
Spatial Communication with Maps:
Defining the Correctness of Maps Using a Multi-Agent

Simulation

Andrew U. Frank

Dept. of Geoinformation
Technical University Vienna

frank@geoinfo.tuwien.ac.at

Abstract. Maps are very efficient to communicate spatial situations. A
theoretical framework for a formal discussion of map production and
map use is constructed using a multi-agent framework. Multi-agent
systems are computerized models that simulate persons as autonomous
agents in a simulated environment, with their simulated interaction. A
model of the process of map production and map use is constructed
based on a two -tiered reality and beliefs model, in which facts describing
the simulated environment and the simu lated agents’ beliefs of this
environment are separated. This permits to model errors in the persons’
percep tion of reality.
 A computerized model was coded, including all operations: the
observation of reality by a person, the production of the map, the
interpretation of the map by another person and his use of the
knowledge acquired from the map for navigation, are simulated as
operations of agents in a simulated environment.

1 Introduction

Daily experience tells us that maps are a very efficient and natural way to communicate
spatial situations. Small children produce maps spontaneously and maps are among
the earliest human artifacts. However, we seem not to have a good understanding how
maps communicate spatial situations. Formal models for the processes of map
production and use are missing. This leaves judgment of map quality to a large degree
subjective, as map construction and map reading are both implying intelligent human
interpretation. A person using a map knows the general morphology of the terrain and
uses this knowledge to draw appropriate conclusions from the graphical signs on the
map. Unfortunately, this general assumption of intelligent interpretation breaks down
in unfamiliar terrain when a map is most needed. A more objective measure for
correctness of a map, which does not rely on additional knowledge, is required. So far,
we can only define consistency of a database as the absence of internal contradiction
in a data quality. A formal definition for correctness, i.e., the corre spondence between

gruber
Textfeld
Frank, A.U. "Spatial Communication with Maps: Defining the Correctness of Maps Using a Multi-Agent Simulation." In Spatial Cognition Ii (International Workshop on Maps and Diagrammatical Representations of the Environment, Hamburg, August 1999), edited by Ch. Freksa, W. Brauer, Ch. Habel and K. F. Wender, 80-99. Berlin Heidelberg: Springer-Verlag, 2000.

data and reality, cannot be constructed, as it would need to bridge between reality and
the formal representation.

Formal methods to define correctness of geographic data are urgently needed in
the emerging business with geographic information. It is necessary to assess the
quality of geographic data collections and compare them. For example, we must be
capable of comparing the quality of competing data providers for In-Car Navigation
Systems and point out errors based on objective criteria and not just based on
anecdotes. The unfortunate adventure of a car driver following the advice of his In-
Car navigation system to cross a river over a bridge was widely published. Too late,
when the car was already floating in the river, he noticed that there was no bridge but
only a ferry!

In this paper a multi-agent formalism is used to produce a model of map production,
map communication and map use. Multi-agent systems are computerized formal
models, which contain a modeled environment and autonomous agents, which interact
with this environment (Ferber 1998; Weiss 1999). The model formalizes the processes
involved (Figure 1); it is not intended to be used for actual navigation in a city. I use
here a simple task to make the discussion concrete; namely, the production and use of
a small street network map for navigation. The model constructed simulates:
• The environment, which is constructed after the example of a small part of down -

town Santa Barbara (Figure 4);
• A map-maker who explores the environment and collects information, which he

uses to construct a map of the area; and
• A map-user who acquires this map to gain knowledge, which he uses to navigate in

this environment.

Fig.1. An agent producing a map and another agent using a map f or navigation

The environment represents the world in which persons live and the agents represent
the persons who make and use maps (Figure 2). The simulation includes multiple
agents – at least one map-making agent and one or several map-using agents. In the
simulated environment, it is possible to define what it means that a map is correct and
how to compare the effectiveness of map communication with verbal communication.
The definitions point out the strong connection between correctness of a map and t he
intended use of a map or spatial data set.

Multi-agent systems have been used previously for map generalization (Baeijs,
Demazeau et al. 1995), where different agents apply rules to a given map graphics to
produce a generalized map. The approach here is very different; we do not intend to
model a part of the map production process, but to model the complete process, which
starts with data collection in reality, produces the map and then the process of map
use: reading the map to navigate in an unknown territory.

Real World Situation Multi-Agent Model
Real World Situation Model
World Environment
Person Agent
Map-maker Map-making agent
Map user Map using agent
Fact Belief

Fig.2. Mapping from reality to model

Braitenberg has introduced computational models in psychology (Braitenberg
1984) and demonstrated how insight can be gained from a fully simulated (synthetic)
model. The agents used here are nearly as simple as Braitenberg’s “vehicles”; they are
sufficient to contribute to our understanding of correctness and effectiveness of
maps. Correctness of the map is judged within the model as the success of the agents
in navigating in the environment. Effectiveness of the map can be judged by comparing
the size of different representations to communicate the same information between
agents. One can demonstrate that verbal descriptions are equally effective if one has
to communicate a single route, but are inefficient to communicate a complex spatial
situation, e.g., the street segments in a downtown area.

