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Abstract  
The importance for ontological clarification to design GIS, to structure data in a GIS or to 

construct usable user interface is well established; ontologies are crucial to extend 

interoperability from a syntactic to a semantic dimension. The discussion of ontology for GIS 

always pretends that the data represent reality perfectly, but real data in a GIS can give only 

an imperfect image of reality. An ontology for imperfect data is necessary, which is an 

ontology of imperfections in the representation. The analysis starts with a brief review of the 

ontology typically assumed for a GIS, followed by the description of the ontology of the 

unavoidable imperfections in the data collected. This covers aspects like partial knowledge, 

measurement errors, object formation, etc. (restricted to information about physical objects, 

e.g., data in a GIS with environmental purposes). An ontology of imperfections sheds new 

light on the quality of information discussion and leads to an operational definition for data 

quality not based on perfection. Sufficient quality of data is achieved if further improvements 

would not improve a decision noticeable. This leads to a differentiation of how insufficient 

data quality can influence a decision.  

1 Introduction 
Ontologies are necessary to clarify semantic aspects of geographic data (Frank 1983). 

Ontologies for GIS play a dominant role in the discussion to extend GIS interoperability 

(OGC 2000) from a syntactic to a semantic dimension (Kuhn Draft 2007) and numerous 

papers have been published on semantic or ontological alignment between two geographic 

data collections in order to achieve interoperability and to prepare for combining the data for 

answering a query. Ontologies are useful for communication with users in the design of a GIS 

(Fonseca et al. 1999) and to fix the data structure for the spatial database. Ontologies 

contribute to bridge the gap between user and GIS in the user interface (Kuhn 1993), and 

could contribute to make data quality information more usable (Comber et al. 2006; Boin et 

al. 2007b).  

Ontological studies, both in the philosophical tradition and in the computer sciences, 

application of ontologies assume that the data collected give a perfect image of reality. The 
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rare exception is a paper by Wand and Wang (1996), which suggests that data quality should 

be anchored ontologically. This paper is regularly cited in the information management 

literature, but I could not detect that it has influenced the philosophical computer science or 

geographic information ontology discussion.  

Data in a GIS is never perfect and understanding and communicating the level of 

imperfection in data is key to interoperable use of data. In this article an ontology for 

imperfect data is systematically constructed. It uses as a foundation a realistic ontology, 

structured in tiers (Frank 2001; Frank 2003) and then assesses for each process of data 

acquisition and transformation between the tiers how it degrades a perfect representation to 

produce the imperfect data we have to deal with.  

Data quality is recognized as crucial for interoperability and efforts to standardize 

metadata, including data quality information, led to international standards (DCMI 2006). 

These efforts are not using ontological approaches to clarify the semantics of the data quality 

dimensions, e.g., accuracy, timelines, etc. The ontological approach gives a much finer 

classification, which is operational because the definitions relate to the operations of data 

acquisition and processing. For example, most data quality description proposes a distinction 

between spatial and temporal error; such a distinction is not operational for moving objects, 

because temporal error can masquerade as error and vice versa. The imperfections in data are 

ontologically differentiated in  

• incompleteness of our partial knowledge, 

• definitions of observation process producing errors, and 

• restrictions in cognitive processing forces on object-oriented approach, 

each with several subclasses. This paper improves a first description of ontological 

commitments for imperfect information (Frank to appear 2007) and extends it. For lack of 

space, the treatment here does not yet address the important and very difficult problem of 

errors in classification, which is related to linguistic issues like the so-called prototype effect 

(Rosch 1973), the question of ‘language of thought’ (Fordor 1975; Jackendoff et al. 2002), 

etc. This article gives the foundation on which these questions can be addressed later 

systematically. A suggestion how I plan to extend the material exposed here was recently 

presented (Frank 2006).  

From the shift of focus from errors in data to imperfections as data follows a new, 

operational definition of data quality. Data is used to make decisions and imperfect data lead 

to imperfect decisions—at least conceptually. Relating data quality to decision quality leads 

to a view that data is of sufficient quality for a decision if improvement of the quality of the 

data would not noticeably improve the decision, 
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At the end of the paper a very brief example shows how the ontologically differentiated 

aspects of data imperfection affect a decision. This is only a preview for a systematic 

treatment of the influence of data quality on the quality of decisions; a preliminary conference 

contribution is published (Frank 2007).  

