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ABSTRACT

Design of GIS applications must model current systems, including their administrative and legal
aspects. The standard concentration on the static data structure in GIS — as captured with database
design tools — is insufficient and an object-oriented approach is necessary to include the operations
carried out. The combination of operations and data structure in a modeling tool is crucial to properly
capture complex administrative or legal processing of documents, including the  temporal aspects. This
is clearly visible in the application selected here, namely real estate property registration, where one
cannot succeed without modeling space and time.

Object-Oriented Modeling is the widely acclaimed method in software engineering. It is used for
design and programming, but did not reduce the software crisis. The theory of  object-orientation is
simple, but the application to practical cases points to more difficulties than expected. The primary
concept of object-orientation corresponds well with cognitive principles, but the details of practical
object-oriented languages add confusion.

The non-trivial case study is used here to point out the issues and to propose an approach which is
in line with human cognition. First the object-oriented concepts are revisited in the context of a class
based functional programming language. It stresses the separation of behavior from implementation
inheritance and allows design and rapid prototyping in the same language.

Human cognition uses radial categories with a central prototype. This is used to start the design of
the property registry. Several refinement steps are then applied. This approach and the set of tools used
allows to separate the code of refinement steps and result in very compact, formally checked code.

1. INTRODUCTION

The design of GIS applications is difficult, more difficult than other applications. It is generally thought
that information systems about the real world (Shaw 1984), which represent space and objects in space
and  must related objects and events to time (Bobrow, Mittal, and Stefik 1986) are more difficult to
design than others. GIS and most similar applications in the environment, for planning in the urban and
regional environment and for town and public utilities application, fall in this category. This is
corroborated by the difficulties application developers encounter. In this paper we use the design of a
property registration system to make evident some of  the lessons we have learned.

Object-oriented methods for software engineering are crucial for the design of  GIS (Egenhofer
and Frank 1987),(Worboys 1994). Spatial information systems deal with many objects which have
somewhat similar properties, e.g. their existence in space and time, and the object-oriented method
allows to use these similarities in the design process to make the design more regular and much smaller.

For application development, many tools are available but their power is limited and the software
crisis continues, as the cover story from a popular journal recently indicated (Joch 1995). GIS
application development uses often tools based on database engines (e.g. Oracles, Sybase). Tools for
overall design (e.g. the OMT or OA method) are used by more experienced software engineering
companies for large projects. Rapid prototyping intends to produce demonstration version of an
application quickly. Substantive research has explored formal methods to support specification, but
with limited practicability so far (Guttag, Horning, and Wing 1985, Guttag, Horowitz, and Musser
1978, Liskov and Guttag 1986).

Tools often concentrate on one or the other of the two aspects of object-oriented design, namely
- behavioral object-orientation of the design languages, and
- implementation object-orientation of the programming languages.

This makes translation between them difficult. Even at the level of programming languages, the object-
oriented concepts differ, such that translation is difficult.



Recently, a substantive experiment to store cartographic data in an object-oriented database was
undertaken, using one of the best researched object-oriented database management system (Bancilhon,
Delobel, and Kanellakis 1992). A port to another object-oriented database management system became
necessary. The code was written in C++ and needed minimal change, “only” the description of the
objects had to be translated to another object-oriented data description languages. This was surprisingly
difficult and 9 month of work produced a version which compiled, but did not run properly.

In the course of a project to design a cadastral system for a country, we used object-oriented
methods to analyze the database design and to assess different legal alternatives for the organization of
a property registration system. From this effort and previous similar studies, some lessons for the use of
object-oriented methods are reported here. The  detail of the property registry in this example is kept to
the level where it is independent of a particular legal system. The designed system reproduces the
history of the parcel. The interpretation of this history to determine who owns a parcel remains to a
legal interpretation which has different answers in different legal systems.

Design of an application is understanding a complex cognitive reality. Society has constructed a
highly structured network of notions, rules and effects, e.g. to deal with real estate. These construction,
in the legal, social, administrative domain do not follow standard mathematical logic, as little as does
natural language. The tools provided to the application designer must correspond as much as possible
to the cognitive structure to make his effort of translation simpler. The impedance mismatch caused by
tools following a strict logic but conflict with elementary concepts of cognition aggravates his already
difficult task.

Radial categories are a way to understand how humans build categories, where some prototypes
are more typical members of a category then others (a robin is a more a bird than a penguin). We
propose to approach application design by identifying, designing and quickly test the prototypical case.
From this refinement steps start. The changes for these were local, demonstrating the power of the
approach used and the orthogonality of the tools.

