— - Bk,
Fewef

A FORMALIZATION OF METAPHORS AND IMAGE-SCHEMAS
IN USER INTERFACES

WERNER KUHN, ANDREW U. FRANK

National Center for Geographic Information and Analysis
and Department of Surveying Engineering

University of Maine

Orano, ME 04469 (USA)

Bitnet: Kuhn@mecanl, Frank@mecanl

ABSTRACT. Sound engineering approaches to user interface design require the formalization of key
interaction concepts, one of them being metaphor, Work on interface metaphors has, however, been largely
non-formal so far. The few existing formal theories of metaphor have been developed in the context of
natural language understanding, learning, or reasoning. We propose to formalize interface metaphors by
algebraic specifications. This approach provides a comprehensive formalization for the essential aspects of
metaphorical user interfaces. Specifically, metaphor domains are being formalized by algebras,
metaphorical mappings by morphisms, and image-schemas by categories. The paper explains these
concepis and the approach, using examples of spatial and spatializing metaphors.

1. Introduction

Metaphor pervades communication. Metaphorical thought, action, and language are not only
essential to interpersonal communication [Lakoff and Johnson 1980], but to human-computer
communication as well. Since communication with computers is an outcome of design, building
effective user interfaces requires a formal theory of metaphor [Carroll, Mack, and Kellogg 1988].

This paper presents a methodological foundation for such a theory. It proposes a formalization
of interface metaphors based on abstract algebra [MacLane and Birkhoff 1967]. The algebraic
approach allows designers to specify not only metaphor domains, but metaphorical mappings and
image-schemas as well. The paper describes the basic elements of the approach.

After explaining the underlying understanding of interface metaphors in Section 2, important
related work is discussed in Section 3. The formalization method is presented with a running
example in Section 4 and applied to spatial zcoming operations in Section 5. The Iast section
contains conclusions and suggestions for future work.

2. Interface Metaphors and Image-Schemas

Systems with user interfaces based on the DESKTOP metaphor and its variants [Apple Computer
1987, Smith et al. 1982] have established metaphor as a powerful means to control complexity in
human-computer interaction [Carroll, Mack, and Kellogg 1988]. The structure and role of interface
metaphors are, however, still understood in many different ways [Blumenthal 1990, Carroll,
Mack, and Kellogg 1988, Erickson 1990a, Smith et al. 1982, Wozny 1989).

The understanding of interface metaphors underlying our formalization derives from recent
work in cognitive linguistics [Johnson 1987b, Lakoff 1987, Lakoff and Johnson 1980]. Johnson
[1987b, p. XIV] has characterized metaphor as

“...a pervasive mode of understanding by which we project patterns from one domain

of experience in order to structure another domain of a different kind."

1 To appear in: Mark, D. M. and A. U. Frank (Eds.).
Cognitive and Linguistic Aspects of Geographic
Space. NATO ASI Series. Kluwer Acsdemic Press.

The two domains are commonly called the source and target domains of a metaphor and the
metaphorical projection is a mapping from source to target.

Interface metaphors, in this projective view, go beyond explaining unfamiliar domains to
novices. They determine how labor is distributed between a user and a system, what concepts a
user has to deal with, and in what terms user and system communicate. In short, they structure
application domains and organize tasks.

It is not clear how much metaphor-independent structure there can be in a target domain, A
recent case study of metaphors in interface design [Erickson 1990a] indicates that the structure
available to the designer before a metaphor is consciously chosen is either quite abstract or already
metaphorical. In Erickson's example of a DESKTOP metaphor extension, that structure consists of
links between documents. Interestingly, the link structure is a so-called image-schema. Image-
schemas are image-like reasoning pattems, consisting of a small number of parts and relations,
made meaningful by sensori-motor experience [Johnson 1987b, Lakoff and Johnson 19801.
Examples are the CONTAINER, SURFACE, LINK, PATH, NEAR-FAR, PART-WHOLE, and CENTER-
PERTPHERY schemas.