To construct a computational model for map production and map use is novel. The
model uses a two-tiered reality and beliefs representation, in which reality (facts) and the
agents’ cognition (beliefs) are represented separately (Figure 1). Errors in the agent’s
perception of reality or errors in the production or reading of artifacts like maps,
representing and communicating an agent’s (possibly erroneous) beliefs can be
modeled. It is possible to include imaginary or contrafactual maps as well. The
formalization is in an executable functional language, using Haskell (Hudak, Peyton
Jones et al. 1992; Peterson, Hammond et al. 1997; Peyton Jones, Hughes et al. 1999).
The code is available from the web (http://www.geoinfo.tuwien.ac.at) and extensions
to investigate similar questions are possible.

2 Computational Models Separating Reality and Beliefs

Computational models are formalized methods to describe our understanding of
complex processes. They have been extremely successful in many areas, especially
modeling aspects of our physical environment where models of reality and models of
processes are linked (Burrough and Heuvelink 1988). They have been less successful
in the information domain, in my opinion because the linkage between the static data
describing reality and the processes of data observation, data collection and data use
has not been achieved (Frank 1998). The described two -tiered reality and beliefs

computational model, where the simulation contains separate representations of the
environment and representations of the agent and its knowledge about the environ-
ment as two separate data sets, overcomes this problem, because the observation and
data use processes are explicitly included. Following an AI tradition, the agent’s
knowledge is called ‘belief’ to stress the potential for differences between reality and
the agent’s possibly erroneous beliefs about reality (Davis 1990).

The model takes into account many of the often-voiced critiques against formal
models of cognition. In terms of Warfield and Stich (Stich and Warfield 1994, p. 5ff)
models of cognition must have three properties :
• Naturalness: The semantics of the mental representations are linked to the opera-

tions of the agent observing the environment and acting in it. These observation
operations are part of the model and their properties described.

• Misrepresentation is possible, as the model contains separate representations for
the data, which stand for reality, and the data, which represent an agent’s beliefs.
The models of observation processes may produce errors; the actions may not use
the information the agent has correctly represented.

• Fine-grained meanings are achieved, as concepts and what they are linked to in
reality are separate. It is possible that the agent maintains beliefs about two differ-
ent concepts, only later to find out that the two are the same.

• The model constructed here has these properties:

2.1 Naturalness and Semantics

The semantics of the mental operations on the beliefs are directly connected to the
person’s bodily actions (Johnson 1987): mentally following a street segment’s mental
representation is given meaning through the correspondence with the physical loco-
motion of the agent along a street segment. This correspondence is kept in the model;
the simulated mental operations of the agents are linked to the simulated bodily
actions of the agents. The model is therefore not disembodied AI (Dreyfuss 1998)
because the linkage between bodily actions of the agents and their mental representa-
tion is direct and the same as in persons (Lakoff and Johnson 1999).

Fig. 3. Instructions how to draw Chinese characters (two simple and two complex ones
from Tchen 1967)

“Information itself is nothing special; it is found wherever causes leave effects”
(Pinker 1997, p. 65-66). The map product can be seen as the sequence of drawing steps
(the causes) the map-maker follows to produce it and the map-reader does retrace
these steps in his map reading process. It is instructive to observe that Chinese

characters are not learned as figures but as a sequence of strokes (Figure 3). This is
not only important for production, but also for recognition of signs created at different
levels of fluidity. Westerners often copy Chinese characters as a picture and produce
images, which are difficult to recognize.

In the multi-agent model, the structure of the operations for locomotion along a
street segment, for drawing a street segment or for following a drawn street segment
and for mentally following the belief about a street segment can be coded as the same
polymorphic operation, applicable to different data structures; e.g., maps, real streets,
etc. (not stressed in this presentation).

2.2 Misrepresentation

Persons – both the map-maker and the map-user – can make errors in the perception
and form erroneous beliefs about the environment. The maps produced can also have
errors or the map reading operation can include errors into the beliefs map-users form
about the environment. Such errors or imprecisions can be modeled in the beliefs of
the agents. Eventually, agents are prohibited to achieve ‘impossible’ states of the
environment and are stopped in the model from executing impossible actions; e.g., to
travel along a street not present in the environment.

2.3 Fine-Grained Meaning

Concepts can have various levels of detail – they can be ‘read’ from a map and
therefore have no experience, e.g., a visual memory associated, or can have a partial
knowledge, e.g., a street segment can have a known start but a not yet known end. It
is possible to realize later that two different concepts are linked to the same real object,
e.g., the intersection where ‘Borders’ is and the intersection of ‘State Street’ and
‘Canon Perdido Street’, which is the same in Santa Barbara (Figure 4). This is possible
in multi-agent models, but not included in the simple model presented here.

3 Focused Discussion Based on an Example Case

The investigation is focused with a specific set of tasks in a concrete environment,
namely finding a path between named intersections in a c ity street network. Research
in cartography usually concentrates on transformations applied to maps – mostly
discussions of map generalization (Weibel 1995) – situated in a diffuse set of implied
assumptions about the intended map use and the environment represented
(Lechthaler 1999). Concentra tion on a very specific example avoids this problem. I
select here the communication with maps about a city environment for the purpose of
navigation,. The environment and the tasks are fixed. Then the construction of a
computational model becomes possible.

