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Abstract
Formal specifications are difficult to read. Executable specifications allow to see the
behavior of the specified objects and help the domain specialist to detect errors
quickly. We present here a method which allows to write axiomatic specifications
which can be executed and discuss the limitations in expressive power imposed by the
restriction to constructive axioms and how it can be circumvented.

The method results from practical efforts to formalize the meaning of object types
for Geographic Information Systems. If such data are shared between organisations,
differences in the semantics become apparent and formal methods for their definition
become necessary.

Most formal methods are based on first order languages. Software engineering
often uses algebraic methods, but tools practically used for data exchange standard
definitions are restricted to signatures and do not capture the behavior of the
operations. We present here an algebraic approach using a functional programming
language which includes specification of behavior and results in executable code.

The case used here to demonstrate the problem is the base for an ontology of
spatio-temporal databases. The world consists of objects, which have identity.
Identifiers, objects and world classes are defined as algebras with axioms. Executable
models for these are given. This environment is necessary to describe objects with
operation, when the essential part of the definition is the change an object can undergo.
It would be difficult to write this in a first-order language.

The focus is on the capabilities of the executable functional programming language
Haskell to formalize algebraic specifications; the issue is, how much of an algebraic
specification can be expressed formally in an executable language and how much must
be relegated to the implementation models (expressed in the same language). The
example shows that a very large part - and most of the important behavior - can be
captured in axioms for abstract classes.

1 Needs for Formal Specifications
Formal methods are difficult to use for the domain specialist. We propose here
specifications which can be executed. The domain specialist can observe if the specified
behavior corresponds to the intended behavior. The goal to make specifications
executable restricts the expressivity of the language to constructive statements. This
paper shows, using a non-trivial example, how this can be achieved with compromises
which are acceptable in practical situations.

Formal models are necessary to specify the meaning of data; this is particularly
important, when data are exchanged. Our area of application are Geographic
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Information Systems, which are complex, large and widely used systems to manage
data about the world. They are used to maintain information about real estate property
rights (cadastre) (Dale and McLaughlin 1988), they are also used in town, county and
national administration to manage resources and plan land use, etc. (Maguire, Rhind,
and Goodchild 1991). Data are often shared and standards for the exchange of spatial
data have been developed (Guptill 1991), however to capture the semantics of the
object classification remains an open problem (Frank and Kuhn 1995; Kuhn 1995). It
cannot be solved with natural language descriptions (Kuhn 1994; Kuhn submitted),
especially not in Europe, where national languages aggravate the problem (Mark
1993). Formal methods are required.

The formal methods used to define object types are mostly based on first order
languages. These focus on properties of objects and the resulting definitions have more
problems with the prototype effect of human cognition (Lakoff 1987; Rosch 1973).
Algebraic formalizations stress the operations an object can be involved in and the
effects of such operations on the object, other objects and the relations between the
objects. This seems to be more in accordance with principles of human cognition, as
they can also deal with the hierarchical structures, human use (Frank 1996a; Frank
1996c; Langacker 1987). Algebraic methods are widely used in software engineering
(Liskov and Guttag 1986; Woodcock and Loomes 1989). For standardization work,
methods given rely on the signatures of the operations, but do not include descriptions
of the effects of the operations (behavior) (ISO 1992; OGC 1994; Schenck and Wilson
1994)

In this paper a formalization method based on universal algebra (Birkhoff 1945;
Birkhoff and Lipson 1970) is used for specification. This has become standard practice
in software engineering and is often called ‘abstract data types’(Ehrich, Gogolla, and
Lipeck 1989). We follow the tradition of Larch and combine small algebras (Guttag,
Horning, and Wing 1985). Algebraic specifications are sometimes difficult to
comprehend; a tool to check syntax and semantics is most welcome. We found that a
functional programming language based on classes provides most of the properties
algebraic specifications require and allows the formalization of theories in a checked
syntax and their implementation in clean models which are executable.

