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Abstract  

An ontological investigation of data quality reveals that the quality of the data 
must be the result of the observation processes and the imperfections of these.  Real 
observation processes are always imperfect. The imperfections are caused by (1) 
random perturbations, and (2) the physical size of the sensor. Random effects are 
well-known and typically included in data quality descriptions. The effects of the 
physical size of the sensor limit the detail observable and introduce a scale to the 
observations. The traditional description of maps by scale took such scale effects 
into account, and must be carried forward to the data quality description of mod-
ern digital geographic data. If a sensor system is well-balanced, the random per-
turbations, size of the sensor and optical blur (if present) are of the same order of 
magnitude and a summary of data quality as a ‘scale’ of a digital data set is there-
fore theoretically justifiable. 

1   Introduction 

Digital geographic data comes in different qualities, and applications have dif-
ferent requirements for the quality of their inputs. A common misconception is that 
better quality is always preferable, forgetting that better quality means more detail 
and therefore more data, longer data transfer and processing time, etc. Traditionally 
map scale was used to describe the quality of geographic data comprehensively. 
With the reduction in scale, expressed as representative fraction, comes automati-
cally a reduction in detail, described as cartographic generalization. Users learned 
which map scales were suitable for which task: orienteering uses maps in the scale 
range 1:10,000 to 1:25,000; for driving from city to city, maps 1:250,000 to 
1:500,000 are sufficient, etc. Repeated experiences have taught us these practical 
guidelines and we follow them without asking for an underlying theory. The begin-
ning of such a theory is attempted here.  

In the age of digital data, the traditional definition of scales, as proportion be-
tween distances on the map and in reality, does not make sense: locations are ex-
pressed with coordinates and distances computed are in real world units. Only 
when preparing a graphical display is a numeric scale is used – but, in principle, 
digital geographic data can be shown at any desired graphical scale, even if this 
often does lead to nonsense. The concept of scale in a digital world has been criti-
cally commented, but no solution suggested (Lam and Quattrochi, 1992; Goodchild 
and Proctor, 1997; Reitsma and Bittner, 2003). The discussion of data quality of 
geographic data focuses on descriptions of data quality of a single dataset, some-
times differentiating different types of digital representation (e.g., Goodchild, 
1994). I want to complete this dataset viewpoint with an analysis of the process by 
which data is produced from observations and used in discussions about actions.  

In this paper I explore the process of geographic data collection and show how 
scale is introduced during the observation process, and should be carried forward as 
a quality indication. An analysis of the properties of real (physical) observation 
processes reveals that physical observation processes introduce a scale into the ob-
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servation. This ‘scale’ is not an artifact of cartography, but originates in the physi-
cal observation process itself. The same ‘scale’ value can later be used when con-
sidering whether a dataset can be used effectively in a decision situation (Frank, 
2008). 

This paper begins with a short review of tiered ontology (Frank, 2001; Frank, 
2003), which is necessary for the analysis. Section 3 lists the information processes 
that link the tiers and gives the framework used. Section 4 discusses briefly accu-
racy and shows how random imperfections in the observations influence the forma-
tion of objects and the values for their attributes. Section 5 looks at scale, produced 
by the spatial and temporal extent of the observation as a second source of imper-
fection in the data. Convolution gives a formal model for this effect. The influences 
of scale are so defined in the process from observation to object related data.  

Goodchild (1994) points to the spatial extent necessarily associated with some 
types of geographic data; for example “land cover” (Goodchild, 1994: 616). Unfor-
tunately, his contribution had more impact on vegetation mapping than on spatial 
data quality research. The present contribution extends Goodchild’s observation 
and states that primary observations have necessarily a scale and that the scale of 
derived datasets can be traced through the information processing steps. In particu-
lar, the novel contribution of this paper is: (1) identifying that the scale of data is 
introduced during the observation process; (2) providing a formal model that can be 
used to predict effects of the scale of observations on other data.  

2   Tiered Ontology 

An ontology describes the conceptualization of the world used in a particular 
context (Guarino, 1995; Gruber, 2005): two different applications use generally 
different conceptualizations. The ontology clarifies these concepts and communi-
cates the semantics intended by data collectors and data managers to persons mak-
ing decisions with the data. An ontology for an information system that separates 
different aspects of reality must not only conceptualize the objects and processes in 
reality, but must also describe the information processes that link the different con-
ceptualizations and transform between them. This is of particular importance for an 
ontology that divides conceptualization of reality in tiers (Frank, 2001) or in object 
and process ontologies (Bittner and Smith, 2003; Smith and Grenon, 2004). The 
processes transform the data and the quality of the data; understanding and formal-
izing the information processes allows one to describe how the quality of the ob-
servation determines the quality of derived data.  

