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1. Background 

The goal of human activities is to improve one’s situation and—following 
the Golden Rule—to improve the ‘condition humaine’ in general. This is 
part of a Greco-Judaic tradition to control the world and use it (Genesis 1, 
28). Information became central for the development of economy in the past 
few centuries. The industrial revolution in the 18th and 19th century 
improved on the production of goods for human consumption and allowed 
an unprecedented increase in population; it combined improvements in 
government, taxation, and markets together with technical improvements in 
manufacturing (North 1981). North identifies a second economic revolution 
when scientific methods are used to produce systematically new knowledge 
to further advance technology and management. This is evident in the 
current debate on directing universities to produce ‘socially useful and 
responsible knowledge’ combined with high levels of funding for 
universities but it is equally true for all the new internet businesses. 
Information has become a factor of production, comparable to the classical 
production factors of land, capital, and labor (Ricardo 1817; reprint 1996; 
Marx 1867; translated reprint 1992; Frank to appear 2005). 

If information is a production factor like others, it must be measurable 
both in quantity and quality. Efforts to include “knowledge” in the 
accounting of large companies are under way (Schneider 1996), but 
problems of measuring quantity and quality remain. Easily observable and 
countable substitutes (number of patents, number of scientific publications, 
etc.), which are expected to be proportional to the actual knowledge, are 
often used. I have suggested a method to measure the quantity of pragmatic 
(useful) information (Frank 2001; Frank 2003b), but the approach is 
currently viable on a micro level only. 

What do we mean when we say that information is of high quality? 
Before the computer age, one would have said ‘the information is from 
reliable sources’, qualifying the information not directly but indirectly by its 
source. In today’s information economy, quality of information becomes 
important for business. The loss for U.S. businesses due to data quality 
problems is estimated as $600 billion for 2002 (Eckerson 2006). 

Quality of information is a novel concept, which has not been used 
before; scientists—especially astronomers and surveyors—commented on 
the quality of observations in the 18th century; surveyors have generalized 
this approach to evaluate the precision of observations  and contributed to 
the data quality discussion (Chrisman 1985; Frank 1990) (Robinson et al. 
1985). Business processes using data go astray if the inputs are wrong and 
this gives an alternative approach to the topic (Wand et al. 1996). 
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Quality of information is even more important today in the 
transformation of the economy from maximum production at any cost to an 
economy respecting ‘limits of growth’ (Meadows et al. 1972; Pestel 1989). 
Mitigation of environmental disasters like flooding, tsunami, or forest fires 
are political and economical goals making detailed and high quality 
information necessary for their achievements. Mankind has learned that not 
everything that is technically possible is desirable. We need to understand 
the laws of environment as well as we understand the laws of physics: the 
construction of a perpetuum mobile (perpetual motion machine) is 
attempted today only by fools, because we understand the inviolable laws of 
thermodynamics. Plans affecting the environment too often violate 
environmental laws that are equally forceful; we find increasingly that ‘the 
environment kicks back’ when we ignore its rules. Information, especially 
spatial information, plays the crucial role to understand and eventually use, 
to our advantage, the laws of environment. 

2. Goal 

In this article I want to link the methods used to collect, manage, and use 
environmental data with the ontological commitment, which are tacitly 
assumed. This seems useful to avoid that contradictions in the assumptions 
lead to confusion and inappropriate use of, in principle valid, methods. 
Identifying the ontological commitment is important in today’s complex 
and diversified edifice of science to achieve consistency across different 
disciplines and applications. The focus is on data quality; the connection 
between data quality and ontology has been made before (Wand et al. 1996) 
and I hope to extend this original contribution in a way different from 
recent papers by (Ceusters et al. to appear 2006). The paper is restricted to 
descriptions of the physical reality and the extension of the arguments to 
cultural aspects, e.g., political boundaries, land ownership, etc. is left for 
future work. 

The goal of Ontology in philosophy is to understand how the world is 
and how things exist in the world. It starts with Aristotle’s Metaphysics 
(Aristotle 1999). The term ontology was created in the 19th century; 
foundational contributions were made by Husserl. The difficulty with the 
philosophical tradition of Ontology is that human knowledge is limited to 
what we can observe; phenomenology concentrated on the limits of our 
abilities to know about the world (Bergson 1896; reprint 1999). The 
movement of existentialism (Heidegger 1927; reprint 1993; Sartre 1943; 
translated reprint 1993) contrasts with analytical philosophy using 
increasingly formal methods, coinciding with foundational questions in 
mathematics (Whitehead et al. 1910-1913). 
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Ontology, as produced by philosophers, tries to give a consistent 
description of the world and how it exists in general. It is useful to identify 
the assumptions and point out inconsistencies but logical deduction alone 
cannot tell us ‘how the world is’. It can, at best,  demonstrate that some set 
of assumptions are not consistent. Knowledge about the world is only 
achieved starting with observations and is thus dependent on the world and 
on the observation system. 