2. OBJECTS = OPERATIONS + DATA

The basic notion of object-oriented design is the object, which has a specific set of  properties and to
which some specific operations can be applied. An object represents some real world object in the
application domain. Object is a notion which is bases on first hand and very extensive experience:
human constantly interact with physical small objects (Lakoff 1987). From this experience we
metaphorically transform (Lakoff and Johnson 1980) the notion of object to the non-physical domain,
including the legal: the mortgage right is construed as an object and has many of the properties (even
legal properties) of physical objects (Frank 1996).

The design of application is concerned with classes of objects which have the same behavior.
Application designers talk about parcels, not a single parcel. In consequence the term ‘object’ is often
used loosely to denote an object class or object type; to denote a single object, one speaks of an
‘instance’ or ‘occurrence’ of an object.

We propose to use nouns in the plural form (and capitalized) to denote object class. The plural
form is the construct in natural language to transform a single object in an undetermined mass of similar
objects (Langacker 1987).

2.1. Object classes
Object classes are formed following set logic: all objects which  show the same behavior belong to a
class.  Objects may have an internal state, but modeled at the behavioral level are only the operations
and their effects.

class Deeds d where -- the object d of the class of deeds
draft :: ParcelID -> d ->  d -- operations with their argument types
sign :: Person -> Person -> Time -> d -> d
signed, registered :: d -> Time
register :: Time -> d ->  d
isSigned, isRegistered :: d -> Bool

      seller, buyer :: d -> Person
      parcelAffected :: d -> ParcelID

The functional programming language used here is Gofer (Jones 1991, Jones 1994), very similar to
Haskell (Hudak et al. 1992).



2.2. Categories in human cognition
Humans organize the real world with cognitive categories; these are not mathematical sets. Cognitive
science has shown that human cognition follows a radial categories structure, where a central
prototypical example characterizes object of this category best (Lakoff 1987). For birds, a robin is a
"better" bird than a penguin or an ostrich. For the property registry, a building lot is a better example of
a parcel than a small corner, owned by the telephone company to place its distribution equipment; a
sales contract is the better example for the transfer of real estate property than a court order based on
eminent domain.

2.3. Separate behavior, representation and implementation
Two tools must be available during design and implementation:

- The designer specifies object classes with operations.
- The implementor defines a data structure to hold the internal state and implements the operations

as specified (using this data structure).
The major problem with many object-oriented tools is that these two aspects are not well

separated and no specific constructions for one or the other are available. “A class declaration specifies
the representation of objects of the class and the set of operations that can be applied to such
objects”(Ellis and Stroustrup 1990) and similarly for an object-oriented data model (Bancilhon,
Delobel, and Kanellakis 1992, p. 77).

In contrast: In functional programming languages (Bird and Wadler 1989) of the Haskell tradition
(Hudak et al. 1992), three notions are used:

class is used to describe an algebra without concern for the representation and implementation. A
class describes only behavior.

data types describe representation.
instances of classes using data types give the implementation of the operations of a class for a

particular data type. More than one implementation for a class is possible.
Behavior = Operations. The designer is concerned with the behavior. She needs to express, for
example, that a deed must be signed before it can be registered or that it can be registered only once.
This is best described in terms of the outcome of an operation applied to an object (or several
operations applied in sequence). This is often called an axiomatic style of specification writing (Liskov,
and Guttag 1986). It is based on the view of an object class as an multi-sorted (universal) algebra
(Birkhoff and Lipson 1970). In an executable language, these axioms must be expressed in a
constructive form, for example:

register d t r = if not isSigned d then  error “unsigned deed cannot be
registered”

else if isRegistered d then error “deed is already registered”
else store d t r

Representation = Data. Programmers are concerned how to represent the internal state of an object
and how to implement the operations on this representation. Programming languages and database
management system data description languages are typically geared towards this end.

 Here data types will be capitalized nouns in the singular, single occurrences start with a lower
case letter and are either proper names (e.g. andrewFrank) or a possibly abbreviated noun followed by a
number.

