation with low spatial autocorrelation, seen through an instant field of vision aggregation
(which is blurring), results in an uniform ‘gray’ image and does not inform.

7 Data Quality Description for Area Calculation
As a simple example, a user of data is interested in the calculation of the area. We will prove
that the area of the resel is an appropriate data quality measure which allows the prediction of
the error of the area calculated.

7.1 Observation
Without restriction of generality, the world is represented by a very fine raster and geographic
regions are represented by values for each resel to be in or out. The observation function, as



described above, considers all resel values within the field of vision and results in In or Out if
all resel are inside (outside) and Maybe if both In and Out resels are found.

For a description of the data quality, the area of the resel is given. The observation process
sums the area of the cells in the group.

7.2 Calculation of area
The calculation of the area is the sum of all the resels and 0 otherwise. The error measure is
then the sum of the area of the resel with value Maybe.

The most likely value for the area is then the mean between In and (In + Out) resel and the
true value must lie between the values (sum In) and (sum In + sum Maybe).

7.3 Proof for properties of a data quality value
It is necessary to prove that this is

• an operational method to determine data quality,
• a data quality value and allows to predict the quality of the result,
• the data quality measured on an ordinal scale, for which the data quality transfer

function preserves order.

7.3.1 Data quality is predictable
To show that data quality is predictable, given the value of the data quality of the data, means
to show that the diagram in Figure 2 above commutes (within the tolerance). In particular, from
a given observation function follows a determined data quality. The instant field of vision
function sketched above is a coarsening function, which has this property:

v = area (D) = area (coarsened (W))
e = area (sum of mixed (coarsened (W))

and using maximal error, the interval [t, t + u] must be included in [v, v + e], which
simplifies with u=0 to the statement v <= t <= v + e, which is here:

f.w = area (D) = area (coarsened (W)) < area (W)

because only if all four pixels in a group have the value In, the coarsened representation
has the value In; in all other cases the value is Mixed or Out.

v + e = area In (coarsened (W) + area Mixed (coarsened (W)) = area (in or mixed) coarsened (W)
= total_area (W) - area_out ( coarsened(W) )  > total_area (W) - area_out (W)
area_out (coarsened (W)) <  area_out (W)

7.3.2 Data quality transfer function preserves order
To show that the data quality transfer function preserves order, means to show that if the data
quality of a data set 1 is less than the data quality of a data set 2, then the result achieved from
data set 1 will be less accurate then the result from data set 2

De’ < De” follows q (De’) < q (De”)

A dataset d2 derived from a dataset 1 by the given coarsening operation, has a data quality
corresponding to the area of the groups in the ‘instant field of vision’. For simplification, we
assume here that the space is represented by a regular raster and the grouping takes four
neighboring cells - similar to the quadtree construction rule. This simplifies the argument of the
proof, but even if irregular groupings are selected, the result is the same (but the proof requires
induction over the size of the groups). Under this assumption, the error measure for the dataset
D2 is 4 (assume the area of a single cell is 1), thus clearly larger than D1 = 1.

It remains to show that e’ = f (D’) < e” = f (D”). The data values must be the same
(except for the coarsening), thus we must show that f ( )′D  < f (D”), or here f (1) < f (4).

Consider that the error De for the area calculation is the sum of the area of the mixed
pixels. Coarsening translates each group in a single pixel, with value Mixed if not all values in



the group are the same (and not mixed). The area of the mixed pixels can only increase, thus f
(D’) < f (D”).

7.4 Formalisation for a raster model
The above model is intentionally very abstract. To translate it quickly into a working program,
a raster representation of the world is assumed and the grouping collects four cells to a
generalized one.

The world is represented by a very fine raster (the raster cell can be thought of as
arbitrarily but finitely small). A region is represented as a raster with cells which are marked in
or out, and it is assumed that the regions represent natural phenomena like forest, urban area
etc. with high spatial autocorrelation. The function of interest is an area calculation, which
reduces to a count of raster cells multiplied by the area of a cell. The observation is producing
a raster of coarser resolution, taking into account the many cells from the world which fall into
a data cell; cell values for data are either In, Out or Mixed (in case not all world cells are in or
out). The area calculation in the data values counts the In pixels for the value and the Mixed
pixels for the error. A computed value is acceptable if the true value is in the interval between
the In count and the sum of the In and the Mixed cell count.

8 Conclusions
Data quality descriptions are related to the intended use of the data, no generic solution.
Large classes of ‘functions of interest’ exist to work with the same data quality description.

Show that I propose is ‘operational, quantitative and ..’

A few hypotheses relate to this framework:

• which operations can be integrated in this framework for data quality description by area
of cell (i.e. raster cell size). It appears as if most (if not all) operations in Tomlin’s Map
Algebra (Tomlin 1983; Tomlin 1994) propagate error in the described form.

• one might be tempted to call operations which behave reasonable under this error
measure as ‘essentially spatial’ and operations which depend on the

• the method assumes a strong spatial autocorrelation - which is also dependent on the size
of the neighborhood. Phenomena which are not strongly autocorrelated at the scales (i.e.
raster sizes) considered, cannot be covered by this approach.
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