Practical use of ontology—with a lower case o—in information systems 
has goals that are more modest: it gives rules how consistent descriptions of 
conceptualizations of a subset of reality for a purpose (Gruber 2005). Any 
information system has an underlying ontology—the conceptualization of 
the part of the world, which is included—even if it is not described 
explicitly. Designers and users of an information system construct a mental 
model of the subset of the world they are interested in and communicate 
this model verbally; such symbolic representations are then entered in an 
information system. The data structure of the information system is a 
representation of this conceptualization; if it is described in a formal 
ontology (Smith 1998) then the description can be analyzed and 
inconsistencies detected and resolved. 

In this article, I want to explore the ontological commitments, which are 
necessary for an information system in a realistic view, i.e., a view that 
takes into account error, approximation, and uncertainty. The goal is to give 
a consistent set of ontological commitments, which allow a definition of 
data quality and how it is practically used. The focus is on geographic 
information systems and how they are used in environmental applications—
but the results should be fully general for information systems independent 
of purpose. This approach is different from Wand and Wang’s effort: they 
considered primarily questions of mapping between facts and their 
symbolic representation and assumed that the granularity of the 
representation is properly set; here I want to explore the difficulties that 
result from granularity and differences in the granularity when merging 
multiple data sets. 

3. Ontological Commitments 

Avoiding ontological commitments is not possible—designers of 
information systems can only avoid making explicit how they conceptualize 
the subset of the world they are modeling in the system. Making their 
choices explicit avoids inconsistencies, improves communication among 
multiple designers and eventually communicates the conceptualization to 
the users of the system, again avoiding misunderstanding and misuse of the 
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information provided by the system (Fonseca et al. 1999). In this paper, I 
expand this view, which is common today, to include data quality aspects. 

3.1. COMMITMENT O 1: A SINGLE WORLD 

It is assumed that there is a physical world, and that there is only one 
physical world. This is a first necessary commitment to speak meaningfully 
about the world and to represent some aspects in a GIS. Few philosophers 
and many writers of science fiction (Asimov 1957; Adams 2002) have 
explored the logical consequences of constructions in which either no world 
outside of my thinking exists (Schopenhauer 1819 & 1844; translated 
reprint 1966) or in which multiple worlds coexist. They lead to 
inconsistencies, which often provide for interesting reading, but not to an 
account of the world as we experience it. 

3.2. COMMITMENT O 2: THE WORLD HAS EVOLVING STATES 

The world has states, which evolve in time. This ontological commitment is 
twofold: it posits a single time and changeable states of the world (this is 
postulate 1 of Wand and Wang (1996, 89)). 

3.3. COMMITMENT O 3: OBSERVABLE AND CHANGEABLE STATES 

The actors in the world can observe some of the states of the world at a 
given location and the present time (the now of Franck (2004)). Observation 
of physical state for certain properties and a point is objectively possible 
(point observations); the influence of the observer on the observation value 
is small and repeated observations give the same values. 

An extensive discussion of the influence of the observer on the 
observation has been carried out in the social sciences, where subjective 
judgments of situations are heavily influenced by the background of the 
observer and in physics, where observation influences the state of the 
observable (Leinfellner 1978; Mittelstraß 2003). These difficulties do not 
affect the treatment here: the observable states of the world are restricted to 
states of the physical (macro-) reality as they are measured with standard 
measurement devices and the result expressed in SI units or similar (e.g., 
cm, g, s). I exclude from this discussion (a) physiological states of 
individuals, as discussed in measurement sciences (Krantz et al. 1971), (b) 
assessment of cultural reality are included in the observable states, nor (c) 
quantum physics. The observable states of importance in a GIS are within 
the realm of classical physics and do not include quantum effects. 
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The actors in the world can not only observe the world, but they can 
also affect changes in reality through actions. The effects of actions are 
changed states of the world and these changed states can be observed. This 
gives the semantic loop (Figure 2) that connects the observations with their 
sensors to the changes with their actuators and combines the semantics of 
observations with the semantics of changing operations (Frank 2003a). 

3.4. COMMITMENT O 4: INFORMATION SYSTEMS ARE MODELS OF 
REALITY 

Observation results in information and we have to discuss both the system 
of reality and the information system (postulates 2 and 3 in Wang and 
Wand (1996, 90)). Observations translate the state of the world from the 
realm of reality to the realm of information (Figure 1). The information 
realm is a partial and incomplete model of the world, somewhat as 
described by Plato in his cave metaphor. By model, we understand a 
structure, which is related by a morphism with the world. Corresponding 
operations in the model have corresponding results (Kuhn et al. 1991; 
Goguen et al. 2006). The focus of Wang and Wand is this mapping, which 
they characterize along the same lines as customary in category theory 
(Asperti et al. 1991), (similar recently (Ceusters et al. 2006)). 