Example:
data Deed = Deed Person Person ParcelID Date Date

            seller, buyer, parcel, date signed, date registered
aDraft, aSignedDeed :: Deed  -- two object of type Deed
andewFrank, peterMiller :: Person  -- two objects of type Person
aDraft = draft (ParcelID 7)
a signedDeed = sign aDraft andrewFrank peterMiller

— a aDraft of a Deed is signed by the seller and the buyer

Implementation. The code to execute the operations is based on the representation. Operations, which
do not depend on the representation can be expressed in the class, but at least the basic update and
observer operations must be coded in an instantiation, which declares that object with this
representation belong to this class:

instance Deeds Deed where
draft pa = Deed unknownPerson unknownPerson pa NYT NYT unknown
signDeed seller buyer time (Deed p1 p2 pa s r id) = Deed buyer seller pa time 

    r id



register rt (Deed p1 p2 pa s r id)  = Deed p1 p2 pa s rt
registered (Deed p1 p2 pa s r id)  = r
isRegisered (Deed p1 p2 pa s r id) = not (r==NYT)   -- NYT = not yet

3.  GENERALIZATION AND INHERITANCE

Inheritance is one of the key ideas in object-oriented design: Superclasses are formed from classes
which show some communality: Parcels are one type of Areas, others are Forests, Cities, Lakes. The
objects of the subclass have all the properties and operations of the superclass. This can be shown as a
hierarchy and follows the famous hierarchical classification of the animal and plant kingdoms by
Linnee.

In artificial intelligence, such generalization hierarchies are called ‘is_a’ hierarchies, because each
object of the subclass is an object of the superclass: e.g. each dog is a mammal. But two classes of
objects can have the same operations, if they form  a ‘part_of’ (or aggregation) relation. The assembly
responds to the same operations than the part ( a ‘pars pro toto’ schema): One starts a car by starting its
engine.

A deed is registered in the registry by registering it in the book of deeds. In this case the data type
Registry and TheBooks both respond to the operation ‘registerDeed’ and historyOfParcel. This implies
that Registry and TheBooks both belong to the class of Registries.

class Registries r where
        registerDeed :: Deed -> r -> r
        ownerOfParcel :: ParcelID -> r -> Person
        parcelsOfOwner :: Person -> r -> [ParcelID]
        historyOfParcel :: ParcelID -> r -> [Deed]
        historyOfParcel’ :: (Deed -> Deed -> Bool) -> ParcelID -> r -> [Deed]
                                        -- accepts a sort order as a parameter
instance  Registries Registry where
        registerDeed deed (Registry now rs) =
                Registry (now’) (registerDeed (stamp now’ deed ) rs)
                        where now’ = tick now
        historyOfParcel p (Registry now rs) = historyOfParcel p rs

instance Registries TheBooks where
        registerDeed deed (TheBooks  ds) =  TheBooks (store3 putOID deed ds)
        historyOfParcel p (TheBooks ds) =  sort1 (<=) (filterR2 c ds )
                           where c d = (parcelAffected d) == p

Inheritance of behavior. In a class based object-oriented model, classes serve to describe abstract sets
of objects which all have the same operations. Data types describe the objects and it is the programmer
who links the two together, stating that objects of this data type are in this class (e.g. all instantiation for
TheBooks are in the class Registries).

Inheritance of Implementation. From an implementation point of view objects which support
the same operation must have the same representation. Therefore in programming languages objects of
a subclass are constructed with the operations, representation and implementation of the superclass
included.

Multiple inheritance permits that a subclass inherits properties from multiple superclasses. A
navigable river inherits from ‘waterway’ and ‘river’ . Such situations were assumed to be very
important in GIS (Egenhofer, and Frank 1987), but in practice, the relations are seldom perceived in
this form at the application level and it is the analyst which must discover them. They are more obvious
for the data processing aspects of a system: a parcel is a TextObject (which can be printed), is a
GeometricObject (which can be graphically rendered), a DatabaseObject (which can be stored) etc.

3.1 Polymorphism
Polymorphism means that the same operation (i.e. a name) can be applied to different types of objects.
The operation registerDeed can be applied to Registry or to TheBooks having slightly different effects
in each case. If all objects to which an operation can be applied result from a general type and are
produced by different parameter values, then this polymorphism is called parametric polymorphism
(Cardelli and Wegner 1985). The Registry and TheBooks are both produced from Registries, replacing
the parameter r.  Ad hoc polymorphism allows the application of operations on a number of types,
which are not otherwise related.

Parametric polymorphism as used here forces the designers to search for the common superclass if
they intend to use the same operation name. This helps to detect commonalties and leads to more
similarities in the design, more coherence in the user interface and less code.



C++ provides ‘templates’ for this, which is a domesticated  form of the C macro facilities.  “A template
defines the layout and operations for an unbounded set of related types” (Ellis, and Stroustrup 1990, p.
341).

