Frank, A. U., and A. Gruenbacher. "Temporal Data: 2nd Order Concepts Lead to
an Algebra for Spatio-Temporal Objects." Paper presented at the Workshop on
Complex Reasoning on Geographical Data, Cyprus (1 December 2001) 2001.

Temporal Data: 2nd Order Concepts lead to an
Algebra for Spatio-Temporal Objects

Andrew U. Frank and Andreas Griinbacher

Institute for Geoinformation, Technical University of Vienna
{frank, gruenbacher}@geoinfo.tuwien.ac.at

Abstract. The need for spatio-temporal data is widespread and obvious,
but current commercial GIS have only very limited support for it. The dif-
ficulties with temporal data seem to be connected to the preference for first
order formalisms underlying those systems. This paper proposes a second or-
der method to describe objects that change in time, and describes an algebra
over such objects.

The paper concludes with some general comments about the focus of com-
puter science on algorithms and their performance, and the need for distinc-
tion from information science, with its focus on the semantics of data and
operations.

1 Introduction

The world is ever changing. Some objects change so slowly that we have the illusion
of a static situation. This is the view of the world used in topographic mapping,
where only objects that change very slowly are included. Geographic information
systems that are influenced by the traditions of cartography tend to show a static
situation of the world, which we call a snapshot. We all know that maps are quickly
out of date due to the changes in the world. Considerable resources are spent to
keep geographic information systems used for administrative purposes up to date —
but still, these representations remain static snapshots of reality.

Administrative databases were designed to maintain the current (valid) state of
knowledge about the world in an organization, and make the data available to every
process that needs them. Database theory is related to first order predicate calcu-
lus; indeed there is a close connection between relational database theory (Codd,
1970, 1982; Ullman, 1988) and relation calculus (de Moor, 1992; Schroder, 1966)
(Gallaire et al., 1984). The theory for changing properties of a situation is situa-
tion calculus (McCarthy and Hayes, 1969), which is best used in the form recently
given by Reiter (to appear). The use of temporal logic seems to bring unnecessary
complications.

Administrative applications in the public administration require the history of
cases, and must be able to trace all changes to demonstrate the legality of the
procedures. Similar requirements follow from accounting and audit rules. Some
form of history management is possible without full-fledged support for temporal
data (Snodgrass, 1992).

New requirements are posed by systems to trace moving cars or airplanes in
flight; such examples motivate the approach suggested here. Managing data of
changing spatial objects, where boundaries or other attributes change in time, seems
to be even more difficult (Frank et al., 2000).

Generally, research on the treatment of spatio-temporal data advances only
slowly. The topic was included in the original NCGIA research agenda (NCGIA,
1989) and subject to an initial workshop at the University of Maine (Barrera et al.,
1991). The Ph.D. theses of Langran (1992) and Al-Taha (1992) dealt with two dif-
ferent limited aspects, namely land use and cadastre, but only in 1993 a specialist
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meeting of the NCGIA approached the issue (NCGIA, 1993). The number of contri-
butions about time related topics in the series of conferences on spatial information
theory which listed temporal aspects among the topics of interest increased very
slowly from 1992 to 2001 (COSIT’2001 conference). The Chorochronos project! ad-
vanced this fundamental theme further, but we are still far from a complete theory
and a corresponding practice.

This contribution suggests that the difficulties with temporal data can be linked
to the extensive usage of first order languages in computer science. Simply put,
first order languages are languages where variable symbols stand for individuals or
properties of individuals. Second order languages allow variable symbols to stand for
functions as well. Second order formalisms will be used in the remainder of this paper
to show a compact formalization for spatio-temporal objects with a corresponding
algebra.

The hypothesis of this paper is that all operations defined for a static situation
carry over almost trivially to time synchronous operations on changing values. This
paper is limited to the case of synchronous operations on changing dependent ob-
jects, but the extension to operations that cover more than a single point of time
seems possible.