The tiered ontology used here (Frank, 2001; Frank, 2003) starts with tier O, 
which is the physical reality, the real world, that “what is?”, independent of human 
interaction with it. Tier O is the Ontology proper in the philosophical sense; some-
times Ontology in this sense is capitalized and it is never used in a plural form. In 
contrast, the ontologies for information systems, which are the focus of this paper, 
are written with a lower case o.  

2.1   Tier 1: Point Observations 

Reality is observable by humans and other cognitive agents (e.g., robots, ani-
mals). Physical observation mechanisms produce data values from the properties 
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found at a point in space and time; v=p(x, t). The value v is the result of an obser-
vation process p of physical reality found at point x and time t.  

Tier 1 consists of the data resulting from observations at specific locations and 
times (termed point observation). Examples would be the temperature, type of ma-
terial, or forces at a point; philosophers sometimes speak of “sense data”. In GIS 
such observations are often realized as raster data resulting from remote sensing 
(Tomlin, 1983), similar to the observations collected by our retina, which performs 
many observations of light emanating from a point in parallel. Sensors, and sensor 
networks in general, also produce point observations. Many, if not most measure-
ments performed in the world are more complex, and report attributes of objects 
(e.g., length, weight) and are part of tier 2. Point observations are so simple that 
they are assumed as functions, unlike complex measurements of object properties 
influenced by culture and conventions (e.g., published standards or regulations).  

2.2   Tier 2: Objects 

The second tier is a mental description of the world in terms of mentally con-
structed physical objects. Objects are regions of space that have some uniformity in 
property. An object representation reduces the amount of data, if the subdivision of 
the world into objects is such that most properties of the objects remain invariant in 
time (McCarthy and Hayes, 1969). For example, most properties of a taxi cab re-
main the same for hours, and days, and need not be observed and processed repeat-
edly; only location and occupancy of the taxi cab change often. The critical ques-
tion is how mental objects are constructed, subjectively and in response to concrete 
situations.  

2.3   Tier 3: Social Constructions 

Tier 3 consists of constructs combining and relating physical objects to abstract 
constructs. These are first conventions to allow communication, which link mental 
objects (thoughts) with symbols [Kuhn in Navratil Semantic Engineering… ?], and 
second constructions like money, marriage and land ownership. Constructed reality 
links a physical object X to mean the constructed object Y in the context Z. The 
formula is: “X counts as Y in context Z” (Searle, 1995: 28). 

Social constructions relate physical objects or processes to abstract constructs of 
objects or process type connected by human perception and mental object forma-
tion shaped by cultural conventions. Constructed objects can alternatively be con-
structed from other constructed objects, but all constructed objects are eventually 
grounded in physical objects. 

3   Information Processes 

Information processes transform information obtained at a lower tier to a higher 
tier (Figure 1). 
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Figure 1. Tiers of ontology and information processes transforming data between them 

 
All human knowledge is directly or indirectly the result of point observations, 

transformed in a chain of information processes to complex knowledge about men-
tally constructed objects. All imperfections in data must be the result of some aspect 
of an information process. As a consequence, all theory of data quality and error 
modeling has to be related to empirically justified properties of the information 
processes.  

3.1  Observations of Physical Properties at Point 

The observations of physical properties at a specific point are the physical proc-
ess that links tier O to tier 1; the realization of observations is unavoidably imper-
fect in two ways: 

 
1. unpredictable random disturbance in the value produced, and 
2. observations focus not at a point but over an extended area. 

 
A systematic bias, if present, can be included in the model of the sensor and be 

corrected by a function and is not considered further. 

3.2   Object Formation (Granulation) 

The formation of objects – what Zadeh calls granulation (Zadeh 2002) – is a 
complex process of determining, first, the boundaries of objects and, second, sum-
marizing properties for the delimited regions. Gibson (1986) posits that humans 
create a meaningful environment mentally consisting of meaningful things, which I 
call (mental) objects. For objects on a table top (Figure 2), e.g., a coffee cup, a sin-
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gle process of object formation dominates: we form spatially cohesive solids, which 
move as a single piece: a cup, a saucer, and a spoon.  