To construct classes for data structures and use them broadly, simple parameters are not sufficient
and so called constructor classes are necessary. Haskell has recently added this concept [draft Haskell
report 1.3], which was pioneered in Gofer (Jones 1991, Jones 1995). This is not used in the example is
here, but constructor classes were used to build the simple storage tools used for storing the deeds.

If an class is parametrized and for the operation specified  another operation is required then the
instantiation must check that the operation is available for the data type with which the class is
instantiated. Such dependencies are often overlooked, e.g. the need to have an equality test for the
individuals in order to build the a set over them. In the formalism here, such dependencies are
expressed in the class heading before the '=>' symbol.

4. APPROACH: PROTOTYPICAL CASE FIRST

4.1. How to Start?
The initial step in an object-oriented design of an application is often insurmountable: where should
one commence? Two classical approaches are often propagated: top-down or bottom-up design.
Neither is perfect, thus leading to a ‘middle out’ design philosophy as a compromise.

The bottom-up method leads to a design where the low-level parts of the application are
elaborated before an overall picture what the application should achieve is gained. The top-down
method has the tendency that a very complex picture of the application is developed which is so
comprehensive that it cannot be implemented. Both methods are based on the assumption that an
application is naturally structured in a hierarchy of task which are subdivided in subtasks. But this is
not the common structure of radial categories human cognition follows: successive levels of
subdivisions do not form hierarchies, but are independent partitions. A division of the scale 'good-bad'
in three 'good-OK-bad' shows this clearly.

For designing the database schema of the property registration system we considered all the
different aspects of the relations between persons and real estate property. Half a dozen different types
of persons (natural person, estates, companies, public bodies etc.) can hold an equal number of
different rights in real estate. This lead to a complex design from the middle out, where much revision
was necessary as the top and bottom was reached.

These methods for modeling a property registration system failed not because it was not possible
to model the aspect of the situation covered, but simply because the design document became to
complicated. It became difficult to see how it would work. When we proceeded to implement the
database schema we ended up with more than ten pages of unreadable (automatically produced) SQL
code.

4.2. Prototype First
I propose to use the radial category concept to guide the approach to application design. Categories are
organized around a prototype, which shows the properties best and less prototypical elements deviate to
some degree from the central prototype (a duck is a bird, but not a typical one).

Humans form categories following their experience and interacting with the world. Repeated
experience shapes our view of the world and leads to concepts (Neisser 1976). Our concepts follow
therefore the more often encountered case and special cases are then dealt with in an ad hoc fashion.

Identifying the prototypical skeleton of an application reduces the clutter of the innumerable
special cases and focus attention on the overall picture. It helps identify the basic entities involved and
their properties. For the prototypical function of an application domain, the prototypical objects are
often easy to identify and have good names. The nouns used in the description of the central operation
become the classes, the verbs the operations.

A description of a property registry may read:

The property registry registers documents about sales of parcels (deeds). In a deed a
seller transfers ownership of a parcel to a buyer. The deed is registered with date and
time received and an abstract is entered in the book. Persons can inquire about the
history of a parcel and who (probably) owns it.



This is clearly only the most important aspect - there are many different methods of transferring a
parcel and the determination of ownership is a much more subtler issue (Al-Taha 1992) then covered in
this simple description, but it provides a good start.

4.3. Translation to a formal design
The informal description gives major clues for the formalization. The nouns indicate which classes will
be needed and the verb indicate the operations. The nouns are: registry, sales, parcels, deed, seller,
buyer,  ownership, date and time, abstract, book, history of parcel, owner. The verbs are: register,
transfer, inquire.

This can be grouped as
• registry with operations registerDeed, inquire history of parcel, inquire present owner
• person (buyer, seller)
• deed with operations sign, timeStamp, abstract,
• parcel with inquire about owner, inquire about history
• history of parcel

This leads to the classes Regsitries, Deeds (shown above), Persons, and Parcels. The later classes
contain only operations for their display (not shown). History is a simple list of all Deeds registered for
this Parcel.

The data types are:
data Person = Person String
data ParcelID = ParcelID Int
data Parcel = Parcel ParcelID
data Deed = Deed Person Person ParcelID Time Time OID
--     seller, buyer, parcel,  signing time, registration time,  register id
type DeedRel = Rel2 Deed -- an indexed collection of Deeds
data TheBooks = TheBooks DeedRel
data Registry = Registry Time TheBooks

the Time field represents the wall clock of the registry

The implementation of the operations for the Registry and TheBooks were shown earlier.