This paper is structured as follows: Section 2 gives an overview on how ontology can 

contribute to achieve a logically consistent view of data quality and summarizes the usual 

assumption for a GIS assuming perfect knowledge. Section 3 then describes the commitments 

for an ontology for imperfect knowledge separating  

• the necessary partial knowledge of an infinitely complex world, 

• the unavoidable observation errors, and 

• the strategies humans use to reduce the amount of data to process. 

Section 4 compares the traditional definition for data quality, based on correspondence 

between reality and data, repeatability of observations, quality of the data acquisition process 

or ‘fitness for use’. Section 5 puts theses definitions in the context of decision making and 

leads to the investigation of the influence of data quality on a decision process in section 6. 

Section 7 gives a small example before coming to conclusions in the last section. 

2 Ontology Contributes to Understanding Data Quality 
Ontologies for information systems describe conceptualizations of a subset of reality for a 

purpose; they describe the conceptualization of the world used in a context (Gruber 1993). A 

context is formed by, for example, a Geographic Information System and the application that 

uses the data in the GIS. It is argued that ontologies contribute to the design of information 

systems, especially GIS (Fonseca et al. 2002). To achieve a consistent description, ontologists 

fix initially ontological commitments. Details of these commitments are extensively debated 

in philosophy; for an overview of the different “–isms” applicable to GIS see an article by 

Smith and Grenon (2004). Ordinary ontology does not take into account the imperfections in 

our knowledge of the world. 

The clarification of ontological commitments leads to consistency in a geographic 

information systems; the same methods must be useful to clarify the quality of the data in the 

GIS. In this section I review the usual ontological commitments for a GIS, as a backdrop to 

discuss in the following section an ontology for data imperfections. I use here the tiered 

ontology to separate different kinds of physical or socially constructed existence in tiers 

(Frank 2001; Frank 2003) and restrict the discussion to the ontology of objects in the physical 

world, excluding social, cultural, and subjective constructions (Searle 1995).  
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2.1 Tiered Ontology 
In the tiered ontology (Frank 2001; Frank 2003), five ontological tiers are separated (Figure 

1): From these this article concentrates on the first three: (i) the reality, (ii) the observation of 

reality and (iii) the physical objects formed by cognitive agents. The treatment is restricted to 

physical aspects of reality and does not cover the subjective and social constructions that are 

important to organize the world. This limitation excludes difficulties introduced through the 

social conventions and contexts, which must be discussed later. The concentration here makes 

it possible to demonstrate some important concepts clearly before embarking on a discussion 

of data quality and its effects in social data. Aspects of these difficulties were discussed at a 

workshop and documented in an edited volume (Burrough et al. 1996). Gangemini et al. have 

published formal methods in the DOLCE framework in which social and subjective realities 

can be modeled (Masolo et al. 2003); special cases for mapping and for cadastre have been 

addressed by Frank (2000a) and Bittner (2001). These approaches must be extended with the 

same considerations for error, uncertainty etc. detailed in the next sections.  

Tier O:  human-independent reality 
Tier 1:  observation of physical world 
Tier 2:  objects with properties 
Tier 3:  social reality 
Tier 4:  subjective knowledge 

Figure 1: The five ontological tiers (Frank 2001) 

2.2 Ontological Commitments to Conceptualize the World 
This subsection reviews ontological commitments as they seem to be customary for physical 

geography oriented GIS.  

2.2.1 Commitment O 1: A single world 
It is assumed that there is a physical world, and that there is only one physical world. This is a 

first necessary commitment to speak meaningfully about the world and to represent some 

aspects in a GIS. This does not exclude multiple description of future planned states of the 

world or the differences between the perception of individuals.  

2.2.2 Commitment O 2: The world exists in time and has evolving states 
The world has states, which evolve in time (Wand et al. 1996). This ontological commitment 

is twofold: it posits a single time and changeable states of the world. 

2.2.3 Commitment O 3: Observable states  
The actors in the world can observe some of the states of the world at a given location and the 

present time (the now of Franck (2004)) with their sensors. Observation of physical state for 

properties of the world states at a point in space and time is objectively possible (point 

observations); the influence of the observer on the observation of physical properties is small 

and repeated observations give the same values.  
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2.2.4 Commitment O 4: Information systems are models of reality 
Observation result in information and the ontology must separate the reality realm from the 

information realm (postulates 2 and 3 in Wang and Wand (1996, 90)). Observations translate 

the state of the world from the realm of reality to the realm of information (Figure 2). The 

information realm is a partial and incomplete model of the world as the commitments to 

imperfect knowledge in the next section postulate. A model is related to the world by 

morphism. Corresponding operations in the model have corresponding results (Kuhn et al. 