Image-schemas may in fact be the kind of structure which is preserved by interface metaphors.
This assumption agrees with Lakoff's invariance hypothesis [Lakoff 1990] which claims that
image-schemas remain invariant under metaphorical mappings. It also generalizes to user interfaces
of any kind the suggestion that image-schemas play a fundamental role in interfaces of Geographic
Information Systems [Mark 1989]. The design of interfaces for intemnational use [Nielsen 1990] is
one area where image-schemas, due to their presumed culture-independence, are likely to be of
particular importance,

3. Existing Metaphor Formalizations

While there is a vast literature on metaphor and analogy (e.g., [Johnson 1981, Lakoff and Johnson
1980, Mac Cormac 1985, Ortony 1979, Vosniadou and Ortony 19897), formal approaches are rare
(see [Hall 1989] for a survey and [Indurkhya 1989, Martin 1990] for recent treatmenis). Most
existing formalizations employ traditional knowledge representation formalisms, such as semantic
networks, to specify metaphorical domains, but not mappings or image-schemas. Furthermore, the
formalizations have been developed for natural Ianguage understanding, machine learning or
automated reasoning, while discussions of metaphor in human-computer interaction have been
largely non-formal so far.

The best known formal theory of metaphor and analogy is Gentner’s structure mapping theory
[Gentmer 1983, 19891. It describes analogies as mappings between source and target domains,
each represented by semantic networks. It does not formalize the mappings themselves, however,
and rests on a syntactical distinction of different kinds of relations. While Gentner's theory deals
with structural aspects, it neglects the role of tasks in metaphor use [Carroll, Mack, and Kellogg
1588].

Our formalization addresses these problems by formalizing mappings as morphisms and
expressing tasks and actions through algebraic operators and their effects. Describing domains
algebraically rather than relationally may conly be a syntactic difference; it does, however, allow for
relating metaphors to tasks. For example, the informal task description of parts of the DESKTOP
metaphor given in [Carroll, Mack, and Kellogg 1988] can directly be expressed by an algebraic
formalism (see next section),

In the terminology of Carroll et al., our approach is primarily structural, addressing the

tepresentation of metaphor domains and mappings, but incorporates the pragmatic aspects of actual
user tasks. It does not deal with operational analyses of the effects of interface metaphors on
leaming or using a system.

Most theories of metaphor stress the importance of mapping source structure into the target
domain. Surprisingly, the mathematical devices for describing structure mappings, i.e.,
morphisms, are rarely applied. An exception is a forthcoming treatment [Indurkhya 1989] which
describes cognitive models by algebras and metaphorical projections by morphisms.

Our independently developed algebraic approach differs from Indurkhya's theory mainty by:

» describing metaphorical domains as elements of algebra classes, thereby dealing with the relation
of metaphors to image-schemas;

» specifically addressing interface metaphors;

« using the established software design technique of algebraic specifications.

Existing metaphor formalizations provide little support for interface designers because they are

either purely theoretical or rely on specialized sofiware in prototype form. The advantage of using

the technique of algebraic specifications is that it allows designers to apply the method

immediately, even with the possibility of using computer supported design tools such as Larch

{Guttag, Homing, and Wing 1985] or CLLEAR [Burstall and Goguen 1981].

4. An Algebraic Approach

4,1, ALGEBRAIC SPECIFICATIONS

Algebraic specifications describe objects in terms of operations. The associated theory has been

developed and used for specifying abstract data types [Goguen, Thatcher, and Wagner 1978,

Guttag and Homing 1978}; practical introductions can be found in [Ehrig and Mahr 1985, Liskov

and Guttag 1986, Woodcock and Loomes 19851,

An algebraic specification consists of three parts:

+ a list of sorts, naming the objects involved;

= alist of aperators (Ops), giving the sorts of arguments and results;

» alist of axioms (Eqgs), defining equivalences for different sequences of operations.

Sorts and operators together are called the signature of an algebraic specification. Algebras are

interpretations of signatures, assigning a set to each sort and an operation on these sets to each

operator. An algebraic specification, i.e., sorts, operators, and axioms together, describes a

category, i.e. the class of algebras satisfying the specification [Ehrich, Gogolla, and Lipeck 1989].
The technique of algebraic specifications is best demonstrated by applying it immediately to the

formalization of source and target domains from Apple's composite DESKTOP metaphor [Apple

Computer 1987].