 
Figure 1: The Reality Realm and the Information Realm 

The division of the ontology in a world realm and an information realm 
is an important contribution of Wand and Wang; the two realms are related 
by a morphism. The quality of the information is threatened if the relation 
between the things in the world and the entities in the information realm are 
not isomorphic (i.e., one-one). If the two realms are linked by an 
isomorphism, which is often assumed, then the distinction between thing in 
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the world and in the information model would not be required from an 
algebraic point of view. Reality and the model are the same—up to 
isomorphism (Mac Lane et al. 1991). Actual information systems do not 
achieve an isomorphism: sometimes one thing in the world corresponds to 
multiple entities in the information model, sometimes situations in the 
world have no related representation in the information model; in most 
cases, the simplification resulting from the assumption of an isomorphism is 
not justified and the mapping between reality and information model must 
be analyzed and not be glossed over (Kent 1979). 

3.5. COMMITMENT O 5: SEPARATE PHYSICAL AND INFORMATION 
CAUSATION 

The changes in the state of the world are modeled by physical laws: The 
cause for water flowing downward is gravity, the cause of a bullet to fly are 
the forces resulting from a chemical reaction, when the explosive in the 
shell is ignited. The rules of physics can be modeled in the information 
realm and allows the construction of future states in the information realm. 
This is extensively used to predict what the effects of actions are and the 
foundation of all planning. The change in the physical world can be 
modeled as a Markov chain—a following state is the result of the current 
state or of the current state and previous states. 

A second and entirely different form of causation, which I will call 
information causation, is the result of decisions by agents. Agents have free 
will and can make decisions about their actions (Searle 2001). Decisions are 
in the information realm but they affect—through physical laws—the 
reality realm. In a macroscopic view, a successor state is independent of the 
previous state of the world. 

It is, however, important to note that decisions can have the intended 
effect only if—and only if—the action can be carried out and no physical 
laws contradict it. For example, deciding to move from Vienna to Kiev in 
one hour by car is possible, but the decision cannot be carried out because 
several physical (and traffic) laws prohibit my car to drive at the necessary 
speed of 1000 km/h, etc. Despite my decision, the desired result cannot be 
achieved, because I cannot start a chain of physical causations to realize my 
decision; one could say that the mapping of the information causation from 
the information realm to the reality realm does not exist in this case. 
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4. Quality of Information 

How to define quality of information in this context? How to give more 
content to the idea that given information is of high quality if it corresponds 
with reality? Indeed, what is meant by ‘correspond’? 

The most often used definition of information quality is based on the 
repeatability of observations. Assuming that a state of the world has not 
changed, then an information is correct in this sense that if the information 
is the same as obtained by a new observation. This is the definition used by 
Wang and Wand. In their contribution, they point out that not only the 
recorded information must be considered, but also other information that 
can be inferred (definition 2 and postulate 6). This definition assumes that 
the quality of the information is—at least in some dimensions—fixed 
appropriately with respect to the intended use. In a world that is constantly 
changing, observations cannot be exactly repeated—an observation made 
later is different from the observation made before; the customary definition 
is usable only if these effects are ignored and thus, strictly speaking, only a 
definition for ‘correctness with some limits’. 

This more traditional approaches to data quality is often used, because it 
considers the production of the data and deduces the quality of data as 
properties resulting from the production process (Timpf et al. 1996; Timpf 
et al. 1997; Timpf 2002). This is similar to the view that the quality of a car 
results from the details of the production process and thus fits general 
methods to assess product quality. Unfortunately, these definitions of data 
quality are mostly irrelevant for geographic data and its use. Practitioners 
resist to use data quality descriptions following current standards (Hunter et 
al. 2000) because they are not informative for potential users. 

An alternative definition is based on the concept of ‘fitness for use’ 
(Chrisman 1985). The information is used to make decisions, which are 
then translated into actions. This is the only use of information and is 
reflected in a convenient definition of information: Information is an answer 
to a human question (Frank 1997). People ask questions in order to make 
decisions, sometimes the decisions are imminent and sometimes we just 
collect information to be prepared for later decisions. If information is used 
to make decisions, then the quality of the information can be related to the 
quality of the decisions made. 

To assess the quality of the decision brings us back to the semantic loop: 
reality and information realm are connected (1) by observations, which 
populate the information realm and (2) the decisions and actions, which 
change the world (Figure 2). To assess the quality of the information one 
must assess the quality of the decision and how it is influenced by the 



ONTOLOGY FOR DATA QUALITY 9 

information. The connection between data semantics and quality is revealed 
with this viewpoint. 