1991; Wand et al. 1996; Ceusters et al. 2006; Goguen et al. 2006)). 

 

Figure 2: The Reality Realm and the Information Realm 

2.2.5 Commitment O 5: Some states of the world can be changed by agents  
The actors in the world can not only observe the world, but they can change it through 

actions. The effects of actions are changed states of the world and these changed states can be 

observed. This gives the semantic loop (Figure 3) that connects the sensors and their 

observations to the changes caused by the actions (Frank 2003). The semantic loop links the 

proprio-sensoric experience of actions with the sensors in the human brain. 

   

Figure 3: Closed Loop Semantics Connects the Reality Realm with 
the Information Realm through Observations and Actions 
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2.2.6 Commitment O 6: Separate physical and information causation 
The changes in the state of the world are modeled by physical laws, e.g.: “The cause for water 

flowing downward in the reality realm is gravity.” The rules of physics can be modeled in the 

information realm and allows the construction of expected future states in the information 

realm, predicting what effects an action will have. 

An entirely different form of causation is information causation.  Agents use information 

to plan actions. The execution of the action causes changes in the physical world (O5). 

Actions can be separated into an information process, which I will call decision, and a 

physical action. Decisions are in the information realm but they affect—through actions and 

physical laws—the reality realm. Decisions can have the intended effect only if the action can 

be carried out and no physical laws impede it.  

3 Ontology for Imperfect Information 
The above “usual” ontological commitments ignore the necessary and non-avoidable 

imperfections in our knowledge of the world. They pretend that we have perfect knowledge, 

which is not possible. The illusion of perfect information is acceptable for ordinary, every day 

operations, given that experience helps us collect sufficient information to make valid 

decisions, but ignoring the imperfection of our knowledge is hindering the construction of 

advanced information systems.  

The limitations in the knowledge we have about reality can be divided in 

• partial knowledge, 

• impossibility to obtain true values, 

• reduction of detail by formation of object, and 

• classification. 

This article concentrates on physical models of reality and concentrates on the first three 

influences on the acquisition of information and ignores effects of classification, which 

should be discussed in the context of social constructions (for a preliminary discussion see 

(Frank to appear 2007)). The ontology structured in tiers advances the analysis of 

imperfections in data. The imperfections are introduced by the processes that connect the 

tiers: first, the observation processes linking tier O to tier 1 and then object formation 

processes linking point observations in tier 1 to object descriptions in tier 2. 

3.1 Partial knowledge 
It is impossible to construct a complete model of the (nearly) infinitely detailed reality and 

our knowledge is therefore always a partial selection of those aspects that seem important. 

Three ontological commitments for partial knowledge P1 through 3 describe limitations 

which reflect the incompleteness of our knowledge:  
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• spatial and temporal extent of observations, 

• type of observations, and 

• level of detail of observations. 

3.1.1 Commitment P 1: Only information about a part of the world is collected. 
Most geographic data collections focus on a small, spatially delimited area of the globe. We 

speak of the  geographic footprint of a GIS and mean the area covered. 

The same limitation applies in the time domain: a dataset gives the state of the world at a 

given time, usually the time of data collection. The time of data collection is well defined for 

remote sensing data, but much less clear for other datasets in GIS, which are constantly 

updated. The data collection time for different data elements varies and the “update level” is 

often differentiated by importance of a change (e.g., in the Bavarian ATKIS data collection 

changes in important roads are updated within 3 months, whereas forest roads lag behind for 

years (Henninger 2007)).  

3.1.2 Commitment P 2: Not all properties of the world are observed 
Assuming that the world has observable states, a single data collection contains only a subset 

of these. For example, remote sensing images observe the intensity of the light reflected in a 

set of frequency intervals. A collection of datasets is described by the observations they 

contain. The models we construct are restricted to the aspects that are relevant for the 

decisions we intend to make and we limit the expensive collection of data to aspects we deem 

relevant. 

3.1.3 Commitment P 3: Information is limited by the level of detail observed 
The world is infinitely complex and the information we have about it is always limited by the 

level of detail. It is impossible to construct a fully accurate and detailed model of the world, 

because such a model would be at least as big as the world. The information model of the 

world is therefore always limited by the level of detail. 

