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ABSTRACT

We differentiate between two broad types of uncertainty. Type I
uncertainty deals with our inability to measure or predict a
characteristic or event with uncertainty, where the characteristic
or event is inherently exact. In type II uncertainty, there is a
~ situation of intrinsic ambiguity regarding the concept to
represented. The many sources of the two types of uncertainty are
listed. Methods of handling differing kinds of uncertainties
contained in collections of spatial data are suggested. Due to
recent advances and irs ability to represent and process the
vagueness of natural language concepts, fuzzy logic is identified as
major area for future research in managing uncertainty in spatial
information systems. :

INTRODUCTION
‘Quality of data and information is of great concern to designers and
users of all spatial information systems. This paper first defines
the 'correctness' of data in a formal way and then attempts to
classify different types of uncertainty and indicates methods to
deal with them. It is felt that the methodical discussion of
terminology may be useful for the current discussion of standards
For Geographic Information Systems (Moellering, 1982).

Data accuracy is thought of as the accordance between 'reality' and
the information stored in a spatial database using a fixed
interpretation (mapping). Inexact data may stem from inaccurate
measurements or from differing interpretation of the same data.
This leads to the identification of two broad types of uncertainty’
commonly associated with spatial information systems. The first
type of uncertainty is related to our inability to measure or
predict a characteristic or event with uncertainty, where the
characteristic or event is inherently exact. The second type of -~
uncertainty is derived from the intrinsic ambiguity regarding the
concept te represented. It is hoped, that from this presentation

a better understanding of tha nature of uncertainty will result and
lead to development of methods to handle some of the manifest
problems.



FUNDAMENTAL HOMOMORPHISM OF INFORMATION SYSTEMS

Data is collected and placed in a database so that that human users
can find answers to certain types of questions they need to fullfill
their functions in an organisation. It is assumed, that using the
database to find the necessary information is simpler, faster and
less expensive than if every user has to collect the information
directly from reality. In doing so the user relies on the implicit
assumption that the answers they retrieve from the database are
essentially the same they would find, if they wen out and collected
the data themselves.
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In order to further formalize this notion, we use the mathematical
concept ‘of a homemorphism. Given two sets of objects, original and
model, and for each operations on the original objects or model
objects. A homomorphism is then a mapping between original and
model, such that the result of operations on the original object
correspond to the result of performing the corresponding operations
on the corresponding model object and vice-a-versa. For an
information system (ie. a model of reality) this is to says that
information received from the information system (ie. a model
operation on model objects) corresponds to information gathered from
corresponding operations en reality (Frank, 1982).

SPATIAL INFORMATION SYSTEMS

We use the term spatial information system (SIS) to include all
sorts of information systems that contain and process data with
respect to location in space, especially over the surface of the
earth (Frank, 1980). A spatial information system may include
databases commonly described as a geographic information system,
land information system, geographic expert systems, etc. We assume
that the following discussion applies to all such systems insofar as
they store and treat data with respect tg location in 'reality’'.
Some of the concepts are even more general and may be applied to
other, non-spatial information systems. Each information element in
a spatial information system consists of two pieces, namely the ‘
description of the nonspatial properties of the object and its
location and extension.

In the flow of data-to-information .common to spatial infermation
systems the measurement process and the subjective .
assessment/classification process are attempts to gather data
relevant to the purpose of the information system. That is to say
‘that data gathered from reality is filtered as a function of the -
task domain of the SIS. Furthermore, since SIS's tend to be more
general purpose than most information systems, definition of the
task domain is itself often vague.

ON THE NATURE OF UNCERTAINTY

The distinction between exact concepts and inexact concepts has
important implications in how we view the uncertainty contained in a
collection of spatial data. Figure 1 illustrates how the two
fundamental elements of information in an SIS may combine to define
four possible states of uncertainty, We find areas that are clearly
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determined, precisely measured, and properties of which are measured
with exactness. On the other hand, we have areas, that are very
imprecisely determined, eg. the Lowlands of South Carolina.