4.2. SOURCE AND TARGET DOMAINS
AAosolaau

The following is an algebrai/c” specification of physical office desktops. It lists three sorts:
Desktops, Folders, and-Bools (truth values). Desktops are the sort actually being specified,
Folders will be specified below, and Bools are assumed to have been specified previously. There
are operators to create a new desktop, put a folder on a desktop, get a folder from a desktop, and
check whether a folder is on a desktop. The meaning of these operators is defined by the equations
and does not rely on an interpretation of their names. The equations make free use of universally

quantified sort variables (dt for desktops, f for folders, etc.).

Desktop
Sarts Desktop, Folder, Bool

Ops

Eqs

new: — Desktop

put: Deskiop x Folder — Desktop

get: Desklop x Folder — Desktop

on: Desklop x Folder — Bool

on{new,f) = false

on{put{dt,f1),f2) = if f1=12 then true else on{dt,f2)
get(put{dt,f1),f2} = if f1=f2 then di else put{get{d},i2),f1}

Now, the technique is applied to specify the corresponding target domain in Apple’s DESKTOP
metaphor. The sort and variable names for the electronic analogues of office objects are prefixed
by "EI" and "el", respectively.

ElDesktop
Sorts ElDesktop, ElFclder, Beol
Ops new: — ElDesktop

Eqgs

put: ElDesktop x ElFolder — ElDesktop

get: ElDesktop x ElFolder — ElDesktop

on. ElDesktop x ElFolder — Bool

on(new,elf) = false

on{put(eldt,elf1),eli2) = It eifi=elf2 then true else on(eldt,eli2}

get(put{eldt,elfi),eli2) = if elfi=elf2 then eldt else
put{get(eldt,elf2),elf1) :

Obviously, these two specifications are identical up to sort and variable names. In practice, this
means that Macintosh desktops behave like real desktops with respect to the operations defined.
For the sake of simplicity, only the most salient features have been specified. By including
additional operators, dissimilarities could be shown, such as the fact that things can fall from
physical, but not from electronic desktops. In an actual interface design process, the designer has
to decide which features of a source domain are to be considered satient and which are not.

F
A

Next, clipboards are specified. First the physical variety, with the assumption that clips are
added to and removed from the top. Note that this specification resembles that of desktops. We
will come back to this parallel when discussing image-schemas in 4.4.

Clipboard
Soris Board, Clip, Bool
Ops new: — Board
put: Board x Clip — Board
get: Board — Board
on: Board x Clip — Boal
Eqs on(new,c) = false
on{put{b,c1},c2) = if c1=c2 then true eise on{b,c2)
get(put{b,c)) = b

Secondly, the electronic variety of clipboards, as provided by the Macintosh to move data between
documents, is specified:

ElClipboard
Sorts EiBoard, E{Clip, Bool
Ops new: — ElBoard
put: ElBoard x EIClip — ElBoard
get: ElBoard — ElBoard
on: ElBoard x EIClip — Bool
Eqs on{new,elc) = false
on{put{elb,elci),elc2) = if elci=elc2 then true else false

get(put{elb,elc)) = putielb.slc)

The axioms show two differences between physical and electronic clipboards:

- a clip remains on the Macintosh clipboard only until the next clip is put on - then it is lost;

« getting back a clip does not change the electronic clipboard and the same clip can be retrieved
multiple times.

While the first mismatch may be harmful, the second is rather an advantage. The point is,

however, that the specification reveals these mismatches. In an actual interface design process, itis

the designer's task to decide about their desirability [Halasz and Moran 1981, Johnson 1987a].

Folders are another part of the DESKTOP metaphor. Here is a specification of the salient features of

physical office folders:

Folder

Sorts Folder, Document, Name, Bool

Ops new: — Folder
{abel: Folder x Name —» Folder
insert: Folder x Document — Folder
remove: Folder x Document —» Folder
empty: Folder — Folder
in: Folder x Document — Bool

Eqs remove(label({f,n},d) = label{remove(f,d),n)

remove(insert{f,d1),d2) = If d1=d2 then f else

insart{remove({f,d2),d1)

amply(new) = new

empty(label{f,n)) = label{empty(f),n)
empty(insert{f,d)) = empty(f)

in{new,d) = false

in{labal{f,n),d} = in{f,d)

in{insert(f,d1),d2) = If d1=d2 then true else in(f,d2)

The following specification of electronic folders is very similar. The only difference is that the
empty operator is missing because the Macintosh does not offer such an operation. (It does, of
course, allow users to select all documents in a folder and remove them or to discard an entire
folder, but these are different operations.)

