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Abstract 

Geospatial information systems (GIS) have been applied in modeling 
environmental and ecological systems. 3D Moving objects are spatio-
temporal objects whose location and/or extent change over time, and they 
are among those recent evolutions that emerged to fulfill some of the new 
requirements for GI community. Many of the earlier works were based on 
the assumption that exact trajectory information was available (or could be 
obtained) at every time instant. Unfortunately, this assumption cannot be 
guaranteed in real applications where trajectory information is associated 
inherently with uncertainty and lack of complete and precise knowledge. 
In this paper, we explore how a trajectory is influenced by uncertainty. 
Then we study the nature of 3D moving object trajectories in the presence 
of uncertainty and we introduce two data models for uncertain trajectories 
that are used to represent moving objects. By using this model in a case 
study, we obtain the most probable answer where we consider a 3D 
moving object path under uncertain conditions and lack of knowledge. 



 

1. Introduction                                                     

For some spatiotemporal applications, it can be assumed that the 
modeled world is precise and bounded. While these simplifying 
assumptions are sufficient in some applications, they are unnecessarily for 
many other applications, such as navigational applications that manage 
data with spatial and/or temporal extents. 

Moving object databases appear in numerous applications such as 
emergency services, navigational and military services, flight management 
and tracking, m-commerce, and various location based services as fleet 
management, vehicle tracking, and mobile advertisements. These 
advancements demand new techniques for managing and querying 
changing location information. One of the key research issues with moving 
objects is the management of uncertainty. Many of the earlier works were 
based on the assumption that exact trajectory information was available (or 
could be obtained) at every time instant. Unfortunately, this assumption 
cannot be guaranteed in real applications where trajectory information is 
associated inherently with uncertainty and lack of complete and precise 
knowledge. Inspired by the importance of this subject we first explore how 
a trajectory is influenced by uncertainty, and then we study the nature of 
moving object trajectories in presence of uncertainty. We introduce two 
data models for uncertain trajectories that are used to represent moving 
objects in 3D space (2D positional and 1D temporal). By using these 
models, we can query uncertain databases with moving objects having 
measurement errors. 

There are several works towards modeling and querying moving objects 
with uncertainty. Pfoser and Jensen discuss [7] spatiotemporal 
indeterminacy for moving objects data and present a formal quantitative 
approach to include uncertainty in modeling the moving object. The 
authors limit the uncertainty to the previous position of the moving objects 
and the error may become very large as time approaches [7]. It describes 
the methodology to compute and utilize error information of moving 
objects’ trajectories. The approach, however, is limited to point objects; 
also, it does not take temporal errors into account. Pfoser and Tryfona [8] 
take a more pragmatic approach in that the world is modeled in terms of 
spatial data types, and fuzziness is expressed as related to the data types 
and the operations on them. 

Trajcevski et al.[3] address the problem of querying moving objects’ 
databases, which capture the inherent uncertainty, associated with the 
location of moving objects. They propose a model for trajectory as a 3D 



cylindrical body that incorporates uncertainty in a manner that enables 
efficient querying. Yu et al. [1] propose a practical framework and 
mathematical basis for managing and capturing multidimensional 
continuously changing data objects. Mokhtar and Su [4] introduce a data 
model for uncertain trajectories of moving objects in which the trajectory 
is a vector of uniform stochastic processes. Ding and Güting [2] discuss 
how the uncertainty of network constrained moving objects can be reduced 
by using reasonable modeling methods and location update policies and 
then present a framework to support variable accuracies in presenting the 
locations of moving objects. 

The rest of the article is structured as follow. In section 2 we define 
uncertainty concepts for a trajectory. Section 3 presents two major sources 
of uncertainty in a trajectory. In section 4 we present our two proposed 
models for querying a database of trajectories with uncertainty using 
weighted interpolation for 3D moving object's location. Finally, section 5 
gives concluding remark and outlines the direction for future work.   

2. Uncertainty in Moving Objects  

Uncertainty is an inherent property of information location of moving 
objects. Unless uncertainty is captured in the model and query language 
used, the burden of factoring uncertainty into answers to queries is left to 
the user. For example, consider a ship equipped with GPS that can transmit 
its positions to a central computer. At the central site the data is processed 
and utilized. Example queries occurring in such an application are as 
follows: 
• Which ship is nearest to a destroyed ship?    
• A what time will "ship A" reach "island B"? 
• Compute the best direction of motion for the ship in order not to bump 

into a seen rock. 