Although we may have at our disposal the means to exactly define and
measure the concept of population as an attribute of a spatial
entity, because of our inability to exactly define the location and
extension. of the Lowlands of South Carolina we may not be certain

about the total population reported to be residing in

the lowlands.

Attribute of Spatial Entity

e e - gy a e Inexact-‘—-v-—-m-'-
Exact No Uncertainty Uncertain Attribute
Locational
 Definition
of Spatial
Entity Inexact Uncertain Location Uncertain Attribute

Uncertain Location

Figure 1. Combinations of Attribute and Locatianal Exactness/
Inexactness Possible in a Spatial Information System

To elaborate, lets consider two spatial phenomena. First, a
cadastral land information system where property boundaries define
the boundary of a 'crisp' spatial set. That is, a portion of the
earth surface can either belong to 'property A' or 'property B' but
not both. However, in a landuse/landcover data base there are

. several situations where ‘erisp' boundaries are not in reality

detectable. Using classical Boolean logic, Robinaove (

1981) provides

a review of the difficulty in defining 'exact' bdundaries. In

effect, he arpues for modifying the existing system of

representation so that vague boundaries, such as ecotones, are be
more accurately represented as the vague, or fuzzy, spatial
phenomena that they are. In the former it is a question of hew

accurate an 'exact' concept is measured, while in the
how to 'exactly' represent an intrinsically 'inexact'

Classes of Uncertainty

We can identify with the procedures of data gathering
imperfections. The user must live with such differenc
with the resulting uncertainty. In the traditional lo
that underlies the current genre of SIS's, if perfect
attained there would be :

1. No impr=cision in determining the location or exten
certain phenomenen,

2. No error in measuring the essential characteristics
the phenomenocn measured.

3. No uncertainty regarding the relative location or 1
phenomenon.

latter it is
concept.
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4. No inaccuracy in the assessment of the phenomenon with respect to
the interpretation of concepts.

3. No differences between subjects in interpreting the concepts _
used.

6. No changes in reality that are not’ immediately reflected in the
data stored.

‘Normally, perfect accuracy can not be achieved for the following
- reasons: L . .

1. Objects to be measured are often only vaguely ﬁefined.

2, Measurements are inherently imprecise (but with additional
measurement expensed, nearly arbitrarily levels of precisions can be
achieved).

3. In measuring, gross errors not of a statistical nature may slip .
in. ) '

4. Schemes for classification, or"labelling', are always imprecise
and lead to different attributions depending on subjective
judgements, - : : .

5. Attributes encoded on a ordinal scale (e.g. dense, medium,
- sparse), function largely as approximate qualifiers of labels.
6. The subjective and context-sensitive interpretation of 'facts'
influences the encoding of facts and affects data during the use of
a data collection. '

7. Large differences between the intended use of a data collection
and the actual use may lead to subtantial differences in the
definition of terms and categories, thus leading to semantic error.

8. Facts as represented in the data collection usually represent a
past state of reality,

We differentiate between two types of uncertainty. Type I
uncertainty deals with our inability to measure or predict a ,
characteristic or event with uncertainty, where the characteristic
or event is inherently exact. Error propagation resulting from the
distribution of measurement/observation error is an example of Type
I uncertainty. The mapping here is from an exact characteristic to
an exact representation of an exact concept. Another kind of
measuring error may give rise to Type I uncertainty. In the course
of a measuring process gross errors not of a statistical nature may
slip in and be encoded im the collection of spatial data. The use
of certain measuring and computational methods (Baarda, 1973) may
limit the possible effects of undetected gross errors on the results
(reliability). The underlying assumption for these two aspects of
uncertainty in measurememts is that the phenomenon being measured
does in fact exist without imprecision, and that the sources of our
uncertainty are found in the measurement process.

