MOOSE: Combining Software Engineering and Database

Management Systems®
(Extended Abstract) . -

Max 1. Egenhafer
Surveying Engineering Program
Andrew U, Frank
Computer Science Department
University of Maine
Orono, ME 04469, USA
MAX@MECANT bitnet
FRANK@MECAN1.bitnet

Abstract

Software engineering techniques have not been exploiting database management technology in the past.
Some of the major deficiencies in the conventional maintenance of medium sized and large software
systems can be overcome by storing program code in databases. In order to pursue this goal, data
structures for program code have to be developed that can serve as schema descriptions for programs
as structured text. MOOSE, the Maine Object-Oriented Specification Editor, is a prototype of such a
CASE, tool implemented on top of an object-ariented database.

01-L2

1 Introduction

Highly modular, object-oriented software systems require a programming environment to support the
programmer during encoding, with information about existing modules, routines, and their functional-
ities. Currently, large software systems are cumbersome to maintain, This deficiency is due mostly to
the methads by which programs are developed, and the tools which are used. With the current tools for
software enginecring, programs are written as text files so that they are suitable for compilation, but not
necessarily for human understanding. An effort ta restructure the program text for better human un-
derstanding was made hy Knuth with the WEBB precampiler {Knuth 1084). In general, batch-ariented
concepts and their tools of the 60s and 70s still dominate the process of encoding: code is written into
sequential files with a text editor, and aflerwards a compiler checks the syntax and translates the code
inta some machine language. Such systems often requite several attempts before a program is free of
syntaclical errors. More advanced techniques, like on-line syntax checking, identify many syntax errors

*This project is was paritally funded by a grant fram NSF No IST-0609127 and equinment grants from Digital
Equipment Corporation

Egenhofer, M., and A. U. Frank. "Moose:

Combining Software Engineerin
and Database Management Systems." . ’

. Paper presented at the Second
Inter@atlonal Workshop on Computer-Aided Software Engineering,
Cambridge, Massachusetts, USA, 12-15 July, 1988 1988.

gruber
Textfeld
Egenhofer, M., and A. U. Frank. "Moose: Combining Software Engineering and Database Management Systems." Paper presented at the Second International Workshop on Computer-Aided Software Engineering, Cambridge, Massachusetts, USA, 12-15 July, 1988 1988.

as the programmers type them and reduce the amount of syntax errors tremendously; hawever, their
usage is restricted to the terminal symbols of a language.

While the technology of new tools for software development made at least some progress, mainte-
nance of large software systems has been largely neglected—and most of today's programming effort is
directed toward changing existing programs. When modifying a routine, many other routines or modules
may have to be adapted to these changes. The list of desired functionality of a software engineering
system which is geared to maintenance work must include such important issues as consistent updates
throughout an entire system, feedback about incomplete parts, rmanagement of modifications such that
compilation and linking can be automated, management of the structure of a modular system, etc.
These tools must replace the cumbersome and error-prone form of maintenance in which changes are
made manually.

The major impediment for better control over the software parts and their dependencies upon each
other is the fact that programs are written and stored as text files providing no details about the structure
of the madules or their components. We claim that managing code in a database management system
will help to overcoms many of today's problems with maintaining software systems.

In order to deal efficiently with data, the connections armong the data to be stored must be analyzed
and formally described. Data structures as formal methods describe common patterns for data of
a specific application. The object-oriented data model can be applied for structuring programming
code. Abstraction methods built on basic concepts similar to the ones presented in [Brodie 1984] are:
classification, generalization, and aggregation.

s ¢ Tussificniion can be expressed as the mapping of several objects (instances) onto a common
class. The word ahjeri is used for a single occurrence of data describing something that has some
individuality and some observable behaviour, The terms typr, oljeel Typr, rlaas, or abstract duto
tym refer to types of objects, depending on the context. A type characterizes the behaviour of
its instances by describing the operators that can manipulate those objects |O'Brien 1986}, These
aperations are the only means to manipulate objects.

o (it 1o satlization establishes an is.a hisrarchy among two or several classes [Dahl 1968] [Goldberg 1983].

o g galion combines several classes to form more complex objects, such that each object part
keeps its entire functionality,

Diagrams in the style of the entity-relationship model, which are frequently used in the scherna design
for data structures of databases, make the links among the individual components of even complex
connections visible. Unlike the entity-relationship model, a graphical view of modeling is used which
shows the generalization relation between object types as boxes included within boxes, presenting their
intuitive order. The general form of the diagrams is summerized in the appendix.