 
Figure 2: Closed Loop Semantics connect Reality Realm with Information Realm through 
observations and actions 

5. Ontology of Error and Uncertainty 

The ontological commitments were listed above primarily to remind the 
readers of what is implied in an information system design; they are the 
usual assumptions underlying the construction of geographic information 
systems (Frank to appear) and are the justification for the ontology-driven 
approach to design an information system (Fonseca et al. 1999). These 
“usual’ ontological commitments are unrealistic, because they ignore error 
and uncertainty in our knowledge of the world, and pretend that we have 
perfect knowledge. This illusion is acceptable given that we have most of 
the time sufficient information to function at acceptable performance levels 
in our environment but it is not usable to construct more advanced 
information systems, which use data collected for other purposes and 
following different quality standards; in such combinations of data from 
different sources, we must take into account the limitations in our 
knowledge. Understanding error and uncertainty in data is therefore crucial 
to achieve interoperability of geographic data collections (Vckovski 1997). 
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5.1. COMMITMENT EU 1: INFORMATION ABOUT THE WORLD IS 
INCOMPLETE 

The world is infinitely complex and the information we have about it is 
always limited. It is impossible to construct a fully accurate and detailed 
model of the world, because such a model would be at least as big as the 
world! 

The information model of the world we construct is therefore always 
limited in the level of detail and the completeness of the aspects modeled; 
most of what is in the world must be left out; our models are restricted to 
the aspects that are relevant for the decisions we intend to make. The level 
of detail is linked to the purpose of the GIS and the decision expected to be 
made with the information. This contradicts the optimistic view of GIS as a 
single ‘multi-purpose’ or even ‘all-purpose’ spatial information system in 
the early days (Gurda et al. 1987). 

5.2. COMMITMENT EU 2: OBSERVATIONS ARE ERRONEOUS 

Observations of the changeable states of the world are never perfect. They 
are affected by unavoidable effects, which create differences between the 
ideal observation (the ideal true value) and the actual realization of the 
observation. These effects can be random and are often modeled by normal 
distributions. Observations are also affected by systematic effects, e.g., a 
yardstick is too short or a watch runs always slow. Such systematic effects 
can be controlled and eliminated by observation methods, but random 
disturbances cannot be avoided and affect all observations of physical 
properties. 

5.3. COMMITMENT EU 3: AUTOCORRELATION 

One might ask how people survive in a world where the information we 
have is necessarily incomplete and erroneous. To conclude that goal 
directed actions and survival is impossible, would be premature 
(“Philosophers should be very careful when they deny the obvious” Searle). 
But what counteracts the effects of the fact that all our knowledge is 
incomplete and erroneous? 
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Figure 3: Large error in location leads to small error in observed value 

The physical world is strongly autocorrelated—both in space and time. 
The most likely observation of a property just a little bit to the left where I 
looked before, or just a little bit later is most likely very similar to the 
observation I made before. Correlation between different observations is 
also strongly correlated: for example sugar content of a fruit and its color is 
often correlated—we pick the red strawberries, because they are sweet and 
taste good and leave the green ones. The strong autocorrelation is also at the 
base that the usual definition of data quality as ‘corresponding to reality’ 
works. An observation a little bit later or nearly at the same place produces 
nearly the same value; repeated observations would not be meaningful in a 
world not strongly spatially and temporally autocorrelated (Figure 3). 

Life in a world without the strong spatial and temporal autocorrelation 
would be very difficult if not impossible. Most of the world is slowly and 
continuously changing and we focus on the discontinuities. On the 
background of stability we focus on the interesting changing and 
discontinuous points. 



ONTOLOGY FOR DATA QUALITY 12 

5.4. COMMITMENT EU 4: BIOLOGICAL AGENTS HAVE LIMITED 
INFORMATION PROCESSING ABILITIES 

The structure of our information is not only influenced by reality but also 
by the systems to process information. The abilities of the brains of 
biological agents—including humans—are very limited and the biological, 
i.e., energy, cost of information processing, is high. Biological agents have 
therefore developed methods to reduce the load on their information 
processing systems—commonly called the ‘cognitive load’—to allow 
efficient decision making with limited effort and often in short time. 

5.5. COMMITMENT EU 5: OBJECT CENTERED DATA PROCESSING 

Processing of information describing reality is primarily object oriented. 
Humans, and many other biological agents, structure the observations they 
perceive in information about objects. The observation of properties of 
points in space and time are restructured to become properties of objects. 
Objects are constructed such that they endure in time and have constant 
properties over time. Spatial and temporal autocorrelation makes this 
reduction of cognitive load possible. 