ElFolder
Sorts ElFolder, EIDocument, Name, Bool
Ops new: — ElFolder
label: ElFolder x Name — ElFolder
inserl: ElFolder x ElDocument -» ElFolder
remove: ElFolder x ElDocument — ElFolder
in: ElFolder x ElDocument — Bool
Egs remove(label(elf,n),eld) = label{remove(ellf,eld),n)

remove(insert{elf,eld1),eld2) = If eldi=eld2 then ell else

insert{remove(elf,eld2),eld1)

in(new,eld} = false
in{label{elf,n),eld) = in(elf,eld)
in{inseri(elf,eld1}),eld2) = If eld1=eld2 then true else in{eif eld2)

The final pair of DESKTOP metaphor domains to be specified here is that of trash cans. Some
operators (e.g., the possibility to discard folders) have been omitted for brevity:

Trash Can
Sorts Trash, Document, Bool
Ops new: — Trash

discard: Trash x Document — Trash
remove: Trash x Document — Trash
empty: Trash — Trash
in: Trash x Document — Boal
Egqs remove(discard(t,d1),d2} = If d1=d2 then telse
discard(remove(t,d2},d1}
empty(new) = new
ampty(discard(t,d)) = new
in{new,d) = false
in(discard(t,d1},d2) = if d1=d2 then frue else in{t,d2)

The specification of the target domain is similar to that of the source domain; however, it also
reveals 2 mismatch:

ElTrash
Sorts ElTrash, EIDoc, Bool
Ops new: — ElTrash

discard: ElTrash x EIDoc — ElTrash

removae: ElTrash x EIDoc — ElTrash

empty: ElTrash —» ElTrash

in: ElTrash x ElDoc — Bool

Eqs remove(discard{et,ed1),ed2) = if ed1=ed2 then et else

discard(remove(et,ed2),ed1)

empty(new) = new

empty(discard{et,ed)} = new

in(new,ad} = false

in{discard{et,ed1),ed2) = true or false

The difference in the last equation captures the fact that a Macintosh user does not have complete
control over the Trash can contents. A document can be retrieved immediately after discarding it,
but may be lost after another operation, such as opening a document or inserting a disk.

Each specification of a source or target domain given in this section describes a class of
algebras. The designer’s conceptual model of a domain is seen as an algebra in this class, i.e., an
interpretation of the corresponding specification which assigns symbols to the sorts and operators
such that the axioms hold. An important challenge in implementing an interface metaphor is to
make sure that the wser’s conceptual model belongs to the same class.

4.3. METAPHOR MAPPINGS

Metaphors are mappings from source to target domains. When the domains are specified
algebraically, it is natural to use morphisms, which are mappings between algebras, to define
metaphorical mappings.

There are different kinds of morphisms, reflecting different degrees of similarities between
algebras. The weakest kind of similarity is a signature-morphism which is a correspondence
between the signatures defining two algebras [Ehrich, Gogolla, and Lipeck 1989]. A stronger kind
is a homomorphism between two algebras A and B, It is a family of mappings from the sets of A
to those of B, such that it does not matter whether an operator is first applied in A and the result
mapped to B, or the arguments are first mapped to B and the corresponding operator in B is
applied. Thus, homomorphisms are structure-preserving mappings. A one-to-one homomorphism
is called an isomorphism.

If the source and target domain are both specified, as in the above examples, the morphism is
determined. It indicates the degree of similarity between source and target for the specified (and, in
this case, implemented) interface metaphors:

« The mapping between office and electronic desktops is an isomorphism, since the effects of the
specified operators on office desktops correspond to the effects of the analogous operators on
electronic desktops, and vice versa.

» The mapping from physical to electronic clipboards is a signature-morphism. The signatures are
the same, but the effects of some of the operators are different. For example, the signatures of
the physical put and get operators map to those of the electronic ones, but the effects of applying
get after put are different, as can be seen from the third axioms in the two specifications.

» The folder specifications exemplify another isomorphism, but only with respect to the new,
label, insert, remove, and in operators; the empty operator has no equivalent in the target
domain.

« The trash can specifications are linked by another signature-morphism. The signatures
correspond, but the result of the in operator after discarding a document can be different for the
two domains.