In type II uncertainty, there is a situation of intrinsic ambiguity
regarding the concept to represented. The use of "prototypes' , ie.
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examples of 'pure' cases, is a common tool in an attempt to minimize
uncertainty. What is interesting about many examples of this type
of uncertainty is their relation to natural language concepts. It
is common for spatial data to be collected in a database format for
purposes of representing the type and distribution of land use or
land cover over a portion of the earth's surface. In addition, the
use of Landsat data to gather such representations provides an
excellent example of how we move from 'objective' information to
'subjective' labels.

To illustrate that-the problems mentioned above are real, consider

ing the labeling of image classes. Arondff's
(1984) method like others begins from the proposition that a
'location' on a map must belong to one class. That assumption is
couched in the proposition that 'map error' is a yes or no matter.
In his logic framework there is no such thing as a_degree of error.
The existence of ambiguity is virtually ignored, owever, the
existefce of a single ambiguous point illustrates that, 'pure’
classes are a construct that maintained for the sake of conceptual
convenience and tradition. It is also significant that the basis
for 'verification' is the 'interpretation of data by a human analyst.
Thus, classification error, in this case, is itself subject to the
imprecision with which humans manipulate linguistic concepts such as
'forest', 'residential', etc. '

Like many other landuse/landcover studies objective data from
Landsat is subjected to unsupervised classifications to obtain image
classes, then the results are subjectively assigned landcover, or
resource, class labels by a human interpreter. The interpreter
typically uses aerial photography to accomplish this task (e.g. see
Pettinger, 1983). Thus, this is an inherently subjective task in
which the interpreter is attempting .to match objectively derived
image classes with linguistic concepts that are represented by
linguistic prototypes in the mind of the interpreter. It is not

. surprising then that there is variation in interpretation of the

very same data, ie imagery, among interpreters. This particularly
bothersome when the result is stored in a database because at this
point an inherently imprecise concept is stored as an exact
representation. Furthermore, a particularly questionable assumption.
of this procedure is that somehow the interpretation of the ground
data is the benchmark against which to measure accuracy.

To illustrate the point that a concept such as a landcover class is
inherently vague, let us consider the problem-described by Aronoff
(1984) when developing a data base to be used to map areas of .
Douglas Fir and areas of White Fir. In Aronoff's (1984) study it is
reported that a full third of all pixels verified as Douglas Fir
were classified as White Fir ! Surely there is a reason for this
very large discrepancy between objective methods and the subjective
ones used Lo 'verify' the results of objective measurements. As an
aside it is interesting as well that a full 41 those pixels
verified 'as White Fir were classified as Douglas Fir by objective
means. Further contemplation of this situation would lead us to
question the 'purity' of the respective fir stands. For example,
exactly, not approximately, hut exactly when does an area become
White Fir rather than Douglas Fir 7 When does this accur 7 What is
it classified if in the pixel there are 40% Dohglas Fir, 40% White
Fir, 10%Z Pondervsa Pine, and 10% Red Fir. The natural ambiguity of



vegetational communities, as defined by human interpretation is one
of the issues that led Robinove (1981) to suggest that we begin
mapping landuse without 'crisp' boundaries. Let us carry this
problem further. When moving from one vegetational community to
another, there is usually not a clear boundary. This has been known
for centuries, yet we still map landcover as if boundary between
forest and grassland can be exactly determined as a 'crisp'

boundary.

Treatment of Uncertainty

i
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~Statistical Variations. Measurements with their associated-
statistical errors can be adjusted using statistical theory.
Propagation of errors when combining several measurement values to
compute a new value is straightforward, according to the law of
error propagation:

' 1
m’ (2 (£.4) (m.i)?) (1)

where m.i is the statistical error on term i and £.i is the
influence of this term, ie. the total differential of the function
for this term at an approximate location. It is obvious from this

formula, that error propagation increases the error, never decreases
T it :

Ambiguity. Uncertainty arising from ambiguity or subjectivity of
the encoding method can be treated with Fuzzy Logic. .In this formal
system, exact information is viewed as the special case where-
inexactness has been reduced to zero. Buckles and Petry (1982,
1983) have presented a fuzzy representation of data for relational
data bases that satisfies two of problems most often encountered in

