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ABSTRACT.  

The quality of GIS data cannot be assessed independently of what it should be used for (“fitness for use”); this assessment requires 
currently human expert interaction. If the user describes how he uses the data to make a decision, a general method for assessing the 
quality with respect to their decision is possible. The decision process is divided into two phases, the first producing a decision 
model and the second uses this model to arrive at the decision. The same decision model is then used to assess the quality of the 
decision as it derives from the quality of data. Examples for engineering and commercial decisions are given. 

1. INTRODUCTION 

Research in data quality is hindered by a lack of understanding 
of what quality for data means. The slogan “data quality is 
‘fitness for use’” is not giving an answer because it leaves open 
the question to what use the data should be fit. Data, especially 
GIS data, can be used in many ways; remember that a precursor 
of GIS was called “multi-purpose cadastre” (Arentze et al. 
1992; Harvey 1997)! Data is used to improve decisions; 
decisions can be made without pertinent information (case of 
‘hull’ information, e.g., none, inappropriate) and decisions are 
not necessarily changed after data are needed—only confidence 
is increased (Frank to appear 2007). GIS data can be used to 
improve many decisions, from ordinary, everyday decisions in 
wayfinding (left or right here?) to complex decisions about the 
location of a new nuclear power plant or a new factory  or the 
violation of an international treaty (Abushady 2005). 
 
The quality of the information influences the decision—it must 
be assessed with respect to the decision making process: can it 
be used to make this decision, does the lack of quality influence 
the outcome?  
 
The diversity of the decisions GIS data is used for makes it 
difficult to understand how the quality of the data affects the 
decision. This is further complicated by the psychological 
complexity of how people actually make decisions. A number 
of studies have shown how data quality propagates from the 
data stored to data derived from a GIS to help making decisions 
(Karssenberg et al. 2005). Bruin et al (2001; 2003) investigated 
whether acquiring better data for a particular decision is 
worthwhile.  
 
Schneider (1999) and Frank (to appear 2007) have been able to 
reduce decisions as they are made by engineers when designing 
technical artifacts to a statistical test. Once the engineer has 
selected the model and parameters to include, the decision itself 
can be reduced to a comparison of two desired quantities. This 
approach is generalized here to as broad a range of decisions as 
possible. 
 
This approach to data quality from the perspective of a user is 
different from describing data quality from the perspective of 
the data producer, working with a specification; typically 
precision of location (Timpf et al. 1996). Unfortunately, such 

quality descriptions from the producer perspective are seldom 
relevant for users of the data (Shyllon et al. 2004). 
 
In this paper I review in section 2 briefly the model for 
engineering decisions as proposed before (Frank to appear 
2007). In section 3 different types of decisions are analyzed. 
Achatschitz (Twaroch et al. 2005) investigates how the user’s 
situation can be captured separately in an interactive process; 
the models her work produces can be used to assess the 
propagation of data quality to decision quality as described 
here. Ignoring the psychological complexity of decision, 
especially if made in a group, a similar reduction to a 
comparison of values devised from the data stored can be 
achieved. Section 4 then generalizes the model for random 
errors in the data and section 5 discusses propagation of 
different data quality aspects from stored data to desired 
quantities. 
 
As a result, the paper shows a reduced model of decision 
making, which separates the psychological complexities of 
taking a decision into a first phase in which the “problem” is 
conceptualized into a decision test and a model selected. This 
process is in most decisions not consciously performed or 
verbalized. In the second phase the decision is computed 
according to the model selected. It is possible to construct the 
model used ‘after the facts’ when the decision is made and one 
can reconstruct the process. This reconstructed model can then 
be used to assess how data quality has influenced the decision; 
which make the method described not only of theoretical 
interest, but also practically applicable.  
 
With this division of a complex decision into two steps the 
propagation of data quality can be computed, because error 
propagation affects only the second one and can be formalized. 
The paper identifies the processing steps for which propagation 
of imperfections are necessary and points to the research 
needed to give general rules for the ones not currently well 
understood. 
 