Generally, these abstraction methods are implemented using some techniques of software engineering;
herz, the techniques are applied to model their own implementation. fn particular, classification is
mapped directly on software modules, its own implementation; and operations of a software module
correspond to the operations which are executable on a class.

This paper investigates how program code can be stored in a database such that details may be
quickly retrieved and presented, and that multiple relations among the parts of programs can be made
visible. It begins with a discussion about object-oriented programming languages and their suitability for
treatement in a database environment. MOOSE-talk, a high-level specification language, is introduced

11-L2

as a language with a minimal set of functionality. In chapter 3, the data structure of an object-oriented
language is analyzed and presented by using a graphical modeling language. The paper closes with
results of the implementation MOQSE, a prolotype for a code management system implemented in
accordance with the structures introduced.

2 Programs as Structured Text

The modular programming concept is closely related to the irpp]émentation of abstract data types
(ADT) [Goguen 1978] [Guttag 1977}, and stresses the paradigm of reusable code in an object-oriented
environment. Writing programs as unstructured text in flat files disregards the fact that a program is a
complex structure of links hetween definitions and references. Therefore, programs must be organized
as sfrwcluived terl such that the references follow the pattern set forth in the language definitions. All
relaled parts are connected with each other. A hypertext-like medium which is suitable for managing
unstructured text would not efficiently support the management of pregramming code. Arbitrary links
between any text element could be created, leaving the user without control over the structure., Instead,
programs shoule be organized as structured text and stored in databases which are well-suited for
managing farge amounts of structured data.

2.1 Conventional vs. Object-Oriented Languages

It is feasible to use a mainstream programming language, such as Pascal or Modula-2, for a modern,
object-oriented programming style. Encapsulation and modularization can be achieved with a pre-
compiler managing import/export of operations between madules and checking types across modules
[Egenhofer 1988]; however, the structure of a Pascal-like language leads to cade which appears to be
verbose if an object-oriented style is adopted. A prograrmming language suitable to be freated as strue-
tured text should provide a minimal set of functianality with functions and variables. As the definition
will be small, most of the keywords in traditional fanguages that are responsible for multi-page function
definitions are superfluous. Compare the following twa segments of Pascal code and a specification- like
language which describe Rational number muitiplication,

FUNCTION ratHult {a, b: ratType)- ratType;

VAR num, denom: integer;

BEGIN
num := ratNumerator (a) * ratNumerator (b);
denom := ratDenominator {b) * ratDenominator (a);
ratMult := ratMake (num, denom);

END;

ratMule (a,b) == ratMake (intMult {ratNumerator (a), ratMumerator (b)),
intMult (ratDenominater (a), ratDanominator ($:3D))

2.2 An Object-Oriented Programming Language

Object-ariented programming languages zre the tools used in software engineering to implement object-
orienled abstraction mechanists. Object.oriented languages are distinguishable from conventjonal pro-
gramming languages because they support [Edelson 1987):

modularization by combining type definitions and routines,

s encapsulation of implementation details,

generic typing [Cardelli 1085],

» inheritance of operations from superclasses to subclasses.

These concepts do not include a message-passing paradigm [Goldberg 1983] that is often cited as
necessary for an abject-oriented design. 1t was outlined that message-passing is more of a pedagogical
than semantical difference to conventional routine calls, and any pracedure call in an Algol-like language
could be seen as message-passing [Storm 1986,

The language for which the data structure will be investigated is an experimental, high-level,
specification-like language called MOQOS5E-talk [Frank 1987]. MOOSE-talk was designed ta be an im-
plementation independent language, suitable for persistent management by a database system. The
structure of the language strictly separates the interface of the object and the implementation of the
methods. Abstract implemententations [Frank 1986] [Olthoff 1985] specify what an operation should
do. The syntax of MOOSE-talk is concise and has fittle overhead of syntactical elements in order to
be directly mapped upon a data structure, The language has a functional structure and is tailored for
very short (most often one-line) abstract implementations of operations. A short example specifying
the abstract data type sr/innnl will help in understanding the concepts. Throughout the analysis of the
data structure, this example will be used to clarify the ideas.

ADT' rat --? rational numbars
USING" int WITH' mult

maka®: int" x int- rat?

num: rat = int -- numerator
danom: rat ~ int -- denominator
mult: rat X rat -~ rat

AI” num (make {i1, 12}) == {}
denom (maks (i1, 12)) == i2
mult” (a, b) == make (mult" (num (a), num (b)),
mult {denom (a), denom {(h}))

MOOSE-talk supports object-orientation in the following ways:

* Type definitions and corresponding operations are combined inte modules to form object-ADTs,

'Upper case cammands are keywords.

‘Text aiter *--7 is comment.

'USING describes imported lypes,

"WITH describes used operations of imported ADTs,

“Specification of the operations,

“Input parameters,

"Output parameters (results).

"The Abstract Implementation describes how the operations are implemented,
“Multiplication is overloaded with different meanings {or integers and rationals,

Ci-LT

s the specification (i.e., the interface] is separated from the implernentation,

» internal parts are encapsulated so that objects are only accessible through their operations in the
inter{ace,

s« the usage of types and operations, which were defined elsewhiere, is encouraged, and
e inheritance of operations is supported.

Currently, MOOSE-talk does not support generic types [Cardelli 1985] and multiple inheritance [Nguyen 1986),
but it is planned as a future extension.

3 A Data Structure for Object-Oriented Programs

The companents of the fanguage will be analyzed. This analysis leads immediately to a structure that
is suitable as a schema design for a code DEMS. The following three major parts in the implementation
of an abstract data type will he identified: (1) type definitons, (2) operations upon an ADT, and (3)
abstract implementatians of thase aperations.

3.1 The Type Definition

The definition of a type s composed of three parts: (1) the definition of the type name, (2) the reference
to ather ADTs which are used for the definition or implementation of this ADT, and {3) a listing of the
operations used in the ADT implementation. The data structure for the type delinition must consider
the following issues:

» Each ADT is identified by a unique name, such as ruf.

o Each ADT can use several external ADTs, such as sd 1'SING int: used types are either sub-parts
of the type (as stated in the mnlv operation) or occur in the operations as parameters.

¢ An ADT can provide operations for several other ADTs (by default, any ADT uses itself); ini, for
example, is used by the ADT /.

» Operations of other ADTs may be used in the implementation part. The specifications for these
operations befong to a class and are explicitly made available. This feature is mainly & control

mechanism against undesired usage. .
ADT taes
Jr- Aame used USING
OPERATION WITH

Figure 1: The structure of a type definition.

3.2 The Specification of the QOperations

The definition of the operations is romposed of: (1) the name of the operation and the link to the
carresponding type, {2) the input parameters, (3) the output parameters, and (4) the result of the
operation if it is a function. The following issues must be considered for the data structure:

« Each operation has a name which is unique with respect t& the ADT, &.g., mnke is unique
within 1l however, another ADT may have another operation with the same ‘local’ name. By
concatenating the unique ADT pame and the locally unique aperation name, glebally unique
operation names are achieved, c.g., combining the ADT name i/ and the operation trh to
RINUTICN

® An operation belongs to a single ADT, such as mil.malr to rl, while one ADT may have several
operations, e.g., ! with make, num, denam, mull,

» Each operation can have several parameters.
» The parameters themselves are ADT types which rely on other ADT definitions.
L]

* In its most strict sense, an operation is 2 function and has a single result; however, for applied
programming, it was found necessary to allow the usage of a generalized operation structure,
where an operation has a number of input and output parameters, and side effects may change
some parameters,

" ADT

parameter type

name
| result

adt-operationy | OPERATION in_,

PARAMETER

out

- name

Figure 2: The structure for operations.

3.3 The Abstract Implementation

The abstract implementation is the most complex part of the data structure as it contains bath recur-
sive definitions and instances which are finked to previously defined types or operations, An abstract
implementation: (1) is connected to the definition of the corresponding operation, (2) contains routine
calls to ather operations of ADTs, (3) states the connection between the parameters in the definition
of the aperations and the instances, and (4) includes place holders (variables) which pass values among
parameters. The data structure must consider the following details:

¢ Each specification must have some statement of how it is abstractly implemented.

¢ A statement in an abstract implementation consists of a left-hand and a right-hand expression.

E1-LT

* An expression is either a function call or an instance of a variable. For the sake of generality,
references to constants are implemented as functions with no parameters.

s The instance of a variable refers to a variable.
* A variable may be global with respect to an ADT encapsulating a state,

* Local variables are valid within a single abstract implementation; they are identified by names
which must be unique with respect to an abstract implementation.

.
» Each line of an abstract implementalion can have several variables with different names, e.g.,

it and il in sy these variables can be referenced several limes within the same abstract
implementation.

» Each function call is linked to the definition of an operation: a function can be called several
times, while each call belongs to a single definition.

» Functions have arguments which map onto the parameters of their definition. Each parameter
can have several instances, while an argument is always linked to a single definition,

* An argument may be an expression, which can be either another function (nested calls) or the
instance of a parametgr. For example, the argument of the expression nuur is another expression,
the function innle, while the arguments of the expression are instances of the variables it and /2,

» Each expression has a type which is the resulting type of a function or, for variables, the type of
the parameter to which it refers.

ADT OPERATION
name name : PARAMETER
glohal
VARIABLE !
tocal ABSTRACT
Le name ocal IMPLEMENT.
ARGUMENT
lelt right l
EXPRESSION
VARIABLF FUNCTION
(Instance) CALLS ¢

Figure 3: The structure for an abstract implementation.

in addition 1o the above structure, the type definition, each definition of its operation, and the
abstract implementations can have comnients which must be stored with the coriesponding structure.

4 (Coanclusion

This study investigated the use of database management techniques for a persistent managetment sys-
tem of object-oriented programming code. Current software environments suffer from the demand of
finear encoding and the lack of on-line control over used code. As a more efficient approach, program
code should be trested as structured text, such that it can be stored in a database, Using standard
database rnanagement techniques, a code management system can quickly retrieve details, provide
cross-reflerences among used program parts, and can guarantee consistency for routine names, types,
and parameters within an entire large software systern. Updates can be immediately evalrated without
leaving it up to the programmer to manually propagate modifications fram one module to another.

Additionally, the data structure for an abject-oriented programming language is needed to efficiently
store programs as strucutred text in a database. Three major parts were identified: (1) the definition of
object types. {2) the definition of the corresponding operations, and (3) the abstract implermentations
of the operations. For each of these three parts, a detailed structure was presented by using a graphical
description

MOOSE, a prototype for 2 DBMS based code management system, was implemented on top of
PANDA, an object-criented database [Frank 1982}, The implementation, including the data definition,
contains 70 modules with about 5000 lines of highly modular Pascal code. Some experience ‘with
a small set of ADTs was gained. During its design and implementation it was observed that the
consistency constraints among the expressions are very complex. High-level, object-criented operations
for deleting and modifying ADTs and operations must perform a large amount of eross-referencing and
-checking. This should not surprise anyone with experience in modifying large software packages. The
implementation of ‘change operations' for each major structural part makes these dependencies visible
fram an operational viewpaint. Assistance from a program may be an important CASE tool,

A translator is considered ta automatically transform this form into Pascal or C. Such a translator
can be very powerful if it is combined with a code management system based on a database management
system. Two primary advantages are expected:

» Some manual translation of MOOSE code into Pascal showed a reduction in the size of the code
by a factor of 3. More compact coding is expected with generic coding. The size of software
systems is an important issue, because comprehension of code is faster if the code is spread over
fewer lines, but still clearly structured.

» A translator can produce more efficient executable code {e.g., by in-line expansion of functions)
without sacrificing the clarity of the format used by human programmers.

5 Acknowledgement

Thanks for the comments of Doug Hudson, David Pullar, and Jeff Jackson who read an earlier varsion
of this paper.

A Diagrams for Abstraction Methods

The diagrams for the abstraction methods have the following structure:

¥1-LT

A1 Classification

A class is represented by a box around the class name. Lower-structured details of a class are written
in the lower part of the box of the corresponding class and globally unique key identifiers are marked by
an arrow pointing to the corresponding attribute.

<class> -

—attribute>

A.2 Generalization

Generalization is drawn as box around a box, such that the superclass contains the subcfass(es).

<super_class>

. <sub_class>

A3 Aggregation

Aggregation and association among classes are marked by arrows running from one box ta another;
the direction of the arrow indicates the structure of the aggregate running from the superpart to the
subparts (1:m relations).

<class. } - <aggregate> <clags 2>

<attribute>

Unique key identifiars with respect to an aggregale are marked by having the aggregation arrow
point inside the box to the corresponding attribute.

References -

(Brodie 1984] M.L. Brodie. On the Development of Data Models. In: M.L. Bradie ot al., editors, Cn
Coneeptual Modelling, Springer Verlag, New Yark (NY), 1984,

[Cardelti 1985] L. Cardelli and P. Wegner. On Understanding Type, Data Abstraction, and Polymaor-
phism. ACM Computing Surveys, 17(4), April 1985,

[Dahl 1968] O.-). Dahl et al. SIMULA 67 Common Base Language. Technical Report, Norwegian
Computing Center, Oslo, 1968,

|Edelson 1987]) D. Edelson. How Objective Mechanisms Facilitate the Development of Large Software
Systems in Thres Programming Languages. SIGPLAN Notices, 22(9), September 1987.

|Egenhofer 1988]) M. Egenhofer and A. Frank. A Frecompiler For Modular, Transportable Pascal. 5IG-
PLAN Notices, 23(3), March 1988.

[Frank 1982] A. Frank. PANDA—A Pascal Network Database System. In: G.W. Gorsline, editor,
Proceedings of the Fifth Symposium on Small System, Colerado Springs (CO), 1982,

[Frank 1986] A. Frank. The Design of Information Systems, Part 1: Theories for Spatial Information
Systems. 1986. classnotes, University of Maine at Grono, Department of Civil Engineering,
Surveying Engineering, Orono (ME).

[Frank 1987} A. Frank. Databases are Crucial for Computer-aided Software Engineering. In: E. Chilkof-

sky, editor, First International Workshop on Computer-Aided Software Engineering, Advance
Papers, Cambridge (MA), May 1987,

[Goguen 1978] J.A. Goguen et al. An Initial Algebra Approach to the Specification, Correctness, and
Implementation of Abstract Data Types. In: R. Yeh, editor, Current Trends in Programming
Methodology, PrenticesHall, Englewood Ciifts (NJ), 1978,

|Goldberg 1983) A. Goldberg and D, Robsen. Smalltalk-80. Addison-Wesley Publishing Company,
1983.

|Guttag 1977] J. Guttag. Abstract Data Types And The Development Of Data Structures. Commu-
nications of the ACM, June 1977.

[Knuth 1984] D. E. Knuth. The TgXbook, Addison-Wesley Publishing Company, Reading (MA}, 1984,

[Nguyen 1986] V. Nguyen and B. Hailpern. A generalized Object Model. SIGPLAN Notices, 21(10),
October 1986.

[O'Brien 1986] P. O'Brien et al. Persistent and Shared Objects in Trellis/Owl. In: International
Workshop in Object-Oriented Database Systems, Pacific Grove (CA}, 1986,

[Olthoff 1985] W. Olthoff. An Overview on ModPascal. SIGPLAN Notices, 20(10), October 1985.

Storm 1986] R. Storm, A Comparisen of the Objet-Oriented and Process Paradigms. SIGPLAN
Notices, 21{10), October 1986.

- Second lntematlonal Workshop on
| Computer—AIded Software Engmeenng

- Advance WOrking_Papérg"_

R Cambndge Massachusetts
L July 12—15 1988