If we consider uncertainty in information and trajectory, the questions 
have no clear answers. Taking uncertainty into account, we can restate the 
questions as follow: 
• Which ship will be, with a 50% probability, within 100 meters of ship A 

in 20 minutes? 
• How likely is it that "ship A" reaches "island B" without being hit by a 

storm that will happen between 9:00 and 12:00 ?     
• Compute the minimum temporal range so that ship A could be in region 

B. 



 

To answer these questions we need an abstract model with quantifiable 
uncertainty and by using that model, we can obtain the most probable 
answer.  

3. Types of Uncertainty in Trajectory 

A first step in incorporating uncertainty into a representation of trajectories 
is to quantify it. Thus, in section 3 we want to define errors introduced by 
the trajectory acquisition process. 

 3.1 Measurement error 

Generally, an error can be introduced by inaccurate measurements [5]. 
The accuracy and thus the quality of the measurement depend largely on 
the technique used. This paper assumes that GPS is used for the sampling 
of positions. Two assumptions are generally made when talking about the 
accuracy of the GPS. First, the error distribution is assumed to be 
Gaussian. Second, we assume that the horizontal error distribution is 
circular [9]. Figure 1 visualizes the error distribution. In addition to the 
mean, the standard deviation, σ , is a characteristic parameter of a normal 
distribution. Within the range of σ± of the mean 39.35% of the 
probability is concentrated in a bivariate normal distribution (2-
dimensional). 

 
Fig. 1. Positional error in the GPS [7] 

3.2 Uncertainty in sampling 

We capture the movement of an object by sampling its position using a 
GPS receiver at regular time intervals. This introduces uncertainty about 
the position of the object that is affected by the frequency with which 
position samples are taken, i.e., the sampling rate. This, in turn, may be set 



by considering the speed of the object and the desired maximum distance 
between consecutive samples [7]. 

By looking Figure 2(a), one would assume that the straight-line best 
resembles the actual trajectory of the object. In Figure 2(b) we can obtain 
the better trajectory that is more similar to the actual one by increasing the 
sampling rate or decreasing the moving object speed. The difference 
between the two trajectories shows the "uncertainty”. 

 
Fig. 2. Uncertainty in a trajectory 

For better understanding, consider the trajectory in a time interval       
[t1; t2], delimited by consecutive samples. We know two positions, P1 and 
P2, as well as the object's maximum speed, vm (see Figure 3). If the object 
moves at maximum speed vm from P1 and its trajectory is a straight line, its 
position at time tx will be on a circle of radius r1 = vm(t1 + tx) around P1 (the 
smaller dotted circle in Figure 3). Thus, the points on the circle represent 
the furthest position away from P1 the object can get at time tx. If the 
object's speed is lower than vm, or its trajectory is not a straight line, the 
object's position at time tx will be somewhere within the area bounded by 
the circle of radius r1. Next, we know that the object will be at position P2 
at time t2. 

 
Fig. 3. Uncertainty between samples [8] 

Thus, applying the same assumptions again, the object's position at time 
tx is on the circle with radius r2 = vm(t2 − tx) around P2. If the object moves 
slower or its trajectory is not a straight line, it is somewhere within the area 



 

bounded by the dotted circle. The above constraints on the position of the 
object mean that the object can be anywhere in the intersection of the two 
circular areas at time tx. This intersection is shown by the shaded area in 
Figure 3. In the following, we present two models to handle this 
uncertainty in order to calculate the most probable answer in the shadow 
area. 

4. Two Models for Trajectories with Uncertainty 

As mentioned with GPS technology, a 3D moving object's position can 
be determined instantaneously with some errors and the moving object’s 
speed would be affected. These matters lead us to introduce a new 
approach to sample 3D position (x, y, t) between sampling point or future 
position for a moving object in order to gain the most probable answer to 
uncertainty. 

We will not consider any error connected to the times of measurements. 
We assume that we know precisely the time when a position sample was 
observed. This assumption seems to be justified when using GPS and its 
precise clocks as a measuring device. In this section, we introduce two 
models for our uncertain trajectory. 

 4.1 The first model 

First, we want to find a moving object’s 3D position in future. As shown 
in Figure 4, we have a moving object that its positions at time intervals are 
recorded and we want to find its position at a precise time tx in future. In 
this model, it is assumed that the direction of the object’s speed is known 
and definite.  