A note on terminology: I prefer to speak of imperfections of the 
data (Frank to appear 2007) and to characterize these. This is 
focusing on the effects such imperfections have on the 
(imperfect) result, and I avoid statements like “low data 
quality” or “lack of data quality”. All data contains 
imperfections and it seems conceptually simpler to address 
these imperfections, rather than talk about data quality, which 
describes the degree of absence of imperfections. 
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2. ENGINEERING DESIGN DECISIONS 

Engineering design, for example for buildings, bridges, sewage 
systems, etc. is based on physical observations that are 
combined in formulae. The results are used to decide if a design 
satisfies the requirements and is acceptable or not. Error 
propagation is applicable here and one can ask how much every 
value computed is influenced by the error in the data. Schneider 
has analyzed the influence of assumptions about load, strength 
of materials or required safety levels (Schneider 1999).  
  
In engineering design, decisions can be abstracted to a 
comparison between the load on a system S compared with the 
resistance of the system R as designed. A design is acceptable if 
the resistance is larger than the load: R > S resp. R – S > O. 
 
For a bridge, this means that the resistance R of the structure 
(i.e., maximum capacity) must be higher than the maximally 
expected load S (e.g., assumed maximum high water event). For 
a more environmental example: the opening under a bridge is 
sufficient and inundation upstream is avoided when the 
maximally possible flow R under the bridge is more than the 
maximal amount of water S expected from rainfall on the 
watershed above the bridge. To assess the influence of data 
quality on the decision, one computes the error on (R – S) using 
the law of error propagation and applies test statistics to 
conclude whether the value is lager than zero with probability p 
(e.g., 95%). 
 
The law of error propagation for a formula  
r = f(a, b, …) 

for random uncorrelated errors ea, eb, ec on values a, b, c, … 
was given by C. F. Gauss as 
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where ei is standard deviation of value i. If the observations are 
correlated, the correlation must be included (Ghilani et al. 
2006). The test on R – S > O is the  
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 (Eq 2) 

where C is determined by the desired significance, e.g., for 95% 
C = 1.65.  
 
In such engineering design decisions a number of poorly known 
values must be used, e.g., the expected maximum rainfall in the 
next 50, 100, or 500 years), the maximum load on the bridge, 
the expected derivation from the plan in the building process 
etc. and these may be correlated. The law or standards of 
engineering practice fix values for them. The accuracy of such 
general, fixed values to describe a concrete case is low and the 
effect of these uncertainties in a design decision high. This 
explains why more precision in observations is rarely 
warranted, because gains in a reduced construction are minimal. 
The uncertainties in the assumption about the load dominate the 
design decision. A rule of thumb for the law of error 
propagation engineers use is: Error terms that are one order of 
magnitude less than others have no influence on the result; this 
is the effect of squaring the standard deviations before adding 

them! For the formulae used to design an opening under a 
bridge to avoid inundations upstream, the comparison of the 
maximally possible flow with the largest flow expected in a 
period of 50 years gives for an example for R = 200 m3/sec and 
for S = 80 m3/sec, which satisfies R > S. Assuming error in the 
values used in the computation and propagating then to 
compute the standard derivation for R and S, we obtain, e.g., σR 
= 60 m3/sec (30%) and σS = 16 m3/sec (20%), a test at 95% 
level gives 
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This design is therefore satisfactory. 
 
Schneider (Schneider 1999) discusses the selection of security 
levels, which are traditionally mandated as security factors, 
increasing the load and reducing the bearing capacity of a 
design. He shows that current values lead to designs that satisfy 
expectations, but a statistical viewpoint would result in similar 
levels of security for different subsystems and therefore a 
higher overall security level with less overall effort and for a 
better price. 
 

3. OTHER DECISION SITUATIONS 

Navratil has applied error propagation to simple derivations 
from observed values (Navratil et al. 2004) For example, the 
computation of the surface area of a parcel given the 
coordinates of the corners can be computed, if the standard 
derivations for the observations and their correlations are given. 
This uncertainty in the area is then sometimes multiplied by the 
going price per square meter and leads to critical comments by 
landowners about the quality of a land surveyor’s work. The 
argument is false, because it does not consider a decision. In 
this section, some often occurring decisions are reformulated in 
the model proposed above and error propagation applied. 
 
3.1 Decision to acquire a plot of land 

The error in the computed area of a parcel (Figure 1) seems 
high, e.g., some square meters, when one considers the price 
per square meter one has to pay (i.e., € 550). Would more 
precise measurements be warranted? 
 