We have experimented with an implementation of the approach presented in
this paper using the functional programming language Haskell (Peterson et al.,
1996). Haskell is a language with multiple parameter types in which type checking
of second order operations is possible. The examples that are included in this pa-
per are essentially valid Haskell 98 code (Peyton Jones et al., 1999) with standard
extensions, namely overlapping instances and multiple parameter classes. To allow
an easier understanding some minor details that are not essential for the discus-
sion are omitted. The full executable source code is available from our Web site,
http://www.geoinfo.tuwien.ac.at/. For those readers who are not familiar with
functional programming or Haskell, Hudak et al. (1997) offer a gentle introduction
into these topics.

2 Moving Objects

The representation of moving objects is important for applications which keep track
of cars, aircrafts or similar objects, which change their position or attributes quickly.
We can model the position and movement of an object in space as a time varying
vector. With no loss of generality we limit our examples to two dimensions in space.

In the presented model the positions of objects are time continuous functions.
In real-world applications, often only the positions of objects at discrete instants of
time are known (i.e., the positions are sampled at constant or varying time intervals).
Assuming continuous movements of the objects in the real world, linear or higher-
order interpolation can be used to reconstruct plausible intermediate positions.

The following pieces of Haskell code show how a model of moving points can be
built. We assume that the language provides a suitable representation of floating
point numbers, and the usual set of operations on them. Based on that we define
the class Vectors and operations that can be carried out on vectors. A vector can
be constructed from two Cartesian coordinates, and each of the coordinates of a
given vector can be determined.

class Vectors v c where
Xy :: ¢ > C > VC
X, y it ve—c

1 Chorochronos project, http://www.dbnet.ece.ntua.gr/~choros/
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In the examples in this paper we represent vectors by their Cartesian coordi-
nates. Different representations, like polar coordinates, could be used, but we do
not want to do this here. We also define how the base vector operations apply to
this representation.

data Vector c = Vector c c -- one possible representation
instance Vectors Vector c where
x (Vector x1 y1) = x1
y (Vector x1 y1) = yi
xy x1 yl1 = Vector x1 y1
We want to define the “4” and “—” operations for vector addition and subtrac-
tion. Since all operations that are defined for multiple parameter types are defined
in classes in Haskell, and the “+” and “—” operations can be defined for arbi-
trary numbers, we make our vectors an instance of the class Numbers. We allow
the coordinates of a vector to be numbers of any type (that is what the context
“Number ¢ =" stands for), and define how the vector operations are implemented,
using the operations defined for numbers.

instance Number c¢ => Number (Vector c) where

a+b=xy (xa+xb) (ya+yhb)
a-b=xy (xa-xb) (ya-yb)

The coordinates of a vector can be of various types. Static vectors like v! as
well as time varying vectors like v2 and v3 can be defined. We define two new
types Time and Changing for representing time, and for representing objects that
change over time. Changing is equivalent to Giiting’s 7 operator, which is defined
as 7(a) = time — « in Glting et al. (2000). Just as the type of the coordinates is
a parameter of type Vector in the previous example, the type of the object that is
changing is a parameter of type Changing.

vl :: Vector Float
vl = xy 1.0 0.0 -- a static vector

type Time = Float
type Changing t = Time — t

v2, v3 :: Changing (Vector Float)
v2 t = xy (2.0 * t) (3.0 * t)

--v2 2.0 == xy 4.0 6.0

It is possible to define changing vectors like v2, just as well as it is possible to
define vectors of changing coordinates like v4. For defining v4 we define two helper
functions that determine each of the coordinates of v2 as functions of time.

v2_x, v2_y :: Changing Float

v2_.x t = x (v2 t)

v2.y t =y (v2 t)

v4, vb :: Vector (Changing Float)

vd = xy v2_x v2_y

The definition of v5 shows a more compact way of defining a vector of changing
coordinates, using so-called lambda ezpressions. Lambda expressions are nothing
more than functions without names. The variables between A and the arrow define
the (bound) variables; the expression after the arrow defines the value of the func-
tion. The function eval takes a vector of changing coordinates, and converts it into a
changing vector. The sub-expression x v t in the definition of eval has the following
meaning: Take the z coordinate of the vector v, and evaluate this function at time
t. Since v is a vector of changing coordinates, its x coordinate is a changing value.
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A changing value is defined as a function from time to a value, as the definition of
Changing shows. When some time is passed to this function, the result is a vector.