The cognitive system forms objects at boundaries of continuities and 
reduces therewith the cognitive load: it is simpler to keep track of objects 
with uniform and seldom changing properties and to pay attention to their 
boundaries; most of the world modeled as objects is stable, uniform, and 
unchanging compared to a point (raster) model of the world. 
Autocorrelation is similarly used in technical systems to reduce bandwidth 
necessary for transmission, e.g., of television images; it is the reason data 
compression methods like JPEG and MPEG work. 

Our cognitive system is so effective because it identifies objects in the 
array of sensed values, and we reason with objects and their properties, not 
with the multitude of values sensed. Thinking of tables and books and 
people is much more effective than seeing the world as consisting of data 
values for sets of cells. It is economical to store properties of objects and 
not deal with individual raster cells. We cut the world in objects that are 
meaningful for our interactions with the world. As John McCarthy has 
pointed out: 

“…suppose a pair of Martians observe the situation in a room. One 
Martian analyzes it as a collection of interacting people as we do, but 
the second Martian groups all the heads together into one subautomaton 
and all the bodies into another. .. How is the first Martian to convince 
the second that his representation is to be preferred? He would argue 
that the interaction between the head and the body of the same person is 
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closer than the interaction between the different heads ... when the 
meeting is over, the heads will stop interacting with each other but will 
continue to interact with their respective bodies.” (McCarthy et al. 1969, 
33). 

Our experience in interacting with the world has taught us appropriate 
subdivisions of continuous reality into individual objects. Instead of 
reasoning with arrays of connected cells, as it is done in finite element 
analysis for, e.g., strain analysis or movements of oil spill, reasoning is 
performed with individual objects: The elements on the tabletop (Figure 4) 
are divided in objects at the boundaries where cohesion between cells is 
low; a spoon consists of all the material that moves with the object when I 
pick it up and move it to a different location. 

 
Figure 4: Typical objects from tabletop space 

Humans conceptualize themselves and the rest of the reality preferably 
in terms of objects and their properties. Objects endure in time, they have 
an identity and changeable state. The changeable state of objects is the 
consequence of the assumption that the world has changeable states and 
objects are aggregates of real world points. Object properties describe the 
state of objects; they are typically integrals over the volume the object 
forms (Eq1). This is usually tacitly assumed (e.g., in Wand and Wang) but 
creates ontological difficulties: 
• object formation is not unique: different persons and for different 

purposes the same part of reality can be split in different ways into 
objects. 

• The formation of object introduces error and uncertainty in the data 

∫∫∫=
)(

  )()(
OV

dVvpOP  (Eq1) 
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5.6. COMMITMENT EU 6: MULTIPLE WAYS TO FORM OBJECTS 

Aristotle discussed familiar objects in terms of natural kinds—the classes of 
objects that are naturally distinct: cats, dogs, etc. There is little doubt how to 
form such objects and how to classify them for the natural species, because 
there exist hardly any borderline cases—there are no breeds between dogs 
and cats (but not all cases are as simple: horses and donkeys breed and 
produce mules). The task of the philosopher is to cut up nature at its joints. 
An object is considered to move as a single unit: a glass, a plate, a cat. All 
that moves with the object is part of the object—and only exceptionally one 
asks question like ‘are loose hair in the fur of an animal part of the animal 
or not?’ (Figure 5). 

 
Figure 5: Three girls combing a big dog, making the boundaries of the dog sharper 

Object formation is however not as simple when we consider 
geographic space: there are multiple ways to subdivide space into objects. 
Considering the terrain, we can focus on form, and identify watersheds, 
valleys, and mountains, but focusing on land cover, we identify fields and 
forests. Many other ways to subdivide space are used: ethical and religious 
boundaries are often debated and sometimes lead to wars. For a geographic 
information system, we must accept that not a single “natural” subdivision 
of space exists but different purposes require different approaches; a GIS 
must be prepared to have coexistent, overlapping spatial objects. 
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5.7. COMMITMENT EU 7: OBJECTS AS REGIONS WITH UNIFORM 
PROPERTIES 

A very general approach to define objects is to say that they form regions 
with at least one property having a uniform value. The prototypical object—
an animal—is then a connected area of cells with the same DNA; other 
objects are uniform in material, color, movement, etc. Solid objects, where 
boundaries are revealed when we move them, have uniformity in material 
properties that makes them ‘hang together’. 

For properties with a continuous value: The uniformity of the property 
means to be within some limits and introduces thresholds for which the 
property is considered uniform. This absorbs uncertainty in the observations 
but introduces uncertainty in the boundary of the object. 