 
 
 

Figure 1: An example parcel 
 

If one rephrases the question as a decision, e.g., whether one 
should buy the land? This can be seen as a test: are the benefits 
derived from the parcel larger than the cost? For simplicity 

9’150.05 ± 5.3 m2

Price € 950’000 
 
 
Price per m2 € 103.81 
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assume that we intend to develop the land and build an office 
building, where we earn 200 €/ m2 when we sell it (cost of the 
construction deduced). The test whether this business 
opportunity is worthwhile is therefore benefit larger than price 
(B > F) or B > F > O (i.e., anything left after the transaction?). 
Assuming the standard deviation on the benefit to be σB = 0.3 · 
1’830’010 = 549’000 we obtain 

1.62 
549'000
880'010  

549'000  550
010'880

22
==

+
=t , 

which will occur with probability of ~ 94%. Note that for 
reason of constructing useful tables it is usual to fix the level of 
probability and then test, but it is also possible to ask what the 
probability to a given t value is. In this case, for an acceptable 
risk of 10%, the decision to buy is acceptable (significance 
90%). 

 

Figure 2: Statistical test for R – S 
 

3.2 Find optimal choice 

Many decision situations—especially personal decisions—
consist of selecting the best choice from several variants. This 
can be seen as finding the variant with the highest benefit, 
computed with a formula including weights to indicate the 
importance of various aspects (Twaroch et al. 2005). For this 
formula the propagation of error for both data values and for the 
weights can be computed, using the methods described before. 
One can determine, with the method shown above, the 
probability that variant 1 with benefit v1 and standard deviation 
σ1 is indeed better than variant 2 (with v2 and σ2 respectively). 
Achatschitz has proposed to apply sensitivity analysis and 
inform the user how much his preferences (weights) had to 
change to make variant 2 to be the best.  
 
3.3 Legal decisions 

In a recent count case in Austria, the question was, whether a 
building was constructed too close to the parcel boundary or 
not. Abstracting from a number of technical issues of surveying 
engineering, the distance between boundary and building is 
established as 3.98 m with a standard deviation of 0.015 m. The 
law stipulates the required distance to 4.00 m. Is the building 
too close? A test, for  4.00 – 3.98 > O at 95% significance 
gives 

1.65  
1.5
2  

1.5
3.98 - 400

<= . 

 
The probability that the distance is shorter is ~ 91%. It depends 
on the particulars of the case and the judge, if this is considered 

sufficient evidence or not. I hope that if such cases are 
approached statistically, the courts will over time develop some 
standards.  
 

4. OTHER DECISION SITUATIONS 

A complex decision process can be split in a phase to select a 
model to use to make the decision and the phase of using the 
selected model to arrive at the decision. The discussion of 
examples in the previous section suggested that the influence of 
random errors can be computed with the regular error 
propagation formula if the decision is modeled formally. This 
section gives a generalized description. 
 
4.1 Model of a decision 

By model of a decision we mean the formal model of a 
particular decision; section 3 gave several examples. In general, 
a decision can be reduced to a test of a value being positive (v 
> O). The acceptance of an engineering design has immediately 
the form R – S > O, and other “yes/no”, “go/no go” decision 
can be brought to this form. Selection of an optimal solution 
from a series of variants can be seen as the selection of the 
variant i with the highest value vi. It seems easier to describe 
the two situations separately, but they can be merged into a 
single approach. 
 
4.2 Binary decisions 

A decision to do something or not has a decision model with 
the test v > O (or can be rewritten to conform to this form). v is 
computed as a function 
v = f(a1, a2, … an, s1, s2, … sn) (Eq 3) 

of input values a1, a2, … an describing the situation, which 
comes, for example, from the GIS, and values describing other 
factors s1, s2, … sn, for material constants, security factors, etc. 
If v > O the action is carried out, the design built, etc. The 
influence of random errors in the data (a1, a2, … an and s1, s2, 
… sn) on the decision is computed by the law of error 
propagation (Eq x) and a statistical test. From the standard 
deviations of the data (σ a1, σa2, … σan and σs1, σs2, … σsn) and 
the partial derivatives 
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the standard derivation σv of v is computed. From v/σv results a 
probability p that v > 0 

 

Figure 3: Probability of v < V 
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as the integral of the normal distribution curve with σv up to v 
(Figure 3). Usually a significance level is set first and only 
checked that v/σv is larger than the corresponding value Φ(p). 
 