In the normal course of an interface design, the target domains are not predetermined. Source

domains are specified first and appropriate morphisms are chosen to achieve the intended matches.

These morphisms then determine parts of the target domain by projecting the desired elements of

the source structure.

44, IMAGE-SCHEMAS

The algebraic specifications of source and target domains from the DESKTOP metaphor exhibit two
image-schemas: Desktops and clipboards are instantiations of the SURFACE schema; folders and
trash cans represent the CONTAINER schema. The SURFACE schema embodies the logic of a surface
on which items can be put. The CONTAINER schema consists of an interior, an exterior, and a
boundary between them, so that items can be in a container or outside of it [Lakoff 1987].

Thus, not only are image-schematic structures believed to be invariant in metaphorical
mappings, they can also be common to different parts of a composite metaphor. Composite
metaphors whose domains are related to common image-schemas are more likely to be perceived
as coherent than those where this is not the case. It can be argued [Erickson 1990b] that the
success of the Macintosh DESKTOQP metaphor is in part due to a largely consistent use of the

CONTAINER image-schema.

If an image-schema is invariant in a metaphorical mapping, it must be a common part of the
source and target domains, It is therefore possible to obtain the algebraic specifications of these
domains by extending a common core specification which formalizes an image-schema. Such a
process of adding operators to algebraic specifications is called an enrichment [Ehrich, Gogolla,
and Lipeck 1989]. Thus, a formal version of Lakoff's invariance hypothesis is:

For any metaphor, there is an algebraic specification which describes an image-schema

or a combination of image-schemas and which can be enriched toward specifications of

the source and target domains.

Since an algebraic specification describes a class of algebras or category, image-schemas are
formalized as categories. These categories contain the algebras of the source and target domains as
well as the morphisms between them.

The following is an algebraic specification of the SURFACE image-schema. It can easily be
enriched toward the above specifications of the physical and electronic desktops by renaming the
sorts (Surface — Deskiop, Item — Folder, etc.) and adding the get operator with its axiom. The
same can be said for the physical, but not for the electronic clipboard: The fact that a previously
clipped item is lost when a new item is put on is not only a deviation from the behavior of physical
clipboards, but also from the logic of the SURFACE schema.

Surface
Soris Surface, ltem, Bool
Ops new: — Surface
put: Surface x ltem — Surface
on: Surface x [tem — Beol
Eqs on(new,i) = false
on(put(s,i1),i2) = if i1=i2 then true else on(s,i2)

The other image-schema dominating the DESKTOP metaphor is the CONTAINER. Its specification
happens to be isomorphic to that of the SURFACE schema. This correspondence may, in fact,
contribute to the coherence of the DESKTOP metaphor. From a cognitive perspective, however, two
different kinds of experiences are described. The CONTAINER schema can be specified as follows
(see also [Guttag, Homning, and Wing 19857):

Container ‘
Sorts Container, Item, Bool
Ops new: - Container
insert: Container x Item — Container
in: Container x ltem — Bool
Eqs in{new,) = false
in{insert(c,i1),i2) = if i1=i2 then true else in{c,i2)

This specification can again be enriched toward the previously given specifications of physical and
electronic folders as well as physical trash cans. Thus, all these objects behave the way one
intuitively expects from containers. No enrichment is possible, however, for electronic trash cans:

The second axiom of the CONTAINER specificaticn is violated by those cases where a discarded
document is not in the trash without having been removed. Given how deeply rooted image-
schemas are in human cognition, such mismatches with image-schemas are more likely to be
harmful than source-target differences which are above the image-schematic level.