This contribution focuses on how much of the axioms can be expressed in a
constructive, executable form. It is found that only a few trivial axioms must be
assumed for standardized operations linking to the models. The typical one is the
axiom expressing the behavior of a pair of get from x and put a in x semantics (i.e. get
(put a x) = a).

The example used here is the foundation for a specification of behavior of complex
objects; it is taken from a proposal for a base ontology for a spatio-temporal database
(TMR Project CHOROCHRONOS). In this context, definition of object properties
must include the change effect by the operations on objects; simple static relations are
not sufficient. A variant of this base ontology has been used to formalize the most
important aspects of an administrative system, namely a land registry (Frank 1996b).

The paper starts in the next section with a discussion of the methods to write
executable, algebraic specifications and gives some background about the use of
functional programming languages. The following section gives the background for the
case used. The next section gives formal specifications for identifiers, objects and the
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world in which objects live. Then section 5 comments on the methods used to include
axioms in the theories.

2 Method to Write Executable Specifications
Prolog was used occasionally to write specifications. The restriction to use logic and
the difficulties to use the non-logical parts of the actual Prolog language limited these
efforts. Specification methods have stressed the algebraic approach (Liskov and Guttag
1986) and tools were developed (Guttag, Horning, and Wing 1985) but not widely
used. We propose here to use the language Gofer (Jones 1991) (similar to Haskell
(Hudak et al. 1992; Peterson et al. 1996)). It is a functional programming language
with classes. It provides an advanced framework for object-oriented algebraic
specification. The language is strict without side effects and code is therefore
referentially transparent. Gofer has a novel class system with multiple parameters; the
type inference mechanism of ML (Milner 1978) has been suitably extended (Jones
1994). It allows inheritance in the framework of ‘parametric polymorphism’ (Cardelli
and Wegner 1985), which is easier to comprehend than other inheritance methods used
in commercial programming languages.

A class describes an algebraic theory for a sort with a set of operations with name
and signature, and axioms, which describe the behavior. A data type description gives
the structure of representations and an instance description links operations from
classes with the representations; they explain how the operations are carried out, using
the representation as a model. It is possible, for a class to have several models
(instantiations) and a data representation can have operations from various classes
defined for them. This provides the same functionality which is described as multiple
inheritance in object-oriented programming (Lochovsky 1986; Meyer 1988; Rumbaugh
et al. 1991), but in the mathematically rigorous context of category theory (Asperti and
Longo 1991; Barr and Wells 1990) and denotational semantics (Peyton Jones 1987;
Stoy 1977).

Algebras for specification are - in our practice - very small, similar to the traits in
Larch (Guttag, Horning, and Wing 1985). They are combined, as one algebra can use
other algebras previously defined. The methods proposed in Larch for the combination
of traits are extensive and complex. The design of a comprehensive set of methods,
which can be used practically to combine individually specified traits remains an open
problem. In Gofer, the sorts can be parametrized and for parameters (or combination
of parameters) other algebras can be asserted. This is called context. It implies that the
operations and axioms of the named class are available in this theory. Classes can be
further combined by instantiation for the same model and operations from both
algebras can be applied. There are separate means to share implementations when
coding. The novel element, which makes this possible, is the clean separation between
a theory (class) and a model (data and instance) in the code.

Gofer and Haskell are strictly typed languages, which assign a type to every object
in the language (even functions have an expressible type) and check the consistency of
the types in any expression automatically, using type inference. This saves us from
manually checking argument types etc. and discharges automatically all axioms based
on type.

Gofer (and Haskell) are functional programming languages and the code is
executable. This restricts the expressive power for the axioms to constructive axioms.
Example: an axiom for √ x cannot be
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exist y, such that y * y = x,

but must point to some executable strategy to calculate the square root (e.g.,
Newton’s rule), which usually requires access to the representation and thus can only
be done in a model.