 

Figure 2. Objects on a tabletop 

Geographic space does not lend itself to such a single, dominant, subdivision as 
objects typically do not move. Various aspects can be used to form regions of uni-
form properties, leading to different objects overlapping in the same space. Water-
sheds, areas above a particular height, regions of uniform soil, uniform land man-
agement (Figure 3), and so on, can all be meaningful objects in a situation (Cou-
clelis and Gottsegen, 1997). Object classification forms groups of objects suitable 
for certain operations (hunting, planting crops, grazing cattle, etc.). Processes can 
be granulated by similar approaches in 3D plus time (Reitsma and Bittner, 2003), 
an important future research topic. 

 

Figure 3. Fields in a valley 

We are not aware that our eyes (but also other sensors in and at the surface of 
our body) report point observations. The individual sensors in the eye’s retina give 
a pixel-like observation, but the eye seems to report size, color, and location of ob-
jects around us. The observations are, immediately and without the person being 
conscious about the processes involved, converted to object data, and mental proc-
esses of object formation connect tier 1 to tier 2. Most of the technical systems we 
use to measure object attributes hide in a similar way the intricacies of the object 
formation: a balance reports the total weight of the ‘object’, i.e., all that is placed in 
the weighing pane. Length measure report about comparison if length between an 
object of interest and a yardstick. Scheider and Kuhn (2008) describe similar, but 
virtual (imagined) operations related to the linguist’s fictive motion (Talmy, 1996).  
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Object formation increases the imperfection of data – instead of having detailed 
knowledge about each individual pixel, only a summary description is retained. 
This summary may average out some of the imperfections of the point observations 
and the result may be more useful. Reporting information with respect to objects 
results in a substantial reduction in size of the data (estimations for some cases sug-
gest a factor as high as 106). 

Object formation consists itself of two information processes, namely, (1) 
boundary identification, and (2) computing summary descriptions. 

3.2.1   Boundary Identification 

Objects are formed as regions in 2D or 3D that are uniform in some aspect. The 
dominant approach is to identify surfaces and define objects as “things which move 
in one piece”. This uniformity in marginal coherence works for objects in tabletop 
space (Figure 2), but fails for geographic space because there is not one dominant 
way to partition the real world into objects, but several, depending on the viewpoint 
and situation. In order to form objects, a property that is important for the current 
situation is selected to be uniform. A rural field is uniform in its land cover, table-
top objects are uniform in material coherence and in their movement. Note that 
object formation exploits the strong correlation found in the real world; human life, 
would not be possible in a world without strong spatial and temporal correlation. 
The details of how objects are identified are determined by the interactions in-
tended with them.  

 

Figure 4. The property, which should be uniform within some threshold values deter-
mines the object boundaries 

An object boundary is determined by first selecting a property and a property 
value that should be uniform across the object, similar to the well-known procedure 
for regionalization of 2D images. The boundary is at a threshold for this value, or at 
the place where the property changes most rapidly (Figure 4).  

3.2.2   Determination of Descriptive Summary Data (Attributes of Objects) 

Descriptive values summarize the properties of space within the object limited 
by a boundary. The computation is typically a function that determines the sum, 
maximum, minimum, or average over the region, for example, total weight of a 
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movable object, amount of rainfall on a watershed, maximum elevation in a country 
(Tomlin, 1983; Egenhofer and Frank, 1986).  

3.3   Classification 

Objects, once identified, are classified. On the tabletop we see cups, spoon, and 
saucers; in a landscape, forest, fields, and lakes are identified. Mental classification 
relates the objects identified by granulation processes to operations, i.e., interac-
tions of the cognitive agent with the world. Such actions are comparable to Gib-
son’s affordances (Gibson, 1986; Raubal, 2002) when performing an action. To 
illustrate, to pour water from a pitcher into a glass requires a number of properties 
of the objects involved: the pitcher and the glass must be containers, i.e., having the 
affordance to contain a liquid, the object poured must be a liquid, and so on.  

Potential interactions between the agent and objects, or interactions of interest 
between objects, assert conditions these objects must fulfill, expressed as an attrib-
ute and a range for the value of the attribute. I have used the term distinction for the 
differentiation between objects that fulfill a condition and those that do not. Dis-
tinctions are partially ordered: a distinction can be finer than another one (e.g., 
‘drinkable’ is a subtaxon of ‘liquid’), and distinctions form a taxonomic lattice 
(Frank, 2006).  

3.4   Constructions 

Tier 3 contains constructions, which are linked through granulation and mental 
classification to the physical objects and operations. They are directly dependent on 
the information processes described above, but details are not consequential for 
present purposes. 