3.2 Observations Do Not Produce True Values 
The observation methods that translate states of reality to information are by themselves 

limited. The data collected are in error, which is described by the error commitments E 1 and 

E 2. Fortunately most changes in the world occur gradually—both in space and time—and 

therefore the human approach to partial observations with imperfect sensors yields usually 

valid information. Figure 4 shows the small effect an error in location has on the value of the 

signal, because values nearby are very similar. Human rational behavior would not be 

possible in an uncorrelated world! Strong correlation leads sometimes to confusion, e.g., land 

use and land cover are strongly correlated and often confused in data collection and 

classification. 
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3.2.1 Commitment E 1: Observations are erroneous 
Observations are affected by unavoidable effects, which create differences between the ideal 

observation (the ideal value) and the actual realization of the observation. These effects 

appear as random and are modeled, unless one has better knowledge, by normal distributions 

with an expected value v and a standard distribution σ.  

3.2.2 Commitment E 2: Autocorrelation  
Autocorrelation counteracts the effects of the fact that all our knowledge is incomplete and 

erroneous. The physical world is strongly autocorrelated—both in space and time. This allows 

to interpolate values for points not observed or compensate observation errors. The most 

likely observation of a property just a little bit to the left where I looked before, or just a little 

bit later is most likely very similar to the observation I made before. Different observations 

are also strongly correlated: for example sugar content of a fruit and its color is usually 

correlated—we pick the red strawberries, because they are sweet and taste good and leave the 

green ones.  

 

Figure 4: Large error in location leads to small error in observed 
value 

3.3 Limitations of Information Processing: Forming Objects 
The structure of our information is not only influenced by our sensors, but also by the systems 

to process information. The brains of biological agents—including humans—are limited and 

the biological cost, i.e., energy consumption of information processing, is high. Biological 

agents have therefore developed methods to reduce the load on their information processing 

systems to allow efficient decision making with limited effort and in short time. Humans and 

higher animal species reorganize the low level point observations into information about 

objects. Karminoff-Smith has shown that humans apply a general cognitive mechanism of re-

representation of detailed data into more compact, but equally useful, information (Karmiloff-
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Smith 1994; Karmiloff-Smith 1995). These limitations are captured in the restriction 

commitments R 1 through R 8. 

3.3.1 Commitment R 1: Biological agents have limited information processing 
abilities, therefore concentrate on discontinuities 
Most of the world is slowly and continuously changing and most aspects of the world are 

highly correlated (E 2). Focusing on the discontinuities gives a compact representation. 

Before a background of stable states of the world we focus on the interesting changing and 

discontinuous points. This re-representation reduces the data that needs to be processed and 

still gives sufficient information about the world to avoid dangers (e.g., to detect the rapidly 

approaching car). In technical systems autocorrelation is used to reduce bandwidth necessary 

for transmission, e.g., of television images; strong autocorrelation is the reason lossy 

compression methods like JPEG and MPEG or loss-less methods like run-length encoding 

work.  

3.3.2 Commitment R 2: Object centered data processing 
Human processing of information describing reality is object oriented. Humans, and many 

other biological agents, convert the visual observations they perceive in a raster format into 

information about objects. In GIS raster data is often converted into vector based object data. 

The observation of properties of points in space and time are restructured, i.e., re-represented, 

to become properties of objects.  

The cognitive system forms objects at discontinuities (R 1): it is simpler to keep track of 

objects with uniform properties and to pay attention to their boundaries; most of the world 

modeled as objects is stable, uniform, and unchanging compared to a point (raster) model of 

the world. Due to high spatial and temporal autocorrelation large areas have similar properties 

and are thus reduced to a single object. This reduces the cognitive load. 

3.3.3 Commitment R3: Object formation is driven by interaction with the world 
We cut the world in objects that are meaningful for our interactions with the world (McCarthy 

et al. 1969, 33). Our experience in interacting with the world has taught us appropriate 

strategies to subdivide continuous reality into individual objects. The elements on the tabletop 

(Figure 5) are divided in objects at the boundaries where cohesion between cells is low and 

pieces can be moved individually; spoon, cup, saucer each can be picked up and moved 

individually. 
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Figure 5: Typical objects from tabletop space 

3.3.4 Commitment R4: Objects are formed to endure in time 
The world is not static (O2), but changes are rare compared to the overwhelming relative 

stability. Object formation further increases this stability by separating seldom changing 

properties from frequently changing ones. For example, weight or color of the cup in Figure 5 

is seldom changing, but location of the cup changes often. 