vb=xy (At — 1.0 - 100.0 * t) (At = 1.5 - 150.0 * t)

eval :: Vector (Changing Float) — Changing (Vector Float)
eval vt =xy (xvit) (yvt)

v3 = eval vb

The step of converting a changing vector to a vector of changing coordinates can
be expressed abstractly. Here the sub-expression A t — x (a t) has the following
meaning: When given a time value, evaluate the changing vector a at this time ¢,
and return the x coordinate of the result.

conv :: Changing (Vector Float) — Vector (Changing Float)
conva=x3y At —o>x@t)) At >y (at))

-- two equivalent definitions:
v4 = conv v2
v2 = eval v4

Obviously conv is the inverse operation of eval. In the language of category the-
ory, conv o eval = eval o conv = id (the symbol o stands for functional composition;
id is the identity function).

There is only a small conceptual difference between changing vectors and vectors
of changing coordinates. We will later see that vectors of changing coordinates are
sometimes preferable over changing vectors, and sometimes that the opposite is
the case. For example, vectors of changing coordinates allow operations on static
coordinates to be carried over to operations on changing coordinates.

3 Algebra over moving points

In second order languages, functions are “first class citizens,” and can be used as
arguments to other functions. Therefore, changing objects that are conceptualized
as functions can be used as arguments to other operations. As an example let v2 be
a passenger, and v3 a train this passenger is in. The position of the passenger as seen
from the outside (provided that the train and the passenger are both slow enough
that relativistic effects are not significant) can be computed by adding v2 and v3.
The following example defines the function plus, which adds two such changing
vectors (of floating point coordinates). We will later see that this operation can also
be defined more elegantly. The type ChgVecFloat simply serves as an abbreviation
for its more verbose definition. The “+” operation used is the one that has just
been defined.

type ChgVecFloat = Changing (Vector Float)
plus :: ChgVecFloat — ChgVecFloat — ChgVecFloat
plus abt = (at) + (b t)

v6 :: Changing (Vector Float)

vé = v2 ‘plus‘ v3

Semantically the plus operation is a synchronous combination of values, i.e.,
both objects v2 and v8 are observed at the same instant of time, and the result also
applies to this instant of time only. We do not consider asynchronous combinations
of operations, like the minimal distance between two moving objects at independent
times, or effects on semantically linked time-dependent values, like the position and
the speed vector of an object, in this paper.
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4 Generalization: Changing Values

The approach described so far is not limited to modeling changing locations of
objects. It is also possible to model arbitrary changing attributes of objects using
this approach. Moving objects are just one specific instance of changing objects.
Properties of objects that do not change over time are a special case in that the
values of these functions stay constant no matter what value their time parameter
attains.

An interesting operation on moving objects is the distance between two moving
objects. Assuming there is an operation dist that computes the distance between
two vectors, the distance between moving vectors can be computed by the dist’
operation. Note the similarity of the plus and the dist’ operations. As for the plus
operation, a formalism exists with which we can derive dist’ from dist more elegantly
(we introduce this formalism in the following section).

dist’ :: ChgVecFloat — ChgVecFloat — Changing Float
dist’ a b t = dist (a t) (b t)

d23 :: Changing Float
d23 = dist’ v2 v3

5 Lifting: Operations carry over from non-changing values

Many operations with time dependent parameters have synchronous semantics, and
are defined as the time synchronous application of the corresponding static opera-
tions (i.e., the values for computing the operation are all taken at a single instant
of time, similar to a photographic snapshot). The distance between moving points,
presented before, is one such example.

A range of functions is usually defined for manipulating values in snapshots, like
addition, subtraction, multiplication, etc. Functions in the corresponding systems
that model temporal aspects are time synchronous. It is possible to transform such
functions into a temporal algebra; this transformation is usually called lifting.

We have already seen how the operations “+” and dist on vectors are lifted into
the temporal domain; this resulted in the plus and dist’ operations. Lifting can be
defined abstractly.