Different objects result if we select different uniform properties. Areas 
of uniform land cover (e.g., grass land, forest) do not necessarily coincide 
with watersheds and produce different objects. The autocorrelation in space 
and the correlation between factors influencing natural processes result in 
object boundaries that often (nearly) coincide. It is not by accident that the 
land cover on one side of the fence is different than on the other side and 
that the boundary of ‘my garden’ and the neighbor’s field coincide with the 
fence. 

5.8. COMMITMENT EU 8: OBJECT FORMATION IS UNCERTAIN 

Objects are delimited by boundaries and these boundaries have 
observational error; a general model of objects defines them as areas of 
uniform values in some property. The error in observing the property value 
affects the determination of the boundary (Figure 6). 

 
Figure 6: Error in observation of property results in error of object boundary 



ONTOLOGY FOR DATA QUALITY 16 

The objects have states that derive from the observations of point 
properties (commitment O 3). The properties of objects are sums (integrals) 
over some functions of point observations. The error in the observation of 
properties of the objects is therefore affected by observational errors in 
multiple forms: 
• error in the area, 
• error in the observation. 

These errors can be modeled if the observation errors are assumed to be 
random, normally distributed (Navratil et al. 2006). However, such 
simplifying assumptions that are necessary to achieve a tractable 
formalization are unrealistic as they leave out the influence of correlations. I 
suggest using the term approximation for the difference between the true, 
intended value and the value resulting from observations of properties of 
objects. 

5.9. COMMITMENT EU 9: UNCERTAINTY IN CLASSIFICATION 

Objects are not just formed and described, but the formation and the 
description is detail to the classification of a phenomena as an object of a 
certain type. Objects are first instances of a class—even if this is only the 
most general class Thing—and then boundaries and properties are observed. 
This classification of an object has some problems that affect the quality of 
the data as we will see after a brief discussion of the concept of class (also 
known as universal, type, etc.) and how it is used in decision making. 

The classification asserts that the object in case is part of a group of 
objects—the class—that share some properties. There are two ways classes 
are defined. In the extensional understanding of a class it is a set of objects 
with common properties; the intensional definition of class starts with the 
properties of an object (or its intended use) and the class is all objects 
(existing, having existed, or existing in the future) with these properties. 
One can imagine an ideal member of this class—the prototypical dog, 
mountain, etc., which is imagined as ideal universal, akin to the ideal circle; 
philosophers debate how such universals exist. The practical problem for 
information systems is that different definitions of classes are used, but 
described by the same word. 

The descriptive terms for classes (forest, lake, etc.) are often 
polysemous—there are multiple concepts described by the same term. In 
Austria, the word ‘forest’ is used with different meanings, some of them 
apply even when no trees are present (but also, some terrains with trees do 
not classify for ‘forest’ in a legal sense). 
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Classification is further complicated by the so-called ‘prototype effects’ 
in natural language classification: not all objects in a class have some 
properties in common (Rosch 1978). Take the example of the class ‘bird’; 
one would commonly assume that birds are animals that fly—just to be 
reminded that also ostriches, emus, and penguins are birds, which cannot 
fly. Some exemplars are just better ‘birds’ than others. This applies equally 
to land use and land cover classifications; the prototypical forest in central 
Europe (the ‘dunkle Tann’ occurring in Grimm’s fairy tales) is different 
from what a Greek or a Finn calls a forest. 

Classifications evolve in time with advances in science (Fleck 1935; 
reprint 1980) or with changes in the social interest. For example, land cover 
definitions evolved in time and the observations made based on a previous 
classification are incommensurable to observations with the new 
classification (Comber et al. 2004). 

Classification is very important for human communication: we speak of 
cats and dogs and mean the classes of animals that have particular 
properties, e.g., size, form, behavior. Classifying an object based on its 
visible properties leads us often to assume that the object has the values 
typically for objects of this class for properties that we cannot observe; for 
example, if we classify an animal as a dog based on its visual appearance 
we will assume that it barks (and be very surprised if it starts to meow). 
Classification is thus the base of ‘default reasoning’ when we do not have 
particular information about the individual we assume that the usual 
properties of the class apply. 

The uncertainty in classification comes from multiple sources, including 
at least: 
• Selection of the property, which is uniform in the object;  
• Selection of the thresholds for uniformity; 
• Error in the position of the boundary; 
• Errors in the observations relevant for the subclassification of an object. 