When describing the model, axioms and contexts of the same format as in the
classes can be used, but here the internal representation is available and thus every
computable function can be expressed. In practice, much of the specification is put into
the model, because it requires a representation to make it expressible. This is
unfortunate, as the axioms are then less prominent, not automatically guaranteed by all
models, etc. It has been asked if it is justified to call this an algebraic specification or if
it should be rather called a model based (executable) specification method.

In this paper, the main emphasis of the formalization is to achieve maximum
strength of axioms in the class description. In section 4 we show how the axioms can
be expressed in the algebra. As a desirable effect, the implementation of the models
becomes simpler and restricted to very standardized operations. Some of these are
automatically produced with the newest version Haskell (Peterson et al. 1996).

Syntax
Class and data types start with capitals, variables with lower case letters. Classes list
the name of the operations followed by the signature: a list of types of arguments and
at the end the type of the result. Types for classes are parametrized, and multiple
parameters are used to describe abstractions of types like List of Integer or Tree of
Float as f a. Operations are defined with equations which are restricted to expressions,
which can be evaluated, and pattern matching on the left-hand side.

Models consist of data types which introduce a representation, and instances
which define how the operations, which were not sufficiently defined in the class, are
to be carried out. The type list is predefined, and marked with [], the colon (:) is the
concatenation operations.

The major difference to standard algebra is the use of parenthesis: they are only
used to group terms and are not used to indicate function application; a function f (x) is
written just f x.

3 The Case Studied: A World of Identifiable Objects
The world for a spatio-temporal database consists of objects which can be changed but
retain their identity. This is not so much a statement about the physical organisation of
the world (ontology), but about organisation of our perception and cognition of the
world (epistemology). Typical objects are trees, apples, tables, but also animated
objects, like cows, persons etc.

Internally, object identifiers are used to test objects for identity. These could be
completely hidden from the user, but we provide an operation for the user to inquire
about the ID of the last object stored and to access objects based on its ID (to simplify
coding of complex situations).

The classes given here provide the common behavior of all entities in the model of
the world. Specific sub-classes will have particular additional behavior, e.g., for liquids,
objects manufactured from parts (Simons and Dement 1996), but eventually also
objects, which depend on other objects for their existence, like shadows, holes, parcels
etc.
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4 Case Study: Axiomatic Specifications
To describe a world with objects, three types are needed: identifiers, objects (with the
specifics of the object parametrized and left open for later determination), and the
description of the world, as a collection of objects.

4.1 Identifiers

Identifiers are used internally and - in principle - need not be made available to the
user at the surface. They are used to give to each represented object a unique identity
and allow to test if two representations are representations of the same object or not.

The operations necessary: create a new ID (given the last ID assigned), compare if
two ID are the same

class  (Eq i, Num’ i) => IDs i where
startId :: i
startId = zero1
newId :: i -> i
newId = inc1
sameId, notSameId :: i -> i -> Bool
sameId i j = i == j
notSameId i j = not (sameId i j)

4.1.1 Axioms needed:

• notSame ( i,  newId (i) )= true – follows from the class Num included in the
context, which has the Peano axioms, including succ x /= x.

• sameId is an equality operation (inherited from Eq)
The axiom for same uses the theory for equality defined previously (expressed as a
context Eq i =>). Actually, the definition contains the operations equal and not equal
and as a the only axiom the statement that not equal is the negation of equal. It cannot
contain the standard axioms for equality, namely symmetry, reflexivity and transitivity
(these can not be expressed constructively and can only be tested for any model, as
discussed later). We nevertheless assume that this class has the required axioms and
will use them in other classes, e.g., IDs.

class Eq a where
    (==), (/=) :: a -> a -> Bool
    x /= y      = not (x == y)

4.1.2 Model for IDs
As a model for IDs we use integers. The integers implemented by the processor are a
proper model for a subset of integers axiomatically defined and could be used here.
Other models would be possible.

The code only needs to state that an instance is to be formed, but all the
operations are already fully defined in the class. This assures that all models follow the
same axioms.