In the following examples we show how operations for lifting functions from the
static into the temporal domain can be defined. The lift operations for constant
values, for functions with one, two and three parameters, have the following type
signatures. We put this set of operations in the class Lifts so that we can use the
same operations for lifting operations into arbitrary domains, and are not limited to
the temporal one. This is the same step of abstraction done for operations like “+7,
which can be implemented for natural numbers, real numbers, complex numbers,
vectors, changing vectors, etc.

class Lifts a where
1ift0 :: a = f a
liftl :: (a -+ b) > fa—>fb
1ift2 :: (a -+ b > ¢c) > fa—>fb—>fc
lift3 :: (a +b +>c —>d) - fa—>fb—>fc—>fd
It is easy to see that the lift2 operation, when applied to the dist operation,
results in the dist’ operation if f is substituted by the type Changing: The resulting
function then takes two parameters of type Changing (Vector Float), and returns a
result of the same type. An implementation of the lift operations for the temporal
domain is given below. With this definition, we can give a simpler definition of dist’,
which is also shown.
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instance Lifts Changing where
lift0 a= Xt — a

liftl opa= At — op (a t)
lift2 opab=At — op (at) (b t)
lift3 opabc=At = op (at) (bt) (ct)

-- a simpler definition:

dist’ = 1ift2 dist

Arbitrary operations can now be lifted into the domain of changing values. The
operations on changing numbers (like the distance between two moving objects) are
one example. We define the operations “+”, “—”, “x” and sqrt (the square root)
for changing numbers by lifting the existing operations on static numbers into this
domain. Then we define three changing numbers. The third changing number uses

the “+” operation defined here.

instance Number n => Number (Changing v) where

(+) = 1ift2 (+)
(-) = 1ift2 (-)
(*¥) = 1ift2 (%)

sqrt = liftl sqrt

f1, £f2, £3 :: Changing Float

f1 = sin -- the standard sine function
f2 = 1ift0 1 -- a changing constant
£f3 = f1 + £f2

Since we have declared vectors to be numbers (see the definition of the “+” and
“—” operations on page 3), the above definition of operations for changing numbers
automatically also results in operations on vectors of changing coordinates being
defined.

In Haskell type definitions can have parameters, and that these type parameters
are eventually filled in with concrete types (such as Float, Time — Float, etc.). For
a Vector, the only parameter is the type of the coordinate values used. We can make
all operations defined on vectors available for a new type by making the new type
suitable as the coordinate parameter, and by defining the lift operations for this
parameter.

Logical operations (e.g., an operation that determines whether an object is
within a given distance from another object) can be lifted under the same precon-
ditions. Unfortunately the definitions provided for logical operations in the Haskell
Prelude, a library of standard definitions that is available in all Haskell programs
unless programs explicitly request that it should not be included, do not allow this
flexibility. While for all of these operators the type of the objects to be compared
is a parameter, the type of the result of these operations is fixed.

data Bool = False | True
class Ord a where
(), (L) :: a - a — Bool
Fortunately it is possible to provide a more flexible definition of these operators
that also allows these operators to be lifted, by also making the result of these
operations a parameter. We give an example of lifting the comparison operations,
and start with a more flexible definition of the operators themselves.
class Ord a bool where
(), (L) :: a — a — bool
All the comparison operations between the built-in types, which are defined in
the Haskell Prelude, can easily be made available. The following piece of code shows
this step.
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class Prelude.0rd a = 0Ord a where
(<) = (Prelude.<)
(<) = (Prelude.<)

With these definitions we can define an operation that determines whether an
object is within a specified range of another object in the static domain. We can then
lift this operation into the domain of changing values. Note that in this example we
are lifting vectors into changing vectors, unlike before, where we have lifted vectors
into vectors of changing coordinates.