Here an example: for land use classification, the property that must be 
uniform for an object is the land use (not land cover—but given that land 
cover is easier to observe, most classifications of land use are actually 
classification of land cover). Depending on the scale of our mapping efforts, 
wider or narrower thresholds for ‘uniformity’ are set: how much weeds may 
grow in a corn field before we stop classifying it uniformly as ‘corn’. How 
fine are the subdivisions for land use: agricultural (versus forest), field 
(versus pasture), corn field (versus wheat field). Once we have settled on 
corn fields and set the thresholds for weeds, the boundary of the field must 
be determined and measured. If we then further classify in corn fields of 
high yield and corn fields of low yield, an estimate of the yield is necessary. 
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Under the assumption that a classification process groups objects based 
on some determined properties in groups the uncertainty in the 
classification would be only from the error in the observation of properties. 
The formation of objects involves the uncertainty of the boundary and the 
errors in property observation. The approximation in the object property 
translates to an uncertainty in the classification. If a more reliable and 
precise classification is available, then the quality of a given classification 
can be assessed and the percentage of omissions and commissions 
established or a matrix of misclassification of multiple classes given. The 
difficulty is however more often in the imprecise or changed definition of 
the classes, which makes object formation and classification nearly 
impossible to compare (Comber et al. 2004). 

The uncertainties in classification are multiple and poorly understood. 
Many ontologists posit that classes with fixed definitions exist, ignoring 
that many of the usability problems of information systems originate in 
differences in the classifications used during data collection and data use. I 
have suggested that properties of objects are used as primitive notions (and 
not classes as usual in taxonomies) and that classifications are defined in 
terms of object properties; this results in very fine grained classifications 
and defined rules of inference between classes (Frank to appear 2006b; 
Frank to appear 2006a); the idea is related to Formal Concept Analysis 
(Burmeister 2003). 

6. Decision Process 

The commitments to incomplete, uncertain, and erroneous information must 
now be linked to the decision process to see how they affect the quality of 
the decisions. This requires a summary model of how decisions are taken: 

The decision to take some actions starts with a goal, an imagined future 
world state that is desirable to the agent. For example, I am hungry and 
imagine a future world state in which I have eaten. I consider then a set of 
alternative actions to achieve that state and evaluate the different plans in 
order to select the best course of action, which I then carry out. Not all 
aspects of this model must be conscious to the agent—it is sufficient that 
the agent selects one of the alternatives because it appears—given the 
current state of his knowledge—the best option. It is implied that decisions 
can be wrong and that decisions are made with insufficient information, etc. 
The decision is sufficing and the rationality is bounded by the limitations of 
the agent (Simon 1956). 
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7. Correct Decisions Derive from the Quality of the Information 

Information cannot be correct in the sense of correspondence with reality 
(commitment EU 1 and 2): a repeated observation is never giving exactly 
the same result; the random effects and the changes in reality produce 
different values every time the observation is repeated. Statistical tests can 
be used to assess if the new value obtained is within the expected margins 
with a certain probability. 

A practical definition is to state that information is correct if it leads to 
correct decisions. This requires first a definition of what we mean by 
‘correct decision’. Let me start with a counterexample: information is 
incorrect if it leads to a wrong decision. For example, my decision to go to 
the airport at 7:30 a.m. to catch the plane for Frankfurt is in error if the 
plane has actually left at 7:15 am. Other example: my decision to buy 2 m 
extension cord to connect my stereo system is incorrect if I find at home 
that the cable is too short because the distance between the power outlet and 
the plug is 3 m. A decision is not correct if it does not lead to the desired 
goal (i.e., flying to Frankfurt, connecting the stereo set)—this points out 
that decisions are taken in order to achieve a certain goal; if the action 
decided upon does not lead to the desired goal, the decision is incorrect. 

If we assume (bounded) rationality in the decision process, the 
information available is influencing the decision—thus information that 
leads to the correct decision is correct information. Note that this definition 
does require much less, than the definition of correctness based on 
repeatability and takes into account the influence of error and uncertainty 
on the information. Much error, uncertainty, and incompleteness in the 
information can be tolerated as long as the action decided on achieves its 
goal. A decision can be wrong in multiple ways: 
• The action that is decided cannot be carried out. 
• The achieved state of the world does not satisfy the goal. 
• The action was not optimal; if the information would be better, another 

action would have been selected.  
It appears useful to analyze these different reasons for actions to fail the 

achieved goal: 

7.1. PHYSICAL IMPOSSIBILITY DUE TO OBSERVATION 
(MEASUREMENT) ERROR 

An action is not possible because of observation errors. This is the type of 
error extensively studied by surveyors: Most spectacular are the 
measurements taken to assure that the two ends of a tunnel meet in the 
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middle of the mountain. Similar cases of careful measurement, a surveyor 
measures the gap between the roads on both sides of the river and measures 
the steel bridge, which should fit in the gap. If the bridge is too long or too 
short, closing the gap is not possible. 

In general, humans have found methods to avoid such costly and 
difficult measurements that have always some error. Carpenters 
traditionally put the beams together, cut and bore the holes at once through 
multiple layers and thus assure that the pieces will fit when installed in the 
roof—all without measurement! If a cable of a certain length is necessary 
most people do not try to cut to measure but make it longer—it will fit 
certainly, even if measurement errors are relatively large (I should have 
bought a 5m extension cord—it would have achieved  my goal with a small 
additional cost!). 