4.2 Things
The description of things of interest is using the same methods. Here only an example
thing, the representation of a car is included. In this view of the world, the only
property of cars is their color. Two cars are not identical if they have the same color,
but in the representation, this cannot be decided and needs the functionality of objects
(in the next subsection).

data Color = Blue | Green | Red | White
class Cars c where

car :: Color -> c
getColor :: c -> Color
putColor :: Color -> c -> c
paint :: Color -> c -> c
paint color car = putColor color car

data Car = Car Color
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instance Cars Car where
car c = Car c
putColor color (Car c) = Car color
getColor (Car c) = c

4.3 Objects
Objects may represent arbitrary features of the world; the object class is a ‘wrapper’
around things to give them the desired properties all objects should have. Here only the
most basic properties of objects are specified, namely identity . More specific object
types will be inherited from this object type (e.g., liquids or manufactured objects
consisting of parts). The object class is specified with a type parameter for the specific
thing type, which this object represents. It has also a type parameter for the type of the
identifier, which must be of the class IDs (as defined above).

Identity cannot always be decided based on the observable properties of an object;
two different objects can appear to be equal, but are different. This results from the
abstraction made for representation: only some properties are included in the model
and two objects may have equal values for all of these, but still be two different
objects. For example, two similar cars of the same color - if that is the only property
considered - may appear equal, but they are two different objects (and differ in some
other property, perhaps the make and certainly in the vehicle identification number).
Object behavior requires therefore to wrap the data representing the object into a
folder with a unique identifier.

The operations for objects are therefore

• same: to test for identity ,
• put and get the ID of an object and testing if a given object has a specific ID

(used as a handy abbreviation), also get the thing from an object,
• doThing: apply a function f (e.g., paint) to the thing wrapped in the object.

class IDs i => Objects o t i where
obj ::  t -> i -> o t i
getId ::  o t i -> i
getThing :: o t i -> t

doThing :: (t -> t) -> o t i -> o t i
doThing f o = obj (f (getThing o)) (getId o)

same :: o t i -> o t i -> Bool
same i j = sameId (getId i) (getId j)

isId :: i -> o t i -> Bool
isId i o = sameId i (getId o)

4.3.1 Axioms needed

• get/put semantics for
getId (obj t i) = I
getThing (obj t i) = t

These conditions can only be expressed for a model, for which substitution yields
these axioms.

• equality relation for same: follows from sameId is from class ID, which is an
equality relation and included in the context.

4.3.2 Model
The objects are represented as a data structure with the ID and the representation of
the object. Only the three trivial operations to make an Obj and to get its ID or values
for the thing part back, are required.

data Object t i = Obj t i
instance Objects Object t i where

obj t i = Obj t i
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getId (Obj t i) = i
getThing (Obj t i) = t

4.4 Worlds
The world collects the object and is the context for the uniqueness of the identifier.
The world represents the state of the modeled part of the world at a specific moment in
time. This model of the world is to be used as a logical model for a temporal database,
where each changed world is represented as a new representation of the world (the
implementation in the functional programming language, automatically shares all non-
changed parts (Peyton Jones 1987)).

The operations of interest for the user are:

• putThing, which inserts a thing as an object into the world.
• GetThing2, which retrieves a thing from the world, given the ID;
• do, which applies a function to a thing stored in the world, given the ID.

There are a number of internal operations, which are used by those: In the
representation the last ID used is kept and nextId is used to change this to the next
one. The objects are stored in some data structure and the operations for to insert an
object, to retrieve the object and to apply a function to a specific object depend on this
data structure (this could be factored out).

