, TECHNICAL
Zlond jor the I PAPERS

1989 ASPRS/ACSM

ASPRS/ACSM 41989 AGENDA FOR THE 90°S

APRIL 2-7, 1989/BALTIMORE ANNUAL CONVENTION
SURVEYING & CARTOGRAPHY

il

{ b2}

LLAIETET LRI IR —fih
{5

T4

WL

Steiner, D. R., M. Egenhofer, and A. U. Frank. "An Object-Oriented Carto-
Graphic Output Package." Paper presented at the Surveying & Cartography
ASPRS/ACSM 1989, Baltimore, USA, 2-7 April 1989 1989.

gruber
Textfeld
Steiner, D. R., M. Egenhofer, and A. U. Frank. "An Object-Oriented Carto-Graphic Output Package." Paper presented at the Surveying & Cartography ASPRS/ACSM 1989, Baltimore, USA, 2-7 April 1989 1989.

An Object-Oriented Carto-Graphic Output Package®

David R. Steiner
Max J. Egenhofer
Andrew U. Frank
National Center for Geographic Information and Analysis
and
. Department of Surveying Engineering
University of Maine
Orono, ME 04469, USA
STEINER@MECANL bitnet
MAX@MECANT bitnet
FRANK@MECANL bitnet

Abstract

An object-oriented cartographic output package is proposed as a solution to the shortcomings
of existing procedural graphics packages for the display of query responses to Geographic in-
formation Systems. This paper compares the object-oriented approach with current procedural
approaches for computer cartography. The concepts of data abstraction and the application of
combinatoral topology to modelling graphic objects, fundamental to an object-oriented treat-
ment of geometry, are discussed. Spatial objects can be represented by a variety of different
symbols depending on the context of the map. The object-oriented approach facilitates this
variation of symbology. The design and implementation of a prototype cartographic output
package based on this approach are introduced.

1 Introduction

Object-oriented data modeling and database management are currently being examined
as approaches to the design of the next generation of Geographic information Systems
(GIS) [Frank 1988]. A erucial component of such a spatial information system is an object-
oriented graphics module which is used to present query resuits as maps on the display.

Existing graphics packages, such as CKS and CORE, are not satisfactory far cartographic
output. These packages are intended to serve multiple types of applications, e.g. CAD/CAM,
business graphics, statistics, etc. Due to this generality, there is a mismatch between the
functionality supplied by these packages and what is desirable for a cartographic output system.
Such mismatch can be seen in the different use of coordinate systems in business graphics and
cartography.

Specific shortcomings of commericial graphic packages used for cartographic output are
the use of Normalized Device Coordinates and independent scales in X and Y direction. The
coordinate system of Normalized Device Coordinate assumes a viewport coordinate system with
an origin in the lower left corner and ranging from 0 to 1 along both axes. This facilitates the
use of different display hardware but causes difficulties when defining standard symbols.

Current packages supply the abifity to specify separate % and Y scales when transforming
abjects from window to viewport or display device coordinates. If the user specifies a window

*This research was partially funded by grants fram NSE under No. 15T 86-09123 and Digital Equipment
Corporation. David Sieiner’s work was supported by an Undergraduate Research Experience grant. The support
fram NSF for the NCG!IA under grant aumber SES 88-10017 is gratefully acknowledged.

104

whose proportions do not match those of the viewport, the transformation will stretch the
window more in one direction than the other so that it will fill the entire veiwpaort, which will
roduce 2 distorted map. ‘

Current graphics packages are designed in a procedural style rather than descriptive. Pro-
cedural routines abstract an operation (e.g., draw line) in a single command. In a descriptive
approach, users "describe” what they want done and do not have to specify, or even know, how
it is to be accomplished. Thus, to draw a box, which is an object, programmers define the box
and then apply the generic command “draw” to this box.

QObject-oriented design provides a descriptive approach in which objects are defined that have
a set of operatians on them. All graphic objects have the operations "draw” and “erase.” This
Jllows several distinct advantages: device independence, generic operations, simple interfaces,
information hiding, and dimension independence. This means that the user need not be con-
cerned with whether the object is represented by a point, line, or area, or what low level drawing
commands are needed to display the object on the screen since this information is part of the
object. When the user wishes to display the object he or she merely issues the command “draw
object” and specifies which object is to be displayed.

A desirable feature for cartographic output that is lacking in current graphics packages is a
facility for the definition and composition of symbols. Since we often represent complex objects
as symbels on a map, such as a building represented by a rectangle, there is a need to define
2 set of standard symbols to be used for these representations. This is difficult to accomplish
with procedural routines that may require several procedure calls to draw the object. What we
desire is to be able to request that an object be displayed and have the appropriate standard
symbol assigned to it based on the current context.

To date, little effort has been made in the area of the design of an object-oriented package
for representing the data graphically to the users of GIS. We propose an object-oriented graphics
package, tailored to the specific needs of cartographic output. This cartographic package will
overcome some of the major weaknesses of current graphics packages as applied to traditional
cartographic output. The underlying spatial data madel for this package is based on combinato-
rial topology in which simplices are used to describe the minimal objects in a dimension. More
complex objects are described as aggregates of simplices, called simplicial complexes.

This paper will discuss object-oriented data representation and will provide a brief overview
of some of the concepts of combinatorial topology. Nexta proposed design for an object-oriented
cartographic package is intraduced. Finally, there will be a discussion of the implementation of
a prototype of this package which is being developed on top of the VAX User Interface System.

9 Object-Oriented Data Representation

A program for cartographic output deals with concepts of points, lines, and areas, the object-
ariented concept constructs a framework for these concepts and shows their linkages. Data
abstraction is a method of modeling data. Egenhofer discusses the application of the ab-
straction methods [Brodie 1984] of classification, generalization, and inheritance to spatial ob-
jects [Egenhofer 198Ba]. This discussion is summarized below. Combinatorial topology provides
a means to apply these abstractions to the madeling of geometry in an object-oriented environ-
menf,

2.1 Abstraction Mechanisms

(lussifiratinn is the mapping of several objects to a common class. The class character-
izes the behavior of its member objects, or instances, by describing the valid operations upon
them [Q’Brien 1986]. All instances of a class are described by the same praperties and have
the same operations, For example, the building at 14 Maple 5t. is an instance of the class

residential building and, as such, the class aperations of “oceupant of " and “neighbor of" apply
to it,

105

(eneralizatinn provides different views in several different levels of detail for a class of
ohjects. A number of classes sharing common operations are grouped into a more general
superclass [Dahl 1966] [Goldberg 1983]. Subclasses and superclasses are related by an "is_a"
relationship. For example, residence is 3 building, therefore, it is a subclass of building, while
building is a superclass of residence. All operations on a superclass apply to instances of a
subclass; however, the reverse is not true.

Hierarchical or single inheritance is an idealized model that implies that a class can only
inherit properties from a single superclass (Figure 1). This model very often fails when applied
to the real world.

Building
Residential Commercial
Single Family Multi-Family

Figure 1: Hierarchical Inheritance.

Multiple inheritance [Cardelli 1984] allows classes te inherit properties from more than one
superclass. It is this model which applies to spatial objects which inherit properties from their
geometry and from non-spatial attributes, or lexical data {Figure 2). Examples of non-spatial
or lexical properties are the type of crop grown on a parcel of farm land or the street address
of a building; geometric properties are the corner coordinates of a parcel or the dimensions of a
building.

Geometry LEXica1

e

Spaﬁal Objecls

Figure 2: Multiple Inheritance in Spatial Objects.

Aggregation is the combination of several objects to form a higher-level object with its
own functionality. This differs from generalization in that operations on the aggregate are not
necessarily compatible with operations on the individual parts. For example, a building is an
aggregation of walls, a roof, windows, doors, etc.

29 Modeling of Geametry in an Object-Oriented Environment

The theory of combinatorizl topology provides a method to classify and formally describe sets
of points. The use af combinatorial topology for madeling spatial data in GIS has been pro-
posed [Frank 1986] and implemented [Egenhofer 1987] [Jackson 1989]. The following is a brief
summary of simplices, simplicial complexes and the operations of boundary and interior,

106

2.2.1 Simplex

For each spatial dimension there is a minimal object which is called a simplex. The mode! can
be extended to any n-dimensianal space, where an n-stmplex is the minimal object and is made
up of {n+1) simplices of dimension {n-1) which are geometrically independent. For examiple:

« A point, a minimal 0-dimension oEject, is a O-simplex.
e An edge is a 1-simplex and is bounded by twa O-simplices.
e A triangle is a 2-simplex bounded by three 1-simplices, etc.

A face is a bounding simplex of another simplex, i.e., a point is a face of an edge.

2.2.2 Simplicial Complex

A simplicial complex is defined as a finite collection of simplices where the intersection of any two
is a face of both (Figure 3). This definition excludes ovelapping of simplices, for example, two 1-
simplices {lines} which cross each other without a O-simplex at the intersection. The operations
on simplicial complexes include boundary and its converse, interior. A boundary operation on 3
complex returns the set of bounding simplices of the complex, and interior returns the set of all
simplices not included in the boundary. Applying boundary twice to an object yields the empty
set.

Figure 3: Four 2-simplices which intersect in three 1-simplices.

3 Object-Oriented Graphics

Object-oriented design is a mathod in which the software architecture is centered around objects
involved rather than based on operations [Meyer 1988). Geometry is a property of all spatial
objects, and all spatial ohjects can be represented by graphic objects. The most abstract graphic
ohject, which we will call the disp(hjeet, requires only two high level operations. These opera-
tions on dispObjects are druw and « rase. Any object to be displayed, therefore, is an instance
of @ subclass of dispObject and inherits the draw and rrase operations from dispObject. The
operations on specific objects in the subclasses are implemented specifically for those objects.

3.1 Selection of Symbology

in cartography, objects can be represented in a variety of ways depending on the context of the
presentation. The object's inherent geometry or shape does not change, but the symbols used
can be different from map to map. .

These symbol changes can be based on several factors. One such factor is the type of
map being drawn. For example, utilities such as water mains can be represented on one map
schematically by single lines for pipes and symbols for valves and fittings. The same utility system

107

can also be drawn on a map with the pipes and fittings drawn to scale (as in a constructig,
map) (Figure 4).

D

e

T

Figure 4: Variations in Representation.

Another facter affecting representation is the scale of the map. On a small scale topographic
map all buildings can be shown with the square building symbo! described above. On a larger
scale map this representation is usually inappropriate. Users want to differentiate between
buildings of different sizes and shapes by the use of various sizes of rectangles.

Information about the attributes of an objects can also be represented on a map by varying
the properties of a symbal, such as the color, pattern, line weight, and intensity. Bertin provides
clarification of how these variations are accomplished graphically [Bertin 1983]. These variations
are discussed below.

3.1.1 Color

Coler is an attractive, as well as an effective means of differentiating between objects with
different properties. Representing primary roads as red lines and secondary roads as black lines
is an example of this technigue.

3.1.2 Pattern

Various patterns, such as hatching or cross-hatching for areas or solid vs. dashed lines, are often
used to differentiate between objects and object classes. For example, various patterns can be
used to show vegetation cover types on different parcels of fand.

3.1.3 Line Weight

If all ines on a map are drawn with the same weight and color, interpretation of the information
presented is extremely difficult. To avoid confusion, a cartographer distinguishes, for example,
between boundary lines and building outlines on the map by drawing the boundaries in a lighter
line weight.

3.1.4 Intensity

Uniike traditional cartographie products, which are static, interactive maps provide a dynarmic
representation. This includes the possibility that objects displayed on the screen can be em-
phasized by choosing an outstanding representation. In particular, the selection of objects by
clicking on them with a pointing device, such as a mouse, requires some technique to distin-
guish the chosen object from the others on the screen. A common means of doing this is by
highlighting the object on the screen by increasing its intensity. An object shown in green on the

108

5;recn could be redrawn in a brighter shade of green when picked by the user. If a highlighting
color cannot be used because it matches a color already used by another object, other methods,
such as reverse video or causing the object to blink, could be substituted.

All these different methods of representation can be used in combination, a blue hatched
area representing one class and a red hatched area representing another. They should also be
user definable, one user choosing red rectangle for a class of objects while another chooses black.

3.2 Representation of Object Parts

If we apply the theory of combinatoriai topology, we see that the geometry of objects can be
represented by simplical complexes and that it is sometimes desirable to represent the various
parts of the object in different manners. A linear object, such as a road, consists of a set of
1-simplices, also called edges, that are bounded by two or mare O-simplices, also called nodes,
and are connected to at [east one other 1-simplex. The nodes are of two types:

s Interior nodes, which connect two or more edges.

« Bounding nodes, which belong to only one edge and thus do not connect edges.

Figure 5 shows a linear ohject with 2 interior nodes and 3 bounding nodes.

Figure 5: The interior and bounding nodes of a linear object.

When we display such an object, the various subparts—the line itself, its bounding nodes
and its inner nodes—can be deseribed individually, each with potentially different values. For
examiple, the line in black with blue bounding nodes and red interior nodes.

This model can be extended to area and volume representations of objects, in each case con-
sidering the object itself, its inner components and its boundary components [Egenhofer 1988a).
Points, which are 0-simplices, are minimal objects and have no subparts.

4 Design of an Object-Oriented Cartographic Package

Using the model based on simplical cornplexes, we can now specify the objects and aperations
on them that are necessary for object-oriented graphics. The most general object is called a
lispObject, which allows the following operations',

drawObject: dispObject =-->
eraseJbject: dispObject --> .

! The opesations are specified in the following form:

'Perationliame: parameter, T ... x parameter, --> result and is follawed by an informal description of
he effect of the operation if necessary.

109

The "erase” operation is the inverse of the "draw” operation and has no effect if the object has
not already been drawn.

These operations act on display objects that contain information en how each individyay
object part will be displayed. In the procedural approach, the programmer must keep track
of the state of the display device; what color was last used, what line style was chosen, et
Before the next object is drawn these parameters must be reset if necessary by ISSUINE 3 serie,
of commands. In the object-oriented approach, no previous state is assumed and the single
command to draw the uses the information contained in the ohbject itseff to set the display’s
state.

4.1 Display Objects

Display objects contain information abaut which particular object in the database it represents,
in the form of a reference to this object, and the display object's location on the screen, which
is calculated from the object's world location using the current map projection. In addition,
each display object consists of a number of subparts, each with its own display specification
(dispSpee). The number of subparts that an object has is dependent on the spatial dimensian
of the object. For example, a linear object has a spatial dimension of 1 and contains three
specifications for 3 subparts: the line itself, the buunding nodes, and the interior nodes, An
area object has 5 subparts: the area itself, the bounding and interior edges, and the bounding
and interior nodes,

It is now necessary to specify a series of operations to set the display specifications of the
subparts of the object. The operations can be grouped into three classes: operations on the
specification for the object itself, operations on the bounding parts, and operations on the
interior parts. These operations are as follows:

dispObjectInitialize: object x dimension --> dispObject
putDbjectDisp: dispObject x dispSpec —-> dispObject
putBoundaryDisp: dispObject x partDimen x dispSpec --> dizpObject
putInteriorDisp: dispObject x partDimen x dispSpec --> dispObject
getlObjectbisp: dispObject —--> dispSpec
getBoundaryDisp: dispUbject x partDimen --> dispSpec
getInteriorDisp: dispOkject x partDimen --> dispSpac
displayObject: dispObject —=>

In the boundary and interior operations, the dimension of the part indicates which part of
the boundary or the interior is being referenced. Thus we would specify the boundary nades'
display in a linear object by using the putBoundaryDisp and passing 0 as the partDimen along
with the dispObject and the dispSpec.

4.2 Display Specifications

The display specifications for each part are generally the same. Each part of the object, regardless
of its dimension, has a display specification that contains information about which graphical
symbol should be used to represent the object part, its scale and rotation, and whether the
symbol is highlighted or not.

It should be noted that the scale and rotation mentioned here are applied to the symbol
and not to the object itsell. This is necessary because, if we wish to zoom in on a portion of
the map being displayed, we want the symbols to he drawn larger (in a stepwise fashion) as the
display scale decreases. The rotation is applied if we wish to align symbols to one another, for
example, rectangles representing buildings aligned with the road they are next to.

The operations on dispSpecType are defined as follows:

dispInitialize: -=-> dispSpec
dispPutIntensity: dispSpec x intensity --> dispSpec

110

dispPutScala: dispSpec x scala --> dispSpec

dispPutRotation: dispSpec x rotatien =-2 dispSpec
dispGetIntensity: dispSpec —--> intensity
dispGetScale: dispSpec -—> scale
dispGetRotation: dispSpec --> rotation

5 Implementation of the Package

This package was implemented in Precompiled Pascal [Egenhofer 1988b) and used graphic rou-
tines supplied by the VAX User Interface System (UIS) at the lowest level. The following
paragraph discusses the module dealing with display objects.

5.1 Display Objects

The most abstract object dealt with by this package is the display ohject. The types defined in
the module for display objects are:

dispSpecType = RECORD
intensity: intensType;

scale: Teal; {scale factor for symboll}
rotation: angle; {rotation angle for symboll}
symbol: symbolType;

END;

dispObjectType = RECORD
objectId: objectIDType;
location: ptType;
CASE Dim: dimensionType of
0: {nodeDisp: dispSpecType); {point}
1: (edgeDisp, {iine}
boundaryNodeDisp,
interiorNodeDisp: dispSpecTypel;
2: (areaDisp, {area}
interiorEdgeDisp,
boundaryEdgeDisp,
boundaryNodeDisp,
interiorNodeDisp: dispSpecType);
END;
END;

In the above definitions, infrusTypr is an enummerated type which indicates whether the ob-
ject part is highlighted or not. objiet 1T ype is a unique identifier assigned to each object in
the database. The dimensioniype indicates whether the object is a point, line, or area and
determines the number of object parts in the variant portion of the record. Finally, syinholtype
contains information on which specific symbol will be used to represent that object part. This
module contains the routines that perform the operations that were defined for dispQbject in
section 4.1, as well as drawQbjccl and eraseObject. Operations on display specifications are
also implemented in this module.

& Conclusions

Users of geographic information systems need to receive answers to queries about spatial objects
in a database. On very important and necessary way to display information about spatial
data is in the form of a graphic or map. Standard graphics packages are designed to provide

111

graphic routines for a wide variety of applications. This generality makes them inappropriate
for cartographic use since the functionality supplied does not satisfy the needs of cartographic
output. In addition, current graphics packages are procedural rather than descriptive, requiring
the user to specify each step needed to display an object on the screen.

Object-oriented programming provides a solution to these problemns, All spatial objects cap,
be represented by display objects. The user needs only to issue the instruction to draw {or
erase) an object and specify the object. All the information necessary to accomplish this jg
contained within the display object. This approach offers the advantages of simple interfaces
due to generic operations, information hiding, and dirmension and device independence.

Using an object-oriented approach a prototype of such a cartographic output package was
designed and its implementation begun on a MicroVAX graphics workstation. This package
contains the pecessary operations to build a display abject for a given spatial object and draw
it on the display device. The display object contains the necessary informatian te represent the
various parts of the object with the appropriate symbols.

References

[Bertin 1983] J. Bertin. Semiology of Graphics. The University of Wisconsin Press, Madi-
son, WI, 1983,

[Brodie 1984] M.L. Brodie. On the Development of Data Models. In: M.L. Brodie et al,
editors, On Conceptual Modelling, Springer Verlag, New York, NY, 1984,

[Cardelli 1984] L. Cardelli. A Semantics of Multiple Inheritance. In: G. Kahn et al., editors,
Semantics of Data Types, Springer Verlag, New York, NY, 1984,

[Dahl 1966] 0.-J. Dahland K. Nygaard. SIMULA—An Algol-based Simulation Language. Com-
munications of the ACM, 9(9), September 1966.

[Egenhofer 1987] M. Egenhofer. Appropriate Conceptual Database Schema Designs For Two-
Dimensional Spatial Structures. In: ASPRS-ACSM Annual Convention, Balti-
more, MD, 1987.

{Egenhafer 1988a] M. Egenhofer. Graphical Representation of Spatial Objects: An Object-
Oriented View. Technical Report 83, Surveying Enginsering Program, University of
Maine, Crono, ME, July 1988.

[Egenhofer 1988b] M. Egenhofer and A. Frank. A Precompiler For Modular, Transportable
Pascal. SIGPLAN Notices, 23(3), March 1988.

[Frank 1986] A. Frank and W. Kuhn. Cell Graph: A Provable Correct Method for the Storage
of Geometry. In: D. Marble, editar, Second International Symposiurn on Spatial Data
Handling, Seattle, WA, 1986.

[Frank 1988] A. Frank. Requirements for a Database Management System for a GIS. Pho-
togrammetric Engineering & Remote Sensing, 54(11), November 1988.

[Goldberg 1983] A. Goldberg and D. Robson. Smalltalk-80. Addison-Wesley Publishing Com-
pany, 1983.

[Jackson 1989] J. Jackson. Algarithms for triangular frregular Networks Based on Simplicial
Complex T11E_!ory. in: ASPRS-ACSM Annual Convention, Baltimore, MD, March 1989.

[Meyer 1988] B. Meyer. Object-Oriented Software Construction. Prentice Hall, New Yc.rrk, NY,
1988,

112

en 1886} P. O'Brien et al. Persistent and Shared Objects in Trellis/Owl. In: K. Dittrich
and U. Dayal, editors, International Workshop in Object-Oriented Database Systems,
Pacific anve, CA, 1986.

['.J'Bri