3.3.5 Commitment R 5: Multiple ways to form objects 
There is little doubt how to limit familiar movable objects, but variations are possible: in 

Figure 5, we can separate cup and saucer, but often the two are sold as one “coffee-cup” 

object; in a restaurant a cup of coffee includes also the coffee, cup, and spoon—they are 

served and billed as a unit. Even more variable are non-moving, geographic objects; there are 

multiple ways to subdivide geographic space into objects. In the absence of movement, a 

single, most salient criterion for object formation is not available (Frank 2006). Considering 

terrain, we can identify watersheds, and valleys, or we identify alpine meadows and forests, 

agricultural and built-up areas (Figure 6). These multiple ways to define objects do not 

necessarily coincide but often do, caused, e.g., by correlation between slope and land use. 

Many other ways to subdivide space are important; if we consider social constructions: 

ethnical and religious boundaries are seldom coincident, leading to wars about what is the 

natural limit of a territory. GIS must be prepared to have coexistent, overlapping spatial 

objects (Frank 2001). 
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Figure 6: A region with watershed and land cover objects 

3.3.6 Commitment R 6: Objects as regions with uniform properties 
A very general approach to define objects is to say that they form regions with at least one 

attribute having a uniform value. For movable objects the uniformity is in the joint 

movement; this usually coincides with uniformity in material, color, etc.  

The uniformity of the attribute allows for variation of the value of the property within 

limits and introduces thresholds for which the property value is considered “uniform”. This 

absorbs error in the observations (E 1) and reduces the necessity for precise observations. 

Different objects result if we select different attributes. Areas of uniform land cover (e.g., 

alpine meadows, forest) do not necessarily coincide with the areas of uniform water flow that 

gives watersheds or regions of similar soil type (Figure 6). The autocorrelation in space and 

the correlation between factors influencing natural processes result in object boundaries that 

often (nearly) coincide. The differences in land cover coincide with the fences in Figure 7 and 

the differences in land use; the road along the pond nearly coincides with the boundary of 

water covered area. 
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Figure 7: Coincidence with land use changes 

3.3.7 Commitment R 7: Object formation is uncertain 
Objects, formed as areas of uniform attribute value, are delimited by boundaries and these 

boundaries have observational error. The error in observing the attribute affects the 

determination of the boundary (Figure 8). 

 

Figure 8: Error in observation of property results in error of object 
boundary 

3.3.8 Commitment R 8: Objects have properties, known only with uncertainty 
Objects have changeable state. The changeable state of objects is the consequence of the 

assumption that the world has changeable states (commitment R 2 and 3) and objects are 

formed as aggregates of real world regions (R6). The object properties summarize the 

observable point properties. Object properties are integrals of some attribute over the volume 

the object forms (Eq. 1) and describe the state of objects.  
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Object property values, as obtained through equation 1 are approximations. For small 

moveable objects, practical methods to observe these integrals directly exist. For example, 

weighting an object on a balance gives directly the integral of the mass over the object 

volume. Such methods are generally not available for geographic objects. The error in the 

observation of properties of the objects is affected by observational errors in two forms: 

a) error in the determination of the object boundary (R 7) and 
b) error in the observation of the attribute summed (O 5).  

These errors can be modeled if the observation errors are assumed to be random, normally 

distributed (commitment E 1) (Navratil et al. 2006). However, simplifying assumptions are 

necessary to achieve a tractable formalization; for example, weak correlations between 

properties (E 2) are ignored.  

4 Quality of Information 
Given these imperfections, how to define quality of information? Obviously, information is of 

higher quality if the imperfections are lower, i.e., the combined influences of incompleteness, 

error, object formation, etc. are less; we have also seen effects that reduce imperfections, e.g., 

autocorrelation (E 2). The information with less imperfections, corresponds better with 

reality. Questions arise: How much quality is required? Do we always need perfect 

information? Obviously not—but how much is necessary? What does it mean precisely to say 

that information corresponds with reality? Four approaches to define data quality are found in 

the literature. Data quality is defined as:  

• correspondences between reality and data, 

• agreement between repeated observation, 

• result of the quality of the data acquisition process, or  

• ‘fitness for use’ of the data. 

All four definitions of data quality have some difficulties and do not lead to operational, 

practically useful methods to assess data quality. These four definitions will be discussed in 

the following subsections. The next section then brings an integration of the four approaches 

and the following section sketches how this integrated concept oriented towards decision 

making can be made operational to be practically useful. The application to a more complex 

engineering decision is reported else where (Frank 2007).  

4.1 Information Assumed Isomorphic to Reality 
A common naïve but very useful assumption in the construction of information systems is that 

the information is an isomorphic image of reality, meaning that there is a one-to-one relation 
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between reality and the data. This is essentially Tarski’s correspondence theory for truth 

(Tarski 1944). If the two realms in Figure 2 are linked by an isomorphism, then the distinction 

between a thing in the world and an image in the information model would not be required. 