The environment is maximally simplified to make this paper self-contained. It in-
cludes street segments, which are connected at street intersections (Figure 4). Many
interesting aspects of real cities are left out: for example, one-way streets are excluded
as well as turn -restrictions at the intersections; cost of travel is proportional to dis -
tance; agents at a node can recognize for all street segments which node they are

connected to, etc. The model of the environment is static, as no changes in the
environment are assumed; only the position and beliefs of the agent change in the
model. Nevertheless, the model retains the important aspect of exploring an
environment and navigatin g in it using the knowledge collected by others. Even from
this generalized model, interesting conclusions can be drawn.

Fig. 4. A small subset of streets of downtown Santa Barbara (with node Ids as used in
the code)

Agents are located in this environment at a street intersection oriented to move to a
neighboring intersection. They can turn at an intersection to head a desired street
segment and can move forward to the end of the street segment they are heading.
Agents recognize intersections and street segments connecting them by labels
without error. This follows roughly a simplification of the well-known TOURS model
(Kuipers and Levitt 1978; Kuipers and Levitt 1990). Operations of the agents simulate
the corresponding operations of pers ons in the real world. For example, “observe”
applied to agents always means the simulated execution in the model.

The map-making agent is exploring the modeled reality and constructs knowledge of
each segment traveled and accumulates this knowledge in its memory. From this
knowledge, a map is produced as a collection of lines and labels, placed on paper.
This map, which looks much like Figure 4 as well, is then given to the agent that
represents the map user.

The task the map-using agent is carrying out is to navigate between two named street
intersections. The agent is constructing knowledge from the map drawn by the map-
making agent and then plans the shortest path to the destination using the knowledge
gained from the map.

4 Multi-Agent Theory

Multi-agent systems are a unifying theory for a number of developments in computer
science. They have interesting applications in robotics, e-commerce, etc., but they
also provide a fruitful model to discuss questions of communication and interaction,
for example, in Artificial Life research (Epstein and Axtell 1996). Multi-agent sys tems
consist of a simulated environment with which one or more simulated actors interact
(Figure 5).

Actors perceive through sensors the environment and have effects on the
environment through their actors. The agents are part of the environment and are
situated in it. Most authors include direct communication among agents (Ferber 1998;
Weiss 1999), but the approach used here models communication between agents as
the exchange of artifacts (i.e., a map). The operations of the actors can be described as
algebras.

Fig.5. Environment and actors

The representation of this computational model is two -tiered: it separates com-
pletely the facts which stand for the environment, i.e., modeled reality, and the set of
beliefs the agents hold about the environment (Figure 6). Maps are produced by the
agents and exist in the environment. They can be used (‘read’) by the agents; they
encode the knowledge the map-making agent has constructed during its exploration of
the environment and communicates it to other agents.

Fig.6. The different kinds of representations

The environment, which represents the world in the model, is encoded by a data
structure, which represents the street graph and the locations of the intersections with
coordinates. This representation could be extended to include labels for street names
and the address range for each side (following the DIME model, which is a widely
used representation (Corbett 1975; Corbett 1979)). This constitutes in the model
‘reality’ – it is therefore by definition complete and correct (and assumed here as
static).

Simulated agents observe this environment and form a set of beliefs about it. The
agents’ beliefs may be incomplete, imprecise or even wrong; they are the results of the
specific observation process, which is part of the computational model. The agents do
usually not have knowledge of the coordinates of locations. For simplicity, only
incomple teness of knowledge will be considered here, but investigating the effects of
imprecise or vague spatial knowledge (Burrough and Frank 1995; Burrough and Frank
1996) and comparing strategies to compensate for missing information is possible. The
agent can produce artifacts, which represent their knowledge. They simulate Maps in
this environment.

5 Correctness of Maps

Formalizing environment, agents and maps allows us formally define correctness of a
map following Tarski as correspondence between the map and the environment, which
the map should represent. A representation of reality is correct, when opera tions in
reality have results, which correspond to the results of corresponding opera tions in
the representation. Applied to navigation: a map is correct, if the person using it plans
the same path as a person, who knows the environment well, would walk.

This is best expressed as a homomorphism diagram (Figure 7) as usually drawn in
category theory (Pierce 1993). It is based on a mapping f between two domains (the
domain of agent’s representation and the environment) and two corresponding opera-

tions sp and sp’ (one to plan a shortest path in the agents’ mind and the other walking
the shortest path in the environment), such that first mapping the input from one to
the other domain and then applying the operation, or first applying the operation and
then mapping the result is the same:

f (sp (l)) = sp’ (f (l)).

In general, formalization of Tarski semantics is not possible – the chasm between the
world and the representation cannot be bridged. In the multi-agent model, however,
both the environment and the agents’ beliefs are part of the model and represented
(but we gave up the restriction that the environment in the model is representing
exactly some real-world situation). The correspondence between an agent’s beliefs
and the environment is definable as a homomorphism (Figure 7), where objects and
operations are set into correspondence: the (simulated) mental act of an agent deter-
mining a path and the actual (simulated) walking of the path must be homomorphic.
This means that the agent’s beliefs about distances must be precise enough to
determine the correct shortest path.