~collections of land use data. The need for a single land use type

to associated with a tuple has in the past been due to restrictions
placed on’data base management by the underlying logic. Using a
fuzzy representation of data for relational databases (Buckles and
Petry, 1982), Robinson and Strahler (1984) have shown how one can
represent seemingly conflicting landuse/landcover classifications in
a fuzzy data base. Thus, preserving explicitly the uncertainty
inherent in landuse/landecover labeling,

Repeated interactions with a spatial data base often results when a
user searches for an accurate representation of an approximate
spatial concept using a system that can not represent, much less
retrieve, an approximate concept. The user ends up being uncertain
about the how well the retrieved data represents the approximate
concept, this leads to further interaction with the information
system in an attempt to lower that level of uncertainty below some
level and in the end may make decisions based on a2 low confidence in
retrieved information. Many of these additional steps would be
eliminated if the system were capable of representing and retrieving
such approximate information. Robinson and Strahler (1984) have
shown how fuzzy representations of data can be incorporated into a
landuse/landcover data base management system. Using the results
of the work by Buckles and Petry (1982), they show how fuzzy logic
can be used to retrieve landcover data stored as linguistic
variables.



Another rather subjective c¢lass of data found in collections of
spatial data are attributes encoded on a ordinal scale, for example
— low, medium, high. Terms such as high, low, medium can be treated
as linguistic hedges within the context of the above discussion of
linguistic information such as landuse/landcover types. Retrieval
of land information in the form of ordinal labels leads to a large
number of interative operations when an exact system is used to
represent and retrieve such linguistic hedges.

UNCERTAINTY AND THE EXPLOITATION OF SPATIAL INFORMATION SYSTEMS _

T T e e - Tow - x - LI = Tz
Spatial 'facts' can be represented by one of four fundamental types
of data - ratio, interval, ordinal, and nominal (see Figure 2).
However, it has been noted with interest that "...the overwhelming
majority of GIS applications concern some type of discrete
phenomena. Topographic feature codes, place names, geocodes, parcel
identifiers, land use types, all fall into the same broad group"
(Chrisman, 1984: p. 309). The data Chrisman (1984) referred to is
in the mzin nominal data. On the other hand, data such as
elevation, spectral, and planimetric measurements are data of the
interval/ratio type. Often the nominal data entered into a GIS
‘derived from interval/ratio data. However, a common practice is then
to consider only the nominal data during the retrieval process. If
interval/ratio data is stored then the query is structured in such a
manner that in concept it is a labeling, or classification, process
for retrieving 'labelled' data. This appears to be consistent with
recent research in forecasting and man-machine studies suggest that
human information processing is geared towards the processing of
'qualitative' information rather than 'quantitative' information
(Zimmer, 1984). )

Figure 2 depicts the relation we suggest exists between the four
fundamental data types, objective infermation, and meaning. Nominal
and ordinal data are generally characteristic of the data type
desired as output products by the average 'user' of geographic
information systems. These are generally expressed in linguistic
terms related to either attributes or relations. For example a
nominal attribute might be 'residential', while & relation might be |
'places Near Bangor, ME'. These terms are meaning-laden, that is

low -
informaticn
subjective content meaning

Nominal Data (linguistic termj
Ordinal Data (linguistic hedge)
Interval Data (measurements on -

Ratio Data (base variable )
objective high low
) information meaning
content

Figure 2. Relationship between information content, meaning, and
data types.



to say that they may vary upon accumulated experience of the user
and context of query. Ordinal data generally act as linguistic
hedges used to place qualifications upon nominal data, often in an
attempt to provide a sense of variation in the nominal concept
.arising out of a measurement process utilizing interval and/or ratio
data. Thus, nominal/ordinal data is more meaning-laden to human
users than is numerical data of the 1nterval/rat10 kind, while
' 1nterval/rat10 data typlcally contalns more 'objective' information.