Reality and the model are the same—up to isomorphism (Lawvere 1965; Mac Lane 1998). 

This simplifies reasoning and talking about data enormously but does not produce a method to 

assess data quality. If we consider imperfection in the data, the simplification resulting from 

the assumption of an isomorphism is not justified and the mapping between reality and 

information model must be analyzed and not glossed over (Kent 1979). Over time, methods 

emerge to produce the quality required, but in today’s climate of rapid development of 

technology and business practice, an analytical treatment of data quality is necessary to 

actively design methods to achieve the quality required and not more. 

4.2 Quality Derived from Repeated Observations 
The most often used definition of information quality is based on the repeatability of 

observations: another observer bringing back the same information demonstrates that it is 

correct. This “internal precision” leads to a quantitative assessment of data quality, used 

extensively in, e.g., surveying engineering, but lacks a relation to the use of the data. In a 

world that is constantly changing, observations cannot be exactly repeated—an observation 

made later is different from the observation made before; the customary definition is usable 

only if these effects are ignored and thus, strictly speaking, it is only a definition for 

‘correctness within limits’. These limits are usually assumed such that smaller imperfections 

do not negatively affect the intended use. Autocorrelation (E2) is the reason that this 

definition of data quality works. An observation a little bit later or nearly at the same place 

produces nearly the same value; repeated observations would not be meaningful in a world 

not strongly spatially and temporally autocorrelated (Figure 4). 

4.3 Quality as Result of Data Acquisition Methods 
Data quality is the result of the production process of the data; this can be called “external 

precision”. The quality of data can be deduced from properties of the production process 

(Timpf et al. 1996; Timpf et al. 1997). This is similar to the view that the quality of a car 

results from the details of the production process and thus fits general methods of industrial 

engineering to assess product quality (e.g., photogrammetry projects are often specified by 

process descriptions). The obtained characterization of data quality is derived from statistics 

of repeated observations obtained with the same data acquisition method. 

Unfortunately, these production oriented definitions of data quality are mostly irrelevant 

for the use of geographic data. Practitioners resist pressure to make costly efforts to produce 

such data quality descriptions because they are not informative for potential users (Hunter et 

al. 2000). 
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4.4 Fitness for Use 
An alternative definition is based on the concept of fitness for use (Chrisman 1985), which I 

quantified as comparison between required and provided quantity (resp. error, which is 

expected vs. error tolerated) (Frank 1998). Rönnbäck’s critique that this gives not much 

guidance to the user is justified (Rönnbäck 2004) and indicates that more research is 

necessary (Boin et al. 2007b). Information is used to make decisions, which are then 

translated into actions. Decisions are the only economic use of information. A convenient 

definition of information reflects this: Information is an answer to a human question (Frank 

1997). People ask ordinarily questions in order to make decisions, sometimes the decisions 

are imminent and sometimes we just collect information to be prepared for decisions we 

expect to take later. If information is used to make decisions, then the quality of the 

information can be related to the quality of the decisions made. Data that produced the 

information is of good quality if the resulting decision is good. 

To assess the quality of the decision as the result of the quality of the data brings us back 

to the semantic loop (Figure 3): reality and information realm are connected (1) by 

observations, which populate the information realm and (2) the decisions and actions, which 

change the world. To assess the quality of the information one must assess the quality of the 

decision and how it is influenced by the information. The next section produces a highly 

simplified model of the decision process adapted to this end. 

5 Decision Process 
The ontological commitments for incomplete, uncertain, and erroneous information must be 

linked to the decision process to see how they affect the quality of the decisions. This requires 

a highly simplified summary model of how decisions are made: 

The decision to take some actions starts with a goal, i.e., an imagined future world state 

that is desirable to the agent. For example, I am hungry and imagine a future world state in 

which I have eaten. I consider then a set of alternative actions to achieve that state and 

evaluate the different plans in order to select the best course of action, which I then carry out. 

Not all aspects of this model must be conscious to the agent (Roth 1994). It is sufficient that 

the agent selects one of the alternatives because it appears—given the current state of his 

knowledge—the best option. It is implied that decisions can be wrong, are made with 

insufficient information, etc.; the decision is sufficing and the rationality is bounded by the 

limitations of the agent (Simon 1956). 

Note: the apparent difference between: 

a) a decision whether a plan can be executed or 
b) a selection of an optimal plan to achieve a goal 
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is not fundamentally relevant for the following discussion of influences of data quality on 

decision, because the first case can be logically reduced to the second one.  