5. A Spatial Application

5.1. SPATIALIZED AND SPATIAL DOMAINS

The DESKTOP metaphor affords a spatialization for an abstract, non-spatial application domain: The
source concepts of the physical office impose a spatial structure on the abstract target domain of
information processing. A wide range of other spatializing interface metaphors provides evidence
for the crucial role of spatialization in human-computer interaction. Examples include the /\
NAVIGATION [Conklin 1987], TOURIST [Fairchild, Meredith, and Wexelblatt 198%], ROOM ey
[Henderson and Card 1986], and MUSEUM [Travers 1989] metaphors. Indeed, the two- or three- }71 <
dimensional nature of visual interaction itself implies a spatialization for visuval interfaces [Tanber /{a'fag)
1987] in general, A
w'
At the same time, cognitive science has established that "most of our fundamental concepts ark %
organized in terms of one or more spatialization metaphors” [Lakoff and Johnson 1980] and that \\
many image-schemas are spatial in nature. These findings suggest, too, that spatialization is ™
probably the rule rather than the exception for interface metaphors.
When dealing with geographic space, however, interface metaphors for inherently spatial
applications are of primary interest. An example of such an interface metaphor is furnished by
zoom and pan operations in Geographic Information Systems (GIS) and other graphics
applications.
The terms "zoom" and "pan" are used in computer graphics in analogy to manipulations of
cameras or other optical instruments. An investigation of zoom and pan interface designs for GIS
concluded, however, that intuitive and effective interface tools require a deeper understanding of
the metaphors involved [Jackson 1990]. The remainder of this section applies the formal tools
developed in the previous section to an analysis of the metaphorical and image-schematic structure

of zooming.

\“

5.2. ZOOMING AND THE "DISPLAYS ARE VIEWS" METAPHOR

The Oxford English Dictionary (second edition, 1989) defines the original meaning of "zoom" as
follows:

"To make a continuous low-pitched humming or buzzing sound;

to travel or move (as if) with a ‘zooming’ sound;

to move at speed, to hurry.”
The use of the term in photography and cinematography is, thus, already doubly metaphorical: It
explains the variation of the focal length by a (fictive) motion of rapidly closing up on a subject
which, in turn, is metaphorically related to the corresponding sound effect. (It is an interesting
twist that one of the key metaphors in visual interfaces is originally echoic, i.e. rooted in auditory
perceplion.)

Combined with our deeply rooted visual experience that the viewing distance determines what

10

we see, zooming acquires the interpretation of changing the level of detail at which we perceive
and conceptualize the world or a computer model.

This understanding of zooming suggests the more general metaphor DISPLAYS ARE VIEWS,
where views are understood as visual fields, containing what humans see in a given situation
[Kuhn 1990]. This metaphor accommodates various transformations of the visual field in a
common framework: Zooming is the transformation caused by changing the viewing distance;
panning is moving the view to another part of a "panorama" without changing the level of
perceived detail. Since transformations of the visual field correspond to “basic cognitive processes
such as focusing, scanning, superimposition, figure-ground shifting, vantage-point shifting"
[Lakoff 1988)], they are ideal candidates for metaphor sources.

5.3. IMAGE-SCHEMAS IN "DISPLAYS ARE VIEWS"

The basic itnage-schema involved in the visual field is the CONTAINER schema, It structures the
visual field as a bounded space, consisting of a boundary, an interior, and an exterior: Things are
either in or out of sight and they come into or go out of it [Lakoff 1987]. The visual field has also a
center of attention and a surrounding region. Thus, a CENTER-PERIPHERY schema is combined with
the CONTAINER schema, providing for the distinction of foveal and peripheral vision.

Enriching the previously specified CONTAINER schema by a center-periphery distinction
produces the following specification (at this point, no axioms are given to constrain the inCenter
operator);

Container with Center

Sorts CeantCont, Item, Bool

Ops new: — CentCont
insert: CentCont x ltem — CentCont
in: CentCont x tem — Bool

inCenter: CentCont x-ltem — Bool
Eqs in(new,i) = false
in{insert{cc,i1),i2) = [f i1=i2 then true else in{cc,i2)

The visual field is further characterized by an interaction of the PART-WHOLE with the NEAR-FAR
schema. We experience objects in the world as configurations of parts, forming wholes. Qur
perception has evolved so that it can distinguish parts and wholes. Unaided visual perception, in
particular, relies on motion of the body or of the objects to extend this distinction beyond the
limited range of configurations present in one view: Getting parts into view involves moving
nearer and vice versa. This connection is the essence of zooming.

To formalize the superimposition of the PART-WHOLE and NEAR-FAR schemas on top of the
centered CONTAINER, the above specification is further enriched by a closeUp operator and a part-
whole relation (which actually belongs to a separate Item specification). Let us call this multiply
enriched container a View Container. With these addifional operators, it becomes possible to
capture the meaning of zooming in one axiom for the closelUp operator:

11

View Container

Sorts ViewCont, Item