Fig. 7. Homomorphism between Real and Mental Representation

The processes of map making and map use are combinations of homomorphisms
(Figure 8). The construction of a map is based on the (correct) mental representation
of the map-maker gained through exploration of the environment. The mental repre-
sen tation of the map user is then constructed while reading the map. If each square in
Figure 8 is a homomorphism, then a homomorphism from begin to end applies
(Walters 1991). In all cases, the homomorphism maps not only between the simulated
objects of the environment (street segments, intersections, respectively lines and
points on the map), but also between the corresponding simulated operations of the
agents (walking a street segment, imagine walking the street segment, drawing a line,
etc.).

For complex decisions it may be difficult to show that these mappings are homo -
morphic. Inspecting the algorithm used to determine the shortest path (Dijkstra 1959;
Kirschenhofer 1995), one finds that only two operations access the representation of
the data. Initially, all the nodes in the graph must be found (other forms of the algo-
rithm need the nodes connected to a given node) and the distance between two
nodes. It is, therefore, only necessary to show that these operations are ma pped
correctly between the domains (see section 8).

Fig.8. Combinations of homomorphisms

6 Formalization

For a multi-agent model, we have to represent the environment and the agents to-
gether with their interactions. We select here an algebraic approach and define classes
with operations. To implement the model, data representations are also given. The
formalization uses the Haskell language syntax (Peyton Jones, Hughes et al. 1999) to
describe algebras (as classes) with the operations defined for the parameterized types
and representations (as data or type).

The next subsections show the abstractions selected for street environment, the
agents, map-makers, maps and map-users. For each type of object, the necessary
operations are described. The representations selected here are given for illustration
purposes and the goal is simplicity of the presentation. They document what informa -
tion must be available, but any other representation for which the algebras given can
be implemented would serve as well. No claim is made that the representations given
here resemble the representations used in human mental operations

6.1 Environment

The simulation is in an environment, which contains the agents with their beliefs, the
street network, and, for simplicity, a single map. It can be represented as a data
structure, consisting of

data Env = Env [Intersection] [Agent] Map

The next subsection define now the data for these three parts:

6.2 Static Street Environment

The street network consists of s treet segments (edges), which run from an intersection
to the next. The intersections are called nodes and the street network is represented as
a graph. The algebra for the street-network must contain operations to determine the

position of a node as a coordinate pair (Vec2 data type), test if two nodes are con-
nected and find all nodes, which can be reached from a given node (operations con-
nectedNodes); the shortest path algorithm requires to find all nodes and to get the
distance between two nodes. Two operations to add a node and to add a connection
to the network are also included.

class Streets node env where
 position :: node -> env -> Vec2
 connected :: node -> node -> env -> Bool
 travelDistance :: node -> node -> env -> Float
 connectedNodes :: node -> env -> [node
 allNodes :: env -> [node]
 addNode :: (node, Vec2) -> env -> env
 addConnect :: (node, node) -> env -> env

Nodes are just numbered (Figure 4) and Intersections consist of the Node (the node
number as an ID), the position (as a coordinate pair) and a list of the connected node
numbers.

data Intersection = IS Node Vec2 [Node]
data Position = Position Node Vec2
data Node = Node Int | NoNode
data Vec2 = V2 Float Float

6.3 Agents

The agents have a position at a node and a destination node t hey head to. They can
either move in the direction they head or can turn to head towards another
destination. They are modeled after Papert’s Turtle geometry (Papert and Sculley
1980; Abelson and Disessa 1986)). After a move, the agent hea ds to the node it came
from (Figure 9). This behavior can be defined with only four axioms:

Fig. 9. The position of an agent before (state1) and after a move (state2)

1. Turning (changeDestination) does not affect the position:
 pos (a, (changeDestination (a,n,e)) = pos (a,e)

2. Moving brings agent to the node that was its destination:
 pos (a, move (a,e)) = destination (a,e)

3. The destination after a move is the location the agent was at before the move:
 destination (a, move (a,e)) = pos (a,e)

4. Turning (changeDestination) makes the agent’s destination the desired intersection:
 destination (a, changeDestination (a, n, e)) =
 if n elementOf (connectedNodes (pos (a, e) e) then n
 else error (“not a node”)

The agent constructs knowledge about the environment while it moves. The operation
learnConnection constructs the belief about the last segments traveled (start and end
intersection and its length) and accumulates these beliefs about the environment. The
operation exploreEnv lets an agent systematically travel all connections in the envi-
ronment and accumulate complete knowledge about it. Agents can determine the
shortest path (here simulated with the algorithm given by Dijkstra) to a destination
based on their knowledge and move to a desired target following the planned path
using moveAlongPath (using single steps of moveOneTo).

class Agents agent env where
 pos :: agent -> env -> Node
 destination :: agent -> env -> Node

 move :: agent -> env -> env
 changeDestination :: agent -> Node -> env -> env

 moveOneTowards :: agent -> Node -> env -> env
 learnConnection :: agent -> env -> env
 exploreEnv :: agent -> env -> env

 moveAlongPath :: [Node] -> agent -> env -> env
 pathFromTo :: agent -> Node -> Node -> env -> [Node]
 moveTo :: agent -> Node -> env -> env