5.1 How and Why Decisions Can Be Wrong 
A decision can be wrong in three ways: 

1) The action that is decided cannot be carried out. 

2) The achieved state of the world does not satisfy the goal. 

3) The action did achieve the intended goal, but was not optimal.  

The first two cases of wrong decisions are primarily related to the decision type (a) 

above—the selected action does not achieve the intended goal, whereas the third relates to the 

selection of one variant among several ones (case (b) above). 

Effects of imperfection in the data are different if they are caused by errors in 

measurements (E1) or by omissions or commissions; which are implied in the same 

commitments by negation (P1, P2, and P3); these two types of error are discussed first for 

incorrect decision and then for suboptimal decisions. 

5.2 Information Is Correct If It Leads to Correct Decisions  
A practical definition is to state that information is correct if it leads to correct decisions. This 

requires first a definition of what we mean by ‘correct decision’. Let me start with a 

counterexample: information is incorrect if it leads to a wrong decision. For example, my 

decision to go to the airport at 7:30 a.m. to catch the plane for Frankfurt is in error if the plane 

has actually left at 7:15 a.m. Other example: my decision to buy a 2 m extension cord to 

connect my stereo system is incorrect if I find at home that the cable is too short because the 

distance between the power outlet and the stereo system is 3 m. A decision is not correct if it 

does not lead to the desired goal (i.e., flying to Frankfurt, connecting the stereo set)—this 

points out that decisions are taken in order to achieve a certain goal; if the action decided 

upon does not achieve the desired goal, the decision is incorrect. The concept of correctness 

assumed here is relative to the decision and not one of an unattainable perfect agreement. 

If we assume bounded rationality in the decision process then the information available is 

influencing the decision—thus information that leads to the correct decision is correct 

information. Note that this definition is less influenced by the imperfections in the data, than 

the definition of correctness based on repeatability and takes into account the influence of 

error and uncertainty on the information. Much error, uncertainty, and incompleteness in the 

information can be tolerated as long as the action decided on achieves its goal. Statistical tests 

can be used on repeated observations to assess if the values obtained are within the expected 

margins with a certain probability. Therefore this statistical characterization of data must be 

connected with the decision (see (Frank 2007)). 
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5.2.1 Incorrect decision due to observation (measurement) error 
An action is not possible as planned because of observation errors. This is the type of error 

surveyors have extensively studied and try to avoid with precise measurements. Most 

spectacular are the efforts by surveyors to assure that the two ends of a new tunnel meet in the 

middle of the mountain; or a surveyor measures the gap between the roads on both sides of 

the river and measures the steel bridge, which should fit in the gap; if the measurements are in 

error, closing the gap is not possible.  

5.2.2 Incorrect decision  due to lack of knowledge (omission or commission) 
An action can be impossible because some crucial information was not available. For example 

driving to a city and finding that the city is on the other side of a river not shown on the map 

and no bridge available. A case of an instruction from a car navigation system to cross a river, 

where a ferry and not a bridge should be used, was widely publicized; the driver drove the car 

into the river and blamed the incomplete information from his navigation system (Kuhn 

1994). This event demonstrates how commissions and omissions have similar effect, e.g., a 

commission error showing a bridge crossing a river where there is none leads to comparable 

errors as showing no bridge where there is one. 

5.2.3 Suboptimal decision 
Information present is incorrect and therefore the selected action can be executed but is not 

optimal for the situation; this can be caused by measurement errors, omissions, or 

commissions. A map shows a road as shorter than it actually is, or shows a road, which is not 

(yet) existing and one decides to take this shorter route, only to realize later, that this road is 

longer than another one or not yet ready and a longer route must be followed. 

The economic effects of selecting not the optimal, but the second or third best action 

especially due to measurement errors, are in general not very important—because the 

difference between optimal choice and second or third best choice are usually not large (test 

this when using a car navigation system!). The small difference between alternatives is the 

effect of the autocorrelation already mentioned but also caused by the intentional construction 

of infrastructure in the world that are, whenever possible, redundant. If one fails, there is 

always a second option. Mankind has learned how to live in a world of error and uncertainty! 

6 Influence of Imperfections of Measurement Errors 
6.1 Measurement Errors 
Measurement errors must be very substantial before they influence a decision. Measurement 

errors can  

1) lead to the selection of non-optimal solution, if the values for two alternatives are 
closer than the error on the measurement. 