Considering variable speed for moving object, we assume maximum 
and minimum speeds, called Vmax and Vmin, between each two points. They 
are calculated as follow: 

ii

ii
i tt

dd
V

−
−

=
+1

min
δ  & 

ii

ii
i tt

dd
V

−
+

=
+1

max
δ  

 

(1) 

2
1

2
1 )()( iiiii yyxxd −+−= ++  (2) 



where dδ is measurement error and di is the distance between each 
consecutive point and i is a counter for sampling points and n is the 
number of points as shown in Figure 4.  

As represented in Equations (3) and (4), we can calculate dnmin, dnmax 
(minimum and maximum distances between the last sampling point and 
moving object’s 3D position in future at a precise time tx), and estimate the 
uncertainty range, Ru, for new position at time tn in future. 

)(*)max( 1maxmax −−= nnin ttVd  (3) 

)(*)min( 1minmin −−= nnin ttVd  (4) 

minmax nnu ddR −=  (5) 

 
Fig. 4. Trajectory of a moving object with uncertainty 

With this method, we can calculate a span in which the moving object 
actually will be a database of at time tn (Equation (5)). 

4.2 The second model 

In the second model, we want to find the position M of an unknown 
moving object. The accuracy of each point depending on its measuring 
technique is different, thus points in this model have different errors. In 
comparison with the model shown in Figure 4, in this model, we consider 
more sampling points and calculate the probability positions M by 3D 
linear interpolation between each point i and point n. Then, in order to 
calculate the most probable answer among probable positions, we use 
weighted interpolation among these positions in which weights for all the 
points are represented in Equations (6) and (7) [6]:  



 

where iσ  is measurement error for sampling points and di is 
spatiotemporal distance between each point and unknown position M. w1i 
is the weight corresponding to measurement error and w2i is the weight 
introduced for spatiotemporal distance as shown in Equation (6). d'i is the 
projection of di in 2-dimensional space (x and y coordinates Equation (8)) 
and n is the number of sampling points and i is a counter for sampling 
points. In Equation (9), (xi, yi, ti) are the 3D coordinates of probable 
positions M and (x, y, t) are the 3D coordinates of unknown point M. 
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In order to calculate di we should consider an approximate 3D position 
for M called Mi(xi,yi,t) at time tx  that could be calculated with a 3D linear 
interpolation between two desired points. Finally, we can combine the two 
introduced weights and calculate M (x,y,t) as presented in Equation (10) 
[6].We have considered five sampling points for a trajectory of a moving 
object that three of them have more measurement errors than the others. 
Point 5 shown in Figure 5 is determined with precise coordinate, points 1 
and 4 are determined with an accuracy of 1 meter and the others have 3 
meters accuracy and we can find an unknown position at precise time tx for 
moving object shown in Figure 5. 

 
Fig. 5. Trajectory of a moving object in 3D space 
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All database information is shown in Table 1 and final results of the 
modeling are shown in Table 2. In this example we sample unknown point 
at four times calculated with a 3D linear interpolation between each of the 
points and point 5.  
Table 1. Database information for trajectory 

Point 1 2 3 4 5 

X(m) 112 255 419 580 651 
Y(m) 183 254.5 336.5 417 452.5 

E=Measuring Error (m) 1 3 3 1 0 

Table 2. The results of 3D modeling 

Finally, we calculate the most probable position of the unknown point 
by weighted interpolation as follow: 
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5. Conclusions and Future Research 

The paper has proposed two models for acquiring and representing the 
movements of point objects assumptions under locational uncertainty. The 
3D positions of objects were sampled at selected points in time and in the 
first model, the position of a 3D object has been predicted at exact time in 

 T(s) d w1 w2 XiM(m) YiM(m) d’(m) W 

1 0 398.388 0.058 0.375 464.92 359.46 394.573 0.058 

2 31 201.918 0.115 0.125 434.32 344.16 200.487 0.115 

3 42 81.331 0.286 0.125 490.81 372.4 80.285 0.280 

4 65 42.959 0.541 0.375 542.63 398.32 41.779 0.537 

5 84 - - - - - - - 

M 55 - - - - - - - 



 

future by increasing the uncertainty impact. In the second model, the 
positions (x, y, t) between these points at a given time are obtained using 
weighted interpolation. Results show that by implementing these models 
we can locate a moving object at specific time more similar to the exact 
location in comparison with conventional methods.  

This work points to several directions for future research. Firstly, for the 
representation of the movement, we chose to linearly interpolate between 
measured positions. More advanced techniques may be used for this 
purpose. Secondly, two types of error measures were considered. 
Additionally, time error could be considered. In reality, the space 
considered will typically contain roads, railroad tracks, lakes, or other 
infrastructure that may be taken into account to reduce overall uncertainty 
and error in the database. 
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