It uses also a set of operations to make a new world (which should be empty) and
get and put operations for the last id used and the data structure, which stores the
objects; these must have the get/put semantics defined before.

class (IDs i, Objects o i t) => Worlds w o i t where
newWorld :: w o i t
getId2 :: w o t i -> i
putId2 :: i -> w o t i -> w o t i
getObjs :: w o t i -> [o t i]
putObjs :: [o t i] -> w o t i -> w o t i

-- operations on the storage structure
putObj :: o t i -> w o t i -> w o t i
getObj :: i -> w o t i -> o t i
doObj :: (o t i -> o t i) -> i -> w o t i -> w o t i

-- operations with their axioms
nextId :: w o t i -> w o t i
nextId w = putId2 (newId (getId2  w)) w
putThing :: t -> w o t i -> w o t i
putThing t w = putObj (obj t i) w’

where 
w’ = nextId w
i = getId2 w’

getThing2 :: i -> w o t i -> t
getThing2 i w = getThing (getObj i w)

do :: (t->t) -> i -> w o t i -> w o t i
do f i w = doObj (doThing f) i w

4.4.1 Example for a data structure for the world
The instance of the world is a data structure, consisting of the last ID value used and a
list of objects. The axioms for the put and get operations and the operations which
depend on the particulars of the data structure are expressed here. The data structure
could be separated in a different class, with abstract axioms; this is not done here to
keep the case simple. The data structure would become an additional parameter and
models with different data structures would become possible.

data World o t i = W i [o t i]
instance (IDs i, Objects o t i) => Worlds World o t i where

newWorld = W startId []
getId2 (W i os) = i
putId2 i (W j os) = W i os
getObjs (W i os) = os
putObjs os (W i os2) = W i os

putObj o (W i os) = W i (o:os)
getObj i (W i’ stuff) = get’ i stuff
  where
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get’ i [] = error "not found"
get’ i (s:ss) = if isId i s then s else get’ i ss

doObj f i (W j os) = W j [if (isId i x) then f x else x| x <- os]

4.4.2 Axioms needed

• put/get semantics for putThing, getLast etc.
• new collection of semantics for newWorld:

for any x : contains (x, new) = false

This is inherited in the model from the list, where [] marks the empty list, which
contains no element.

• unique identifiers within world. Follows in the model from the use of the
putThing operation, which is always called in connection with newId.

• getThing2 needs a get/put semantics for collections (follows from the axioms for
the data structure, here not elaborated)

• the behavior of the do operations depends on the traversal of the collection, here
with a list comprehension.

f(getThing2 i w) = getThing2 i (do f i w)

5 Observations about the Placement of Axioms
In functional programming it is customary to place most ‘function definitions’ in the
instances, because it is easier to write the executable expressions. Moving to an
algebraic, object-oriented style, axioms should be placed in the class (theory)
descriptions. This is beneficial, as the implementation of a model is smaller and simpler
(only the put and get operations need to be defined) and the axioms apply
automatically to all models.

To express the axioms in the theory (class) part is possible. The class must contain
some basic operations, which put and retrieve data values to and from the
representation. For these operations, a get/put semantics is assumed. The semantically
more important axioms can then be given as equations using these functions.

The coding becomes more general and requires more type parameters for the
classes. This tests the limits of the inference mechanism for type parameters (Jones
1995).

6 Conclusions
Formal specifications are necessary to define the semantics of objects such that they do
not depend on subjective interpretation. Formal definitions of semantics are important
in many areas, for example when exchanging data between different organisations.
Standardization has used descriptions of properties, but more effective solutions are
based on descriptions of the operations applicable to the objects defined.

We propose to use an algebraic formalization to capture the semantics. Operations
are given and the effects of the operations are explained in terms of defined (observer)
operations. Functional programming languages can be used for writing specifications.
They provide tools to check syntax. They also allow the execution of these as
computational models. To check formal specifications for intended behavior is difficult,
but humans can easily observe if a demonstrated model shows the correct behavior. It
becomes then possible to observe the behavior specified and errors in the specifications
can be discovered quickly even by non-experts in formalization. This is a very
substantial advantage for writing practical specification.

This paper has explored a particular functional programming language to
understand how much of the theory can be expressed constructively in an executable
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syntax. It was found that most of the important aspects of the theories can be captured
in algebraic axioms. Only minor assumptions must be relegated to the models and the
basic implementation of the execution engine.
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