2) hide that an action is not possible and lead to a decision for an unfeasible action 
when the measurement value and the accepted value are very close. 
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In actual decision situations, the first case causes a small loss in the proportional to the 

measurement error (Figure 9). The second case must be detected by the decision maker and 

judged ‘risky’; she then can change the situation to avoid the risk or reduces the error on the 

measurement values.  

 

Figure 9: Loss from selecting a suboptimal solution based on 
measurement error 

6.2 Omissions and Commissions 
It is tempting to link decision errors for lack of knowledge to omissions and the selection of a 

not optimal action to commission, but indeed omissions and commissions produce both 

similar errors in decisions. For a decision error due to physical impossibility, consider a 

property that is crucial for the execution of the action, but this property was asserted as an 

effect of a commission error and is not really present—this has the same effect than the 

omission of a property that must be absent for the action to conclude. In such cases, omissions 

and commissions have the same effect, both make it impossible to execute an action that was 

decided upon. Selecting an action that is not optimal (suboptimal decision) can be equally the 

effect of an omission or a commission, and possibly even of a measurement error (Frank 

2007).  

7 Small Example: Errors in Road Navigation Decision 
In a decision on road navigation, i.e., which road to follow to drive to another place, the three 

types of errors in decisions due to information quality can be demonstrated. Assume that we 

need to drive from A to B on a Sunday and have gas in the car for 100 km; the information we 

have is shown in Figure 10 left. The shortest path seems to be x and we decide to take it.  

The data used for the decision are grossly imperfect and the true situation is shown in 

Figure 10 right. The decision is, firstly, to use route x in error due to imprecise measurement 

(case 1), the path x is very convoluted and actually 120 km long and we will fail to achieve 

our goal for lack of gas. The decision is, secondly, in error for lack of knowledge (case 2) 
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because B is on an island and the ferry runs only on workdays (on Sundays one must take path 

y). On a workday, the decision to use route x would not be optimal (case 3) because the length 

of path z is not 85 km as marked but only 65 km.  

 

Figure 10: Information available for decision (left) and true situation 
(right) 

The analysis of the process of identification of an optimal solution demonstrates that lack of 

relevant information (P 2 or P 3) and errors in object formation and measurements (R 5 to R8) 

connects between types of imperfections and decision quality. Errors due to classification 

errors are not considered here and are left for future work. 

8 Conclusion 
Ontologies describe conceptualization of some subset of reality (Gruber 1993); most studies 

of ontologies, especially research in the context of spatial information, does not consider the 

unavoidable imperfection in the data. This has hindered the use of ontological analysis to 

clarify what we understand by data quality. This article presents a novel ontology for 

imperfect data, or, more exactly, an ontology of imperfections in data. It was first necessary to 

give up the simplifying assumption that reality is linked by an isomorphism to (geographic) 

information system and to describe the process that connects the reality realm to the 

information realm—a step that was proposed earlier (Frank 2000b).  

The tiered ontology (Frank 2001) leads to a systematic inventory of different types of 

imperfections in the data resulting from the processes of data acquisition and transformations, 

here presented as ontological commitments to imperfect data. The effects of imperfection in 

the data on decisions gives the framework in which data quality as “fitness for use” can be 

studied. Data quality is higher, if the data contains less imperfections, but a construction of 

“quality = absence of imperfections” is not practically useful. Data quality in the sense of 

“fitness for use” is related to a decision and means that the effects of the imperfections do not 

negatively affect (distort) the decision. This definition of data quality can be related to other 

data quality measures (e.g., internal or external accuracy). 
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The systematic treatment reveals opportunities for future research:  

First, the approach must be extended to include effects of classification and to apply to 

socially constructed reality and data describing this. The analysis presented here covers only 

decisions in the physical realm (e.g., engineering decisions for the design of physical artifacts, 

for example a bridge or a building) but does not apply to decisions including legal or social 

aspects.  

Second, the commitments to data imperfections can be related to the processes that link 

the ontological tiers; the commitments listed here are limitations of the processes that acquire 

and transform the flow of information from reality to information realm. This has not been 

exploited systematically here. It could answer puzzling questions that remain unanswerable in 

the framework constructed so far. For example, people rely extensively on relative, not 

absolute, information; think of your knowledge of the position of furniture in the room around 

you: you are aware of relative position, and ignore absolute position for ordinary decisions 

without negative effects. How is this formulated as an ontological commitment? Is this an 

imperfection in the data?  

Last, but not least, ontological clarification can lead to a reduction in jargon and 

improved communication of data quality to the users of geographic data; empirical studies 

show evidence that actual users do neither use nor understand data quality information 

currently provided (Boin et al. 2007a). 
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