In about 6 hours this prototype was designed and coded using a minimal data storage package - a
total of 3 pages (most of it to create readable output). Test cases were created and run to demonstrated
to the client (i.e. the domain specialist) and discussed. Feedback for correction was received quickly.

5. REFINEMENT STEPS

Several refinement steps are possible and they will lead the design in different directions. With the
tools discussed, they can be carried out independently and the resulting changes in the code are local.

5.1. Refinement of object class without interference with remainder
For example, one can refine the person into different types of persons (companies, public entities, etc.).
This creates only the more classes for specific persons and data definitions for their representation. The
interaction between the remainder of the registry is with the operations provided by the general class
and does not depend on the particular type of person. Similarly, differentiation between different types
of transfers (sales, gift, order of a court of law, inheritance etc.) does not affect other parts.

The persons were differentiated in natural persons and corporations with the code:
class NatPersons p where
        makeNatPers :: Name -> Time -> Int -> p
        birthDay :: p -> Time
        socSec :: p -> Int
class Corps p where
        makeCorp :: Name -> String -> p
        location :: p -> String

data Person = NatPerson Name Time Int |
              Corp Name String
instance Persons Person where
        name ( NatPerson n b s ) = n
        name ( Corp n s) = n
instance NatPersons Person where
        makeNatPers n b s = NatPerson n b s
        birthDay ( NatPerson p b s ) = b
        socSec ( NatPerson p b s ) = s
instance Corps Person where
        makeCorp n l = Corp n l
        location ( Corp n l) = l



The transfer of ownership was differentiated in deeds resulting from sales and court orders:
class Sales d where
        closeSale :: Person -> Person -> ParcelID  -> Time -> Money ->  d
        amount :: d ->Money

class CourtTransfer d where
        orderTransfer :: Person -> Person -> ParcelID  -> Time -> String ->  d
        court :: d -> String   -- the court which ordered
                               -- how to deal with registration time?
data Deed’ = Sale Deed Money |
            CourtTransfer Deed String

This step adds bulk to the design documents without revealing much about the application. It is wise to
include two or three different kinds from a general class to see how it interact with the rest of the design
and to have examples for further extensions later.

5.2. Refinement with Observer operations
Additional operations can be added which do not require additional domain information; these are
essentially ‘views’ in the database sense. For example, one can determine all the parcels owned by a
person by computing the difference of all the parcels she bought and all she sold (without going into
legal particulars). This does not affect the overall structure of the design but may help the application
specialist to understand the prototype and point out shortcomings of the analysis.

instance Registries TheBooks where
...

    parcelsOfOwner n (TheBooks ds) = (bought n ds) \\ (sold n ds) -- set
difference

where
        bought n ds = map parcelAffected (filterR2 buyerName   ds)
                        where buyerName  = (n ==) . buyer
        sold n ds = map parcelAffected (filterR2 sellerName   ds)
                        where sellerName  = (n ==) . seller

5.3. Refinement of the internal structure
Multiple internal structures represent possible trade-offs between storing information or recomputing it.
In the traditional form of an application, using paper documents and index card files, the physical
storage structure was important. In a perfect world, data should be stored free from redundancy and
different reports and queries produced.

In the imperfect world data includes errors and omissions which we cannot correct always and the
applications may have evolved to accommodate such errors and become resilient. In property registers
persons are represented by names (and sometimes address, birthday etc. but seldom are these available
consistently). The fiction of database normalization rules that a person can be replace in all tables with
a key to the person tuple in a particular relation, may not capture the logic of the property registry,
where there is often no method to find out, if two names spelled slightly differently, mean the same
person or not.

In property registers, indices are maintained to permit rapid access to the data, which is
chronologically registered, typically one for person names and one for parcels. Such index structures
help the designer to properly understand the application and the description given by the domain
specialist. The design can be streamlined later, if is becomes clear that the traditional data structuring is
not necessary.