The above discussion is somewhat related to our previous critique of

T e ps shHowingTerisptboundaries  wheretonlyfuzzy "areas of “slow e
transition exist. It is evident, that maps as products are very
helpful sources of information because they present data in a
grossly classified way and are therefore easy to use provided the
mapmakers and the mapusers concepts agree. One of the main .
advantages.of a map over a aerial photograph, to be classified is
its information representation. The map produces less cognitive load
on a user, therefore the user is more likely to make correct
decisions under pressure (or would you like to use aerial photographs
to navigate your automobile around New York City ?). This argument
is not true if maps are considered as data collection intended for
multiple use. We suggest that the representation of the data should

" be as near to the source as reasonable feasible and the
classification to produce the desired nominal or ordinal data for
the user should only be performed when output is produced.

Another subjective source of uncertainty was suggested by Chevalller
(1983). The subjective interpretation of facts depending on the
background and the goal of the task does not only influence the
encoding of facts, but also affects data during the use of a data
collection. If multipurpose data collections are built, differences
between interpretations during data collection and use of the data
must be taken inte account.

Large differences between the intended use of a data collection and
the actual use may lead to subtantial differences in the definition
of terms and categories (semantic error). Discrepancies of this
type should not be considered errors in encoding, but are
systematic, regular differences in interpretation. Little is known-
about how such differences can be detected and taken into account.
However, whenever they occur the effect may be considerable,
especially in influencing decisionmaking process. Thus, much

may be learned if the potential of natural language systems capable
of representing approximate concepts can be exploited to study
semantic error.

CONCLUDING DISCUSSION

Uncertainty in collections of spatial data can arise from a myriad
of processes. Neverthless there are two fundamental types of
uncertainty present im most collections of spatial data. Type I
uncertainty is related to the error associated with the mapping from
reality to the information system model of an exact concept.
Historically, this is the only type of uncertainty that has been
formally acknowledged as present in collections of spatial data. We
consider a second type of uncertainty. Type II uncertainty results
from a mapping from reality to the information system model of an



inexact concept.

It is evident that there is little activity in devising methods of
explicitly incorporating uncertainty in the management and retrieval
of information in"SIS's. The most common prescription it te attach
lineage and measures of Type I uncertainty to maps or digital data
files, leaving the Processing of this information regarding
uncertainty to the individual human user. Furthermore, Type II
uncertainty has received little, if any, attention. :

~ __-Evident from our review of different kinds of uncertainty is that .

] the role of natural language (NL) concepts has been virtually
ignored. This is a serious omission since (1) much 'data' in SIS's
is of a linguistic nature, (2) linguistic rules are the basis for
defining many criteria for data collection, (3) users often demand
Yinguistic terms as the output from a SIS, (4) quality of
information, including lineage, is most often described using
linguistic terms derived from human judgement. Thus, one of the
implications of our review is that the role of natural language °
concepts in SIS's should receive more rigorous, systematic '
attention. Another is that there is a clear contribution to be made
in this area by man-machine studies. Consideration of both NL
concepts and methods of explicitly incorporating uncertainty in the
processing data in SIS's sugpests that fuzzy logic may be of some
considerable utility in the domain of SIS's.,

Working within the framework of fuzzy data representation and -
management allows one to explicitly represent uncertainty in such a
manner that it is able to become an integral part of spatial
information processing functions. Linguistic variables are able to
be represented and retrieved in a manner most consistent with their
ambiguous nature. It is also clear that this framework has the
potential to store differing characterizations of linguistic data on
a user-specific basis, thus allowing the conduct of systematic
research on variations in-meaning according te user, context, and
task. ;

Finally, we hope that this short overview asks more questions than
it answers, but provides a flexible framework for additional,
indepth investigations. 1In particular, we feel that present spatial
data processing systems should be revisited in light of the two
types of uncertainty identified in this paper, ’
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