isClose :: Vector Float — Vector Float — Bool
isClose a b = dist a b < 1.0

bl :: Bool
bl = isClose vl (xy 0.0 0.0)

b2, b3 :: Changing Bool
b2 = (1ift2 isClose) v2 v3

-- b2 0.0 == True

-- b2 2.0 == False

It is of course also possible to create a similar test function for vectors of changing
coordinates using eval, the conversion function from vectors of changing coordinates
to changing vectors.

isClose’ :: Vector (Changing Float) — Vector (Changing Float) — Changing Bool
isClose’ a b = (1ift2 isClose) (eval a) (eval b)

b3 = isClose’ v4 vb

6 Changing objects in a changing world

The observation made in the previous section points to an important difference in
conceptualization: we can perceive the world as a changing value, from which we
can deduce a particular value, a snapshot, for a specific instant in time. We can also
model the world as a collection of time dependent objects. The objects themselves
are then time dependent functions. The following code models this hierarchy of
types. (In this example a qualifier identifies a specific object, or an attribute of an
object, similar to a name.)

-- The world can be modeled as one of these types:
type World = Time — Snapshot
type World = Identifier — ChangingObject

type Object = AttributeName — Attribute

type Snapshot = Identifier — Object

The same ambiguity in conceptualization occurs for changing objects, which
can be seen as objects changing in time, or as a set of changing attributes. (This
hierarchy may not even stop at the attribute level; the attributes may also be
composed of changing values, etc.).

-- A changing object can be modeled as one of these types:
type ChangingObject = Time — Object
type ChangingObject = AttributeName — ChangingAttribute

type ChangingAttribute = Time — Attribute

These different views are alternative ways of conceptualizing the world, and they
are also alternatives in an implementation.



8 Andrew U. Frank and Andreas Griinbacher

7 Semantics vs. Efficiency

This paper has approached the problem of temporal data from a purely concep-
tual point of view, using advanced mathematical formalisms, namely algebra and
category theory. This has allowed us to carry over the operations for values in a
snapshot to time changing values. It was possible to formalize this extension in a
general way, such that all operations (e.g., the calculation of a distance) once defined
for single values, can also be applied to changing values. In this approach details
of the efficiency of an implementation are hidden behind abstractions, and do not
blur the picture when specifying the semantics of operations.

One may see a difference in concerns between a Computer Science and an Infor-
mation Science approach. Computer science in the tradition of Donald Knuth (Knuth,
1973) studies the design of algorithms and data structures, and optimizes them for
efficiency. The big-O notation is a fundamental tool to describe the asymptotical
performance of algorithms (i.e., how the performance of algorithms changes depend-
ing on the size of the problem), and to compare different implementations that are
semantically equivalent.

Information science should only be concerned with the specification of the se-
mantics. For an Information Scientist it is sufficient to have a trivial implementation
that computes the desired results, with no concern for the performance of the im-
plementation. Once the semantics are understood well enough, it is possible to look
for more efficient algorithms.

A division of labor between information science and computer science allows
each field to concentrate on what it is best at.

When developing computer software, people often try to optimize the solution for
a problem before the problem is sufficiently well understood, which finally leads to
more complex solutions. As computer scientists are developing increasingly powerful
solutions for transforming simple implementations with poor performance into fast
implementations (Bird and de Moor, 1997), such optimizations are increasingly
becoming dispensable.

8 Conclusions and Future Work

If we consider the changing objects and changing values in this ever-changing world
as functions, the ordinary calculations based on snapshots carry over to chang-
ing values. The formalism presented leads to the extension of snapshot operations
(for single instants of time) to synchronous calculations for time series. The im-
plementation of the proposed algebra for time dependent objects and values is not
constrained. Several representations close to what good programmers would come
up with are possible. This paper argues that the separation of the conceptualization
from implementation aspects leads to better and more general solutions.

An alternative approach for dealing with changing values that uses intervals
at the algebraic interface level (Giiting et al., 2000) is more complex, and there-
fore more difficult to understand. The implementation of what we propose here is
essentially the same, but most complications are hidden from the user.

The discussion in this paper was constrained to time synchronous operations.
There certainly exist operations with complex temporal interrelationships, like the
relationship between the position and the speed of an object (the one is a derivative
of the other). We leave these aspects for future work.
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