Many such techniques have been devised over the millennia of 
carpentry, tailoring, etc. to reduce the need for exact measurement; most 
trades avoid measurements completely! Only few situations make surveying 
and exact measurement necessary, e.g., the reconstruction of a boundary 
after it is lost due to flooding in Ancient Egypt. Measurements are  
necessary, when there is no ‘sure side’ where error does not matter: A cable 
can be too long without problem, a box can be too large to pack an object, 
but some problems have no ‘secure side’—too long or too short is equally 
bad. For example, cooking pasta or baking bread requires exact timing—but 
again the goal is achieved by repeated testing and not by accurate 
measurement. Advanced technology increases the need for accurate 
measurement and planning—sea navigation, building construction with 
accurate planning of the forces in the building and reduced, slender pillars 
and many similar modern examples are only possible with accurate 
measurement and precision of measurement are taken into account in the 
design. 

7.2. PHYSICAL IMPOSSIBILITY DUE TO LACK OF KNOWLEDGE 

An action can be impossible because some crucial information was not 
available. For example driving to a city and finding out that the city is on 
the other side of a river or on an island—in both cases a means to cross the 
river (a bridge, a ferry) is required. A case of an instruction from a car 
navigation system to cross a river, where a ferry should be used and was not 
present was widely publicized, because the driver drove the car into the 
river and blamed the incomplete information from his navigation system 
(Raubal et al. 2004). This case of omission is of great importance and it is 
much more difficult to guard against it; Grice with his conversational 
implication studied information and decisions in the context of a exchange 
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between people, but the theory is applicable to the information we gain 
from consulting a database (Grice 1989).  

7.3. THE ACTION SELECTED IS NOT OPTIMAL 

Information present is incorrect and therefore the selected action is not 
optimal for the situation; this is often a case of a commission error: a map 
shows a road, which is not (yet) existing and one decides on a short route, 
which later is discovered to be longer than another route. 

The economic effects are in general not very important—because the 
difference between optimal choice and second, third best choice are not 
large. This is an effect of the autocorrelation already mentioned but also 
part of the intentional construction of infrastructure in the world that are 
whenever possible redundant—if one fails, there is always a second option. 
Mankind has learned how to live in a world of error and uncertainty! 

7.4. ERRORS IN ROAD NAVIGATION DECISION 

In a decision on road navigation, i.e., which road to follow to drive to 
another place, the three types of errors in decisions due to information 
quality can be explained. Assume that we need to drive on a Sunday from A 
to B and have gas in the car for 100 km; the information we have is shown 
in Figure 7 (left). The shortest path seems to be x. This decision is in error 
due to imprecise measurement, if the path x is very convoluted and actually 
120 km long and we will fail to reach our goal. The decision to follow path 
z is in error for lack of knowledge that B is on an island and the ferry runs 
only at workdays (on Sundays one should take path y). The decision to take 
path x is not optimal if we find out that the length of path z is not 85 km as 
marked but only 65 km; it would have been a better decision to take z and 
not x. 

 
 
 
 
 
 
 
 
 
 

Figure 7: Information available for decision and true situation 
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8. Conclusion 

The economic effects of measurement errors and commissions are often not 
very important, but errors of omission are difficult to counteract and have 
substantial cost. This may give a partial reason why people collect 
information ‘just in case’. Who has not a large library and reads all papers 
published in the hope that the data obtained may be useful one day? In 
general, the information we have is sufficient for the decisions we must 
make and information errors are not very costly, but often we lack the 
information necessary completely. 

Geographic data used for administrative decision making is usually 
collected with proper levels of quality to make the intended decisions 
“reasonably well”. By reasonably well I mean that an optimum is reached 
between the cost of improved data quality through more efforts when 
collecting the data and the cost of correcting errors in the decisions due to 
errors in the data (disregarding situations where low data quality is favoring 
one politically influential group over another and low data quality is 
therefore politically desirable). 

If geographic data is used for purposes it was not originally intended, 
for example using administrative data for environmental planning, the 
particulars of the quality of the data for this decision must be considered 
carefully. 

In this contribution I have tried to show the effects of observation errors 
and how they lead to approximation of value describing objects and result 
in uncertainty in the classification. This does not give a set of dimensions 
for data quality, as has been attempted before (Chrisman 1985; Frank 1990; 
Wand et al. 1996); efforts to identify dimensions of data quality seem not to 
avoid the correlation between different dimensions: temporal or spatial 
resolution cannot be separated in two independently observable dimensions 
(and similarly for other dimensions). At the present time, I note simply that 
a definition of separable dimensions of data quality cannot be achieved. 
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