4.3 Selection 

Selecting the optimal vO from a set of variants vi described with 
data values ai = (a1, a2, … an) uses a valuation function f  
ui = f(ai1, ai2, … ain, .s1,. s2, …sn, w1, w2, … wn) (Eq 4)  
where the data describing the variant, constants and weights 
describing the importance of the criterion for the decision w1, 
w2, … wn are combined. For each variant vi we obtain a value ui 
and select the variant vO for which uO > ui for any i ≠ O.  
The effect of random errors in the data on the values ui is 
computed as the standard derivations of ui using error 
propagation as above (Eq 1). The uncertainty of the selection of 
vO compared to vp (assuming to be the second best) can be 
tested as vO - vp > O and the probability computed (Eq 2). From 
this, one must separate the test vo > O, which gives the 
uncertainty that the best variant is an acceptable solution.  
 
4.4 Assumption 

Two assumptions must be stressed: 
1. The data values are assumed to be influenced by 

random error, which follow a normal distribution and 
the errors are not correlated. If correlation is present, 
it can be taken into account by extensions of the 
formula for error propagation. 

2. The decision model is fixed and not influenced by the 
imperfections in the data. The decision model 
includes all aspects of the decision, including 
subjective elements, which are assumed to be fixed 
for one decision. Note that for the computation of the 
effects of random errors in the data only the 
uncertainty of weights are required, not the exact 
weights, representing personal preferences. 

 
5. GENERALIZATION: ERROR PROPAGATION IN 

DECISION FOR RANDOM ERRORS 

The law of error propagation applies only to random errors in 
data values; in this section the approach is generalized to other 
types of imperfections: 
 
5.1 Omissions and commissions 

Omissions and commissions influence the computation of 
aggregates differently than the ‘best solution’. 
 
5.1.1 Aggregate values: If a number of values are summed 
(generally aggregated) to a single value, the effect of omission 
is a sum too small, the effect of commission is a sum too high. 
With given probability pO and pC for omissions and 
commissions, the effect on the sum is s’ =(∑vi) · (pO – pC). This 
assumes that omissions and commissions are random, not 
systematic. 
 

5.1.2 Selections: If vO is the best variant then commissions 
could invalidate the choice. If pOi are the probabilities for the 
data ai to be the result of commission errors then the probability 
is the sum of the pOi, because any single committed values 
invalidates the selection. For omission the effects are less 
devastating. A statistical test against a possible better variant 
not showing due to omissions can be constructed; intuitively, it 
seems only warranted if the probability of omissions is high.  
 
5.2 Probability of normal and ordinal discrete values 

Values not measured on a continuous scale do not have an error 
distribution, but only a probability to be in error, for example as 
a confusion matrix (COLWELL 1983). For such values in a 
formula v = f(a, ...) (Eq 3) the computation must bifurcate and 
compute with each possible value ai (e.g., land use values 
‘forest’, ‘agricultural’, …) the corresponding vi  and then 
compute the sum of the products of values times probability v = 
Σpi ·f(… vi).  
 
5.3 Fuzzy membership 

For linguistic variables, e.g., ‘large’, sharp boundaries of 
applicability are impossible, and modeling with a fuzzy 
membership function is appropriate. Formulae for propagating 
imperfection modeled with fuzzy membership functions are 
known (Zadeh 1965). Schneider (1999) has shown that different 
distinctions for error do not influence the results. Further 
studies on effects of better models for fuzzy values seem 
warranted (Viertl 2006). 
 

6. CONCLUSION 

Separating the complex decision process in a step to establish a 
model for this decision and then to apply this case specific 
decision model to compute the outcome allows to assess the 
influence of imperfections in the data on the decision, and this 
achieves a realistic assessment of the quality of data as fitness 
for a particular use. For the assessment of data “fitness for use” 
the decision model need not be known with precision; it is only 
necessary to know the formulae used and plausible values for 
the weights. Detailed knowledge is not required and users may 
make decisions ‘intuitively’ and guided by subjective 
considerations—the assessment of the quality of the decision as 
a result of the imperfections in the data set remains valid if the 
used decision model approximates the personal decision 
process sufficiently. It is possible, and probably more realistic, 
to deduce the decision model after the decision has been taken 
and use it only for the assessment of the influence the data 
quality has on the decision. A detailed study how decisions in 
other application areas can be modeled with decision models of 
this type will show how easily the concept generalizes beyond 
what was discussed here. The examples studied in (Frank to 
appear 2007) and (Schneider 1999) give results that correspond 
to intuition, which is promising. Schneider (Petschacher 1996) 
has constructed software to treat engineering decisions and 
extensions to other cases seems possible and is planned as 
future work. It seems possible to include such tools in general 
GIS packages in the future. 
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