Positions are tuples with a node and a coordinate pair; an edge connects two nodes
with a certain cost, which is encoded as a real number. A possible data structure for
agents contains the beliefs as a list of edges and position recordings, which are used
only by map-makers:

data Agent = Agent AId Node Node [ConnectionCost] [Position]

data AId = AId Int deriving (Show, Eq)
type ConnectionCost = Edge Node

data Cost = Cost Float | CostMax
data Edge n = Edge n n Cost

An ordinary agent after having traveled over some segments has a knowledge, which
is represented as (using the codes from Figure 4):

Agent A1 at Node 4 destination Node 2 beliefs
 Node 4 to Node 2 dist 3.20156
 Node 2 to Node 1 dist 1.41421

6.3.1 Map Making Agent. The map-making agent is a specialized agent and explores
first the environment and then draws a map. In addition to the observation of
connections, any agent is capable; it can observe the coordinate values of his current
position. The map-maker can draw a map based on his current knowledge or can draw
a sketch of a path between two nodes (used in section 9, Figure 10).

class MapMakers agent environment where
 isMapMaker :: agent -> environment -> Bool
 getCoords :: agent -> environment -> Vec2
 learnPos :: agent -> environment -> environment
 drawMap :: agent -> environment -> environment
 drawPathMap :: Node -> Node -> agent -> environment ->
environmentchange – is mapMaker

A map-making agent after having visited node 1,2 and 5 has also coordinates for these
nodes (using again the codes from Figure 4):

Agent A1 at Node 5 destination Node 8 beliefs
 Node 8 to Node 5 dist 3.60555
 Node 3 to Node 5 dist 5.09902
 Node 5 to Node 2 dist 2.5
 Node 4 to Node 2 dist 3.20156
 Node 2 to Node 1 dist 1.41421
 Node 3 to Node 1 dist 3.20156
 visited
 Node 5:(5.0/8.0)
 Node 2:(3.0/6.5)
 Node 1:(2.0/5.5)

6.3.2 Map-Using Agents.
The map-using agents have the task of moving from the node they are located at to
another node in the environment. Their locomotion operations are the same as for all
agents. They intend to travel the shortest path (minimal distance). A map-user first
reads the map (using readMap) and adds the knowledge acquired to his set of beliefs
about the environment before he plans the shortest path to his destination node.

class MapUsers agent environment where
 readMap :: agent -> environment -> environment

6.4 Maps

Maps are artifacts, which exist in the environment (for simplicity, only one map is
present in the model at any given time). The map-making agent produces the map
usually after he has collected all beliefs about the environment. The map represents
these beliefs in a (simulated) graphical format.

Maps are simulated in the model as a list of line segments (with start and end map
coordinates) and labels at the intersection coordinates; one can think of this as
suitable instructions for drawing a map with a computerized plotter. The map, in the
form of the drawing instructions, is then read by the map-using agent and translated
into a list of beliefs. This representation of the map avoids the need to simulate

drawing a bitmap and then using pattern recognition to analyze it; it leaves out the
graphical restrictions of map-making and map reading.

Maps can be drawn and read, as well as sketches of a path (Figure 10):

class Maps aMap where
 drawTheMap :: [ConnectionCost:] -> [Position] -> aMap
 drawAPath :: [Node] -> [Position] -> aMap
 readTheMap :: aMap -> [ConnectionCost]

They are represented as

data Map = Map [Line] [Label]
data Line = Draw Vec2 Vec2
data Label = Label Node Vec2

7 Coding

The formalization has been coded in the functional notation of Haskell (Peyton Jones,
Hughes et al. 1999). In a purely functional language, values cannot change and each
movement of an agent is recorded as a new snapshot of the environment and not as a
destructive change of the representation. This allows the use of standard
mathematical logic, especially reasoning with substitution, and does not force to use
temporal logic as would be necessary to reason with imperative programming
languages.

Using a functional notation with some restrictions allows constructing executable
prototypes (models for the abstract algebras constructed). These help to check that a
formal system captures correctly our intentions. The following test starts with two
agents “Jan” and “Dan” (more would be possible) in an environment with the streets
from the center of Santa Barbara (with the coding shown in Figure 4). Jan is a “map-
maker” and explores the environment. We can ask him for the path from Node 1 to
Node 9 and get the shortest path. The same question to Dan gives no answer, as he
has no knowledge yet. If Jan draws a map (env2) and Dan reads it (env3), then Dan can
give the correct answer as well. This answer is the same as if Dan had explored the
environment himself (env1a). The simulated system exhibits this behavior and confirms
that our intuition about maps and the formalization correspond as explained in section
5. The following text shows a sequence of code and the responses from the system:

-- readable names for the agents:
jan = AId 1
dan = AId 2

-- create two agents at node 1 destination in direction of node 2

jan0 = Agent jan (Node 1) (Node 2) [] []
dan0 = Agent dan (Node 1) (Node 2) [] []

env0 = Env santaBarbara [jan0, dan0] emptyMap
--the two agents with the streets of Santa Barbara (figure 9)

env1' = learnPos jan env0
env1 = exploreEnv jan env1'

-- the positions of jan and dan
janpos1 = pos jan env1
danpos1 = pos dan env1

 test input> janpos1
 Node 3
 test input > danpos1
 Node 1

-- the path from 1 to 9
janpath1 = pathFromTo jan (Node 1) (Node 9) env1
danpath1 = pathFromTo dan (Node 1) (Node 9) env1

 test input> janpath1
 [Node 1,Node 2,Node 4,Node 7,Node 9]
 test input> danpath1
 []

-- jan draws map and dan reads it
env2 = drawMap jan env1
env3 = readMap dan env2

danpath3 = pathFromTo dan (Node 1) (Node 9) env3

 test input> danpath3
 [Node 1,Node 2,Node 4,Node 7,Node 9]

-- this path is the same as if dan had explored the environment itself:

env1a = exploreEnv dan env0
danpath1a = pathFromTo dan (Node 1) (Node 9) env1a
env2a = drawPathMap (Node 1) (Node 9) jan env1
env3a = readMap dan env2a

danpath3a = pathFromTo dan (Node 1) (Node 9) env3a

 test input> danpath3a
 [Node 1,Node 2,Node 4,Node 7,Node 9]

8 Definition of Correctness of a Map

In this environment, a formal and stringent definition for a map to be a correct repre-
sentation of reality is possible. A map is correct if the result of an operation based on
the information acquired from the map is the same as if the agent would have explored
the world to gain the same information. The proof is in two steps: completeness and
correctness. Completeness assures that all relevant elements – here nodes and
segments – are transformed between the respective representations. Correctness
requires that the transformations preserve the properties important for the decision
(here the determination of the shortest path).

8.1 Completeness: Collecting All Observations into Beliefs

The operations to explore the environment and gradually learn about it or the explora-
tion of a map are a repeated application of an operation ‘learnConnection’, which is

applied to all segments in the environment, respectively, the map. The construction of
the beliefs of an agent about the environment can then be seen as a transformation
between two data structures: the data structure which represents the environment is
transformed into the internal structure of the beliefs. Similarly is the construction of
the map a transformation between the data structure of the agent’s beliefs into the list
of drawing instructions; reading the map is the transformation of the data element of
the map into beliefs.

We have to show that these transformations are applied to all elements and
nothing is ‘overlooked’. The exploreEnv operation is quite complex. It explores a node
at a time, learning all segments, which start at this node, and keeps a list of all nodes
ever seen. The environment is completely explored if all nodes where completely
explored.

Drawing the map is a transforma tion procedure; coded with the second order func-
tion map, which applies a transformation to each element in a list. The transformation
changes the belief into a drawing instruction. Reading the map is a similar function,
taking line after line from the map and building a list of beliefs.

8.2 Correctness: Transformations Preserve the Important Properties

The different transformation for individual objects must preserve the properties
necessary for the correct determination of the shortest path.
• A street segment is added to the beliefs after it is traveled; having traveled the

segment ensures that the segment is viable and the cost is the cost just observed.
Surveyors correctly observe the coordinate values for intersections.

• Map-makers translate each segment into a line drawn. The positions are based on
the observed coordinate values for intersections.

• Map-users read the drawn line as viable segments and use the length of the line as
an indication of the cost.

These operations guarantee that beliefs about viable street segments by the map-
maker are communicated to the map-users. The (relative) cost is communicated
correctly if the cost function is based on distance only. These transformations could
be more realistic and include systematic and random errors a nd we could then observe
the effects on the determination of the shortest path.

8.3 Discussion

In this example, where the observation and the use of the map are based on the same
operation, nothing can go wrong. The model, however, indicates the potential for
errors in communication. Here two examples:

8.3.1 Problems with the classification of elements. The world contains different
classes of pathways, which can be driven, biked or walked, and not all segments can
be passed with all vehicles. The classification of the road must be included in the map
to allow use of the map for car drivers, bikers and persons walking. These problems
seem trivial, but some of the current In-Car Navigation systems recommend paths,
which include segments of a bike path!

In the simulation, if the exploring agent uses the same mode of locomotion as the
map user, then correct communication is assured. If the exploring agent rides a
(simulated) bike and the map using agent drives a (simulated) car, one may discover
that the shortest path determined is using segments of a bike path the car driving
agent cannot travel on or may find that a shorter route using an interstate highway is
not found, because the map-making agent could not travel there and did not include it.

In general, the map-makers are not using the same operation that the map-user exe -
cutes. The correctness of the map then depends on the composition of the
transformation functions from observations of the map-maker to beliefs in the map
user. The same criteria must be used during observation when the coding of an object
is fixed. For example, while classifying roads using air photographs only road width,
but not police regulations, are available to decide on the coding. This may classify
some wide road segments which are closed for traffic as viable.

Users with different tasks may require different maps (or at least careful coding). A
map for a hiker must be different from the map for driving – and indeed road maps for
car driving are published separately from the ma ps for bikers or hiking maps. If a
geographic database should be constructed for multiple purposes, then the properties
which differentiate uses of objects must be recorded separately: the physical width
and carrying capacity of a road must be recorded separately from the traffic regula-
tions for the same road. It becomes then possible to establish the particular combina-
tions of classifications, which simulate the intended type of use.

8.3.2 Problems with the transformation.
If the function to draw the map is using one of the many map projections, which do
not preserve distances, then the representation of distances on the map is not repre-
sentative of the distance between the nodes (but systematically distorted). The map-
reader’s naïve approach to link the distance between two nodes on the map with the
cost for travel is then wrong and can lead to an error in determining the shortest path.
More questions arise if the travel cost is a complex function of distance and other
elements, e.g., the Swiss hiker’s rule:

time (h) = distance(km)/5 + total ascent (m)/300 + total descent (m)/500

9. Effectiveness of Maps to Communicate Spatial Information

In this context, one may address the question why maps are so effective to communi-
cate information about a complex environment in comparison to verbal descriptions.
Take the small part of downtown Santa Barbara in Figure 4 and imagine communi-
cating the information verbally: it would read as a long list, describing each segment,
with the intersection it starts and ends:

The first segment of State St runs from Canon Perdido St to Ortega St, the next
segment runs from Ortega St to Cota St. The first segment of Anacapa St runs from
Canon Perdido St to Ortega St, etc., etc. This list contains a total of 12 segment
descriptions, is tedious and does not communicate well. Alternatives would use the
naming of 9 nodes and 24 incidence relations.

For areas where streets are regularly laid out, abbreviations could be invented. For
example, in large parts of Santa Barbara, it is sufficient to know which streets run
(conventionally) North-South and which East-West and to know the order in which
they are encountered. This does not work for areas where the street network is ir-
regular and a detailed description, for example, for areas, where an Interstate highway
or a railway line intersect and distort the regular grid.

A verbal description for a street network is tedious and verbose, because it must
create communicable identifiers for each object; for example, a name must be given to
each intersection, such that another street segment starting or ending at the same
location can refer to it. A graphical communication uses the spatial location to create
references for the locations and does not need other names. The incidence is ex-
pressed as spatial position on paper and picked up by the eye. The information re-
tained is the same, but the communication is more direct, using the visual channel. It is
curious to note that American Sign Language, which is a well-documented natural
language, uses a similar device of ‘location’ used as references. The speaker may
designate a location in the (signing) space before him to stand for a person or place he
will later refer to. A later reference to this person or place is then made by simply
pointing to the designated location, using the location as a reference to the objects
(Emmorey 1996).

The situation is different when only a specific path should be communicated. The
list of instructions is shorter and simpler than the sketch (Figure 10). The instructions
for a path from Borders (Intersection Canon Perdido St and State St) to Playa Azul
(Intersection of Santa Barbara St with Cota St):

Follow Canon Perdido Street to the East for one block,
Turn right and follow Anacapa Street for two blocks
Follow Cota St to the East for one block

Fig. 10. Sketch for path from Borders to Playa Azul

In the language of the agents, a list of nodes as the shortest path is communicate as:

[Node 1,Node 2,Node 4,Node 7,Node 9]

Each of the representations is short and can be communicated using a linear channel,
e.g., verbally). A sketch map would be somewhat more complex as the following
example of a simulated map demonstrates

env4 = drawPathMap (Node 1) (Node 9) jan env1

line:(2.0/5.5), (3.0/6.5),line:(3.0/6.5), (5.0/4.0),
line:(5.0/4.0), (6.0/3.0),line:(6.0/3.0), (8.0/4.0),
label Node 4 (5.0/4.0),label Node 7 (6.0/3.0),label Node 9 (8.0/4.0),
label Node 2 (3.0/6.5),label Node 1 (2.0/5.5),

10. Conclusion

A framework for the formalization of the production and use of maps and cartographic
diagram is described. The model is two-tiered; it contains a representation of what
stands for reality and what stands for the beliefs of multiple, simulated agents about
reality. The model is natural, allows misrepresentation and is fine-grained. It goes
beyond current models, as it permits to model the observation processes of the agents
and the agents’ actions, which use the information collected. It can include errors in
these processes or in the information stored.

The production and use of maps or diagrams for navigation can be described in
this computational model, which includes processes for exploring the environment
while traveling, casting the information collected by the agent into a graphical form,
which can be communicated to and be used by another agent. The semantics of the
map is directly related to the processes that observe reality or use the data.
Correctness of a map can be established in this formalization. It is directly related to
the connection between the operations used for observing and representing reality
and the operations the map users intend to perform.

Using an executable functional language to construct multi-agent models allows
experimenting. The code is very compact and takes only 5 pages, plus 3 pages for the
graph related utilities, including the shortest path algorithm. The code is available
from http://www.geoinfo.tuwien.ac.at.

In this multi-agent framework, other related questions can be explored. For example,
the effects of incomplete street maps on navigation can be simulated and tested, how
much longer the path traveled becomes and what are the best strategies for users to
cope with the incomplete information. One can also explore different strategies for map
users to deal with observed differences between the map and the environment.

Acknowledgements

This contribution is based on research I carried out at the University of California,
Santa Barbara. I thank both the National Center of Geographic Information and

Analysis, and the Department of Geography for the hospitality and the support they
have provided. I have greatly benefited from the discussion with the students in the
course ‘Formalization for GIS’ I taught here. Discussions with Dan Montello, Helen
Couclelis, Mike Goodchild, Waldo Tobler, and Jordan Hastings were invaluable to
sharpen my arguments.

I also thank Werner Kuhn, Martin Raubal, Hartwig Hochmair, Damir Medak and
Annette von Wolff for the patience to listen to and comment on these ideas in various
stages of progression. The contribution to help clarify my ideas made by Haskell is
invaluable, and I thank the Haskell community, especially Mark Jones, for the Hugs
implementation. The comments from two unknown reviewers were extremely useful for
the revision of the paper. Roswitha Markwart copy-edited the text and Hartwig
Hochmair improved the figures.

References

Abelson, H. and A. A. Disessa (1986). Turtle Geometry : The Computer As a Medium
for Exploring Mathematics. Cambridge, Mass., MIT Press.

Baeijs, C., Y. Demazeau, et al. (1995). SIGMA: Approche multi-agents pour la
generalisation cartographique . CASSINI'95, Marseille, CNRS.

Braitenberg, V. (1984). Vehicles, experiments in synthetic psychology . Cambridge,
MA, MIT Press.

Burrough, P. A. and A. U. Frank (1995). “Concepts and paradigms in spatial
information: Are current geographic information systems truly generic?”
International Journal of Geographical Information Systems 9(2): 101-116.

Burrough, P. A. and A. U. Frank, Eds. (1996). Geographic Objects with Indeterminate
Boundaries. GISDATA Series. London, Taylor & Francis.

Burrough, P. A. W. v. D. and G. Heuvelink (1988). Linking Spatial Process Models and
GIS: A Marriage of Convenience or a Blossoming Partnership? GIS/LIS'88, Third
Annual International Conference, San Antonio, Texas, ACSM, ASPRS, AAG,
URISA.

Corbett, J. (1975). Topological Principles in Cartography. 2nd International Symposium
on Computer-Assisted Cartography, Reston, VA.

Corbett, J. P. (1979). Topological Principles of Cartography, Bureau of the Census, US
Department of Commerce.

Davis, E. (1990). Representation of Commonsense Knowledge. San Mateo, CA,
Morgan Kaufmann Publishers, Inc.

Dijkstra, E. W. (1959). “A note on two problems in co nnection with graphs.”
Numerische Mathematik (1): 269-271.

Dreyfuss (1998). What Computers Still Cannot Do. Cambridge, Mass., The MIT Press.
Emmorey, K. (1996). The cofluence of space and language in signed language.

Language and Space. P. Bloom, M. A. Peterson, L. Nadel and M. F. Garett.
Cambridge, Mass., MIT Press: 171 - 210.

Epstein, J. M. and R. Axtell (1996). Growing Artificial Societies. Washington, D.C.,
Brookings Institution Press.

Ferber, J., Ed. (1998). Multi-Agent Systems - An Introduction to Distributed Artificial
Intelligence, Addison -Wesley.

Frank, A. U. (1998). GIS for Politics . GIS Planet'98, Lisbon, Portugal (September 9-11,
1998), IMERSIV.

Hudak, P., S. L. Peyton Jones, et al. (1992). “Report on the functional Programming
Language Haskell, Version 1.2.” ACM SIGPLAN Notices 27(5): 1-164.

Johnson, M. (1987). The Body in the Mind: The Bodily Basis of Meaning,
Imagination, and Reason . Chicago, University of Chicago Press.

Kirschenhofer, P. (1995). The Mathematical Foundation of Graphs and Topolo gy for
GIS. Geographic Information Systems - Material for a Post Graduate Course. A. U.
Frank. Vienna, Department of Geoinformation, TU Vienna. 1: 155-176.

Kuipers, B. and T. S. Levitt (1990). Navigation and Mapping in Large -Scale Space.
Advances in Spatial Reasoning . S.-s. Chen. Norwood, NJ, Ablex Publishing Corp.
2: 207 - 251.

Kuipers, B. J. and T. S. Levitt (1978). “Navigation and mapping in large -scale space.”
AI Magazine 9(2): 25-43.

Lakoff, G. and M. Johnson (1999). Philosophy in the Flesh . New York, Basic books.
Lechthaler, M. (1999). “Merkmale der Datenqualitaet im Kartographischen

Modellbildungsprozess.” Kartographische Nachrichten 49(6): 241-245.
Papert, S. and J. Sculley (1980). Mindstorms: Children, Computers and Powerful Ideas .

New York, Basic Books.
Peterson, J., K. Hammond, et al. (1997). “The Haskell 1.4 Report.”

http://haskell.org/report/index.html.
Peyton Jones, S., J. Hughes, et al. (1999). Haskell 98: A Non -strict, Purely Functional

Language.
Pierce, B. C. (1993). Basic Category Theory for Computer Scientists . Cambridge,

Mass., MIT Press.
Pinker, S. (1997). How the Mind Works . New York, W. W. Norton.
Stich, S. P. and T. A. Warfield, Eds. (1994). Mental Representation. Cambridge, Mass.,

Basil Blackwell.
Tchen, Y. -S. (1967). Je parle Chinois . Paris, Librairie d'Amerique et d'Orient.
Walters, R. F. C. (1991). Categories and computer science. Cambridge, UK, Carslaw

Publications.
Weibel, R. (1995). “Map generalization in the context of digital systems.” CaGIS 22(4):

259-263.
Weiss, G. (1999). Mu lti-Agent Systems: A Modern Approach to Distributed Artificial

Intelligence. Cambridge, Mass., The MIT Press.