For this change two new index books are added. One indexed by parcels, listing all the deeds
affecting this parcel and one indexed by person, showing all the deeds with which she acquired or sold
a parcel.

data TheBooks = TheBooks DeedRel HoldingPerson HoldingParcel
instance Registries TheBooks where
        registerDeed deed (TheBooks  ds hs ps) =   TheBooks ds1 hs2 ps1
               where ds1 = (store3 putOID deed ds)
                     hs1 = acquire (parcelAffected deed) (name (buyer deed)) hs
                     hs2 = release (parcelAffected deed) (name (seller deed)) hs1
                     ps1 = acquire (name (buyer deed)) (parcelAffected deed) ps
        ownerOfParcel p (TheBooks  ds hs ps fs) = makePerson( head (findx p ps))

To store a deed it must be entered in once in the parcel index and twice in the name index.
type HoldingRel n p  = Rel n [p]
type HoldingPerson = HoldingRel Name ParcelID



class Holdings v i s where
        acquire, release :: v -> i -> s -> s

instance Holdings ParcelID Name HoldingPerson where
        acquire p n hs = update (put p) n hs’
                           where hs’ = if  (isInx n hs) then hs else store n  hs
        release p n hs = if isInx n hs then update (remove p) n hs else hs
                       -- if a parcel is sold by an unknown, it cannot be updated

-- the list of parcels and the owners
type HoldingParcel = HoldingRel  ParcelID Name

instance Holdings Name ParcelID HoldingParcel where
        acquire p n hs = update (put p) n hs’
                            where hs’ = if  (isInx n hs) then hs else store n  hs

This refinement step leads to questions about the operation of the registry: how to proceed with the
registration of a deed when the seller does not correspond to the current owner? how to register a deed
when the parcel is not known to the registry? These questions are relevant legal questions and have to
be answered by the domain specialist; for property registration, the rules for the interpretation of the
legal history of a parcel is typically found in real estate law.

5.4. Refinement of  Data Flow
The flow of data in an organization is often crucial. The elaboration of some data for a step needs
manpower and time and cannot therefore not proceeded synchronously with other the processing steps.
Tasks which require this data must wait till it becomes available. The processing of data is not anymore
‘instantaneous’ but a process in time, which must be modeled; ‘database’ time becomes important
(Snodgrass 1992).

Computational models of an organization which do not include the flow of information and its
elaboration in time fail. In the case of the registry, customers apply for registration of deeds, sometimes
in rapid succession. Clerks abstract carefully from the complicated contract text the necessary elements
for registration and enter the essence in the registers. The effect of registration is dated back to the
application date. It is thus necessary to timeStamp documents as they enter the registry and store them
for later processing - and this must become part of the application model. It may become useful to keep
track when a deed was actually processed (database time), but the order of processing does not matter,
as always the order of registration is reestablished.

Assuming we do not maintain the indices of the previous refinement step, then the code is simply:
        registerDeed deed (TheBooks  ds hs ps fs) =

TheBooks ds hs ps (store3 (putOID) deed fs)
        processForms (TheBooks ds  fs) =  if null fs then (TheBooks ds fs)
                                        else (TheBooks ds1 fs1)
                              where deed = head fs
                                    fs1 = tail fs
                                    ds1 = (store3 putOID deed ds)

6. CONCLUSION

The design method shown here centers around the notion of ‘prototypical case’. Prototypes and the
corresponding radial categories are currently accepted as the way human form categories of the things
in the world (Lakoff 1987). Application design and programming is modeling how humans or society
understands the world (Watzlawick 1976). This is especially true for legal or administrative aspects
which are often central in GIS applications. Property registration, the case studied here, is a good
example.

In this paper some critical points of the today dominant object-oriented software engineering
strategy are revisited and compared to the human cognitive abilities. It argues that the differences make
the task of the designer of application software. This may be one of the reasons for the software crisis
(Joch 1995). The current paradigm of object-oriented programming languages was contrasted with
perspective of a designer. Class bases concepts of object-oriented, as found in modern functional
programming languages seem to serve better.

Starting the application analysis and design is a crucial step. A method respecting the importance
of prototypes for human cognition is presented. It starts with the most simple prototype, which is then
refined. The tools presented support this method well. The prototype is then refined.

Refinement steps can refine the objects or the operations of the application, can introduce new
operations or refine the inner organization of the work. Each refinement step is a few hours work and



adds a page or so to the code. It can be tested immediately to see if it captures the intended semantics.
The refinement step changed code only locally. This indicates that the approach to design and the tools
used are appropriate.

It is important to read and re-read the code as it grows and in our experience about half of the time
is spent in revisions of the code to maintain it readable. In particular, factoring out common parts of the
code is a major method to detect communality in the tasks. Its effect is not only reduction of code, but
much more important, conceptual clarity.

NOTE

The code is available Over anonymous Ftp (Ftp://www.....)
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