4.   Random Effects in the Observations 

A physical sensor cannot realize a perfect observation at a point in space and 
time. Physical sensors are influenced by random processes that produce perturba-
tions of the observations. The unpredictable disturbance is typically modeled by a 
probability distribution. For most sensors a normal (Gaussian) probability distribu-
tion function (PDF) is an appropriate choice. This model is, after correction for 
systematic influences and bias, applicable to a very wide variety of point observa-
tions.  

4.1   Influence on Object Formation 

Errors in observation influence the determination of the object boundary. The 
statistical error of the boundary for simple cases follows from Gauss’ Law of error 
propagation (Figure 5 does not include an uncertainty in the thresholds for graphical 
clarity; though the influence would be similar). The summary values are similarly 
influenced by random perturbations in the observations (it is likely that random 
effects are reduced by averaging).  
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Figure 5. The influence of uncertainty in the observations creates an uncertainty in the 
object boundary 

If the observation information processes allow a probabilistic description of the 
imperfections of the values, then the imperfections in the object boundary and 
summary value are equally describable by a probability distribution. Assuming a 
PDF for the property used for the determination of the boundary, one can describe 
the PDF for the boundary line. It is an interesting question whether the PDF trans-
formation functions associated with boundary derivation and derivation of sum-
mary values preserve a normal distribution, i.e., if the observation processes de-
scribed by imperfections with a normal distribution produce imperfections in 
boundary location and summary values, which are again describable by a normal 
distribution. Further studies may show that the effects are multiplicative and pro-
duce a Rayleigh-like distribution, or that imperfections of the processes are corre-
lated, posing the difficult problem of estimating the correlations.  

4.2   Classifications 

Distinctions reflect the limits in the property values of an object, where the ob-
ject can or cannot be used for a specific interaction. The decision whether or not the 
values for an object are inside the limits is more or less sharp, and the cutoff usu-
ally gradual. Class membership is therefore fuzzy, membership functions as origi-
nally defined by Zadeh (1974). 

5   Scale in Observations 

In this section the effects of the finiteness of physical observation instruments 
are discussed. Physical observation instruments may be very small, but not infi-
nitely small. A sensor cannot realize a perfect observation at a perfect point in 
space or time. Any physical observation integrates a physical process over a region 
during a time. The time and region over which the integration is performed can be 
very small (e.g., a pixel sensor in a camera has a size of 5/1000mm and integrates 
the photons arriving in this region for as little as 1/5000 sec) but it is always of fi-
nite size and duration. The size of the area and the duration influences the result. 

The effects of the size of the observation device is as equally unavoidable as the 
random perturbations of the observations, which is more widely recognized, dis-
cussed, and given a formal model (summarized in the previous section). This sec-
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tion proposes a formal model for the finiteness of the observation device. The sen-
sor can be modeled as a convolution with a Gaussian of the physical reality. 

The necessary finiteness of the sensor introduces an unavoidable scale element 
in the observations. Scale effects are not yet well understood, despite many years of 
being listed as one of the most important research problems (Abler, 1987; NCGIA, 
1989a; NCGIA, 1989b; Goodchild et al., 1999), and it is expected that the formal-
ization given here advances this research.  

5.1   Physical Point-Like Observation 

The intended point-observation v = f(x, t) cannot be realized, but the observation 
device reports the average value for a small area and a small time interval,  

v�x , t �= ∫
− ε

�ε

f ��x , t �− ε�dε  

where the multidimensional space-time vector value ε ranges over the size and the 
time interval used by the sensor (corresponding to the values of x and t). Convolu-
tion with a kernel k(ε) is a formal model for the real observation at point,  
 

v�x , t �=∫ f ��x ,t �− ε�k �ε�dε .  
 
The value f(x, t) is multiplied by the kernel value k(ε), which is non-zero for a small 
region only around zero and for which, 
 

∫ k �ε�dε= 1.  
 
For sensors in cameras, a rectangular kernel or a Gaussian Kernel is assumed; the 
latter is optimal to satisfy the sampling theorem. Convolution with a Gaussian ker-
nel produces an average effect on the signal.  

5.2   Sampling Theorem 

The sampling theorem addresses another related limitation of real observations: 
it is impossible to observe infinitely many points; real observations are limited to 
sampling the phenomenon of interest at finitely many points. Sampling introduces 
the danger that the observations include spurious signals not present in reality 
(aliasing). The sampling theorem (a.k.a. Nyquist law) states that sampling must be 
twice as frequent as the highest frequency in the signal to avoid artifacts. If the 
sampling rate is fixed, the signal must be filtered and all frequencies higher than 
half the sampling frequency cut off (low-pass filter). In the audio world the sam-
pling theorem is well-known, but it applies to any dimension, including sampling 
by remote sensing or sensor network in geographical space. The sampling theorem 
applies to remote sensing and sensors are appropriately designed, but it is less dis-
cussed in geography and geographical information science. It may appear strange to 
speak of spatial frequency, but it is effective to make the theory available to GIS-
cience, where it applies to all dimensions observed (2 or 3 spatial dimensions, tem-
poral, etc.). 

5.3   Scale of Observations 
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Observations modeled as convolution with a Gaussian Kernel are effectively ap-
plying a suitable low-pass filter, and produces valid results. The size of the non-
zero region of the kernel k(ε) affects the observation result, but is not part of the 
physical reality observed, instead being caused by the observation system. The ob-
servations are influenced by the size of the non-zero region of the kernel. For this 
situation it appears reasonable to say that the observation has the ‘scale’ corre-
sponding to 2 σ of the kernel and half the sampling frequency v. A numerical de-
scription of ‘scale’ could use the value for σ with dimension time-1 (second-1) and 
length-1 (meter-1) respectively. If a unit of 1mm-1 is selected, then the numerical 
value is comparable to traditional map scale denominators but not dimensionless. 

It is debatable whether to call this scale, adding one more sense to the close to a 
dozen already existing (Wikipedia lists eleven), or to use a term like resolution or 
granularity. I prefer ‘scale’ because speaking of a dataset and stating its ‘scale’, for 
example as “30’000 mm-1 in space and 5 years-1 in time”, extends the current usage 
reasonably and describes typical topographic maps.  

5.4   Effects of Scales on Object Formation 

Size of smallest objects detected: the scale of the observation limits the small-
est object that can be detected; objects with one less dimension than the scale are 
not observed, and their extent is aggregated with the neighbors. This is comparable 
to the cartographic minimal mapping unit. In data of a scale m one does not expect 
objects smaller than f · m2, where f is a form descriptor indicating how different an 
object is from a square or circle (respective cube or sphere). 

Effects on uniformity: differences in property values less than the scale (for this 
property) are not observable, and are therefore not available when differentiating 
two objects; this is essentially the effect described above that small objects escape 
detection; the small separating object is not being observable. 

Effects on attribute values: if attribute values are desired as summary values 
over the area of the object, the effects of the scales of observation in the property 
used to derive the attribute will statistically cancel – if the scale of the observation 
used for object formation and the property integrated is comparable. Averages (re-
sults of integrals) tend to be less extreme the larger the scale as a result of averag-
ing in the observation process. 

Effects on object classification: the scale of observation influences directly the 
object formation and indirectly the classification. This is most important if the class 
is distinct by size, e.g., small buildings vs. larger buildings.  

6   Conclusions 

Physical observation systems deviate in two inevitable and non-avoidable re-
spects from the perfect point observation of the properties of reality: random per-
turbation of results, and finite spatial and temporal extent over which the observa-
tion system integrates. 

Using a tiered ontology where point observations are separated from object de-
scriptions allows one to follow how the imperfection introduced by random error 
and scale propagate to objects and their attributes. It was shown that precision and 
scale are valid descriptors of datasets, and originate with unavoidable imperfections 
of physical observations. Random effects are described by a probability distribution 
function (PDF), and the propagation of effects of random errors follow, in simple 
cases, Gauss’ Law of error propagation; in general a transformation for the PDF is 
computed.  
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The effects of finite support for the observation can be modeled as a convolution 
with a Gaussian Kernel, and the non-zero extent of the kernel determines the ‘scale’ 
of the observation. The signal must be filtered with a low-pass filter to cut off all 
frequencies above half the sampling frequency. Convolution with a Gaussian kernel 
achieves this approximately. 

The description here used a prototypical remote sensing observation as sensor, 
which produces point observations where the low-pass filter is implied in the ob-
servation system. It is recommended to investigate how the sampling theorem ap-
plies to sensor networks and other geographic observations. Well-designed obser-
vation systems are balanced such that effects of (1) random perturbation, (2) the 
extent of the sensors, and (3) the blur of the optical system (if any) produce imper-
fections of comparable size. Datasets produced by well-designed, balanced obser-
vation systems can be characterized by scales – as was traditionally done.  

Geographic Information Systems are used to combine data from different 
sources; the theory outlined above shows how to treat cases where not all data have 
the same scale. In particular, it was shown how the notion of scale applies to so-
called vector (object) data sets (Goodchild, 1994) and traces it back to the known 
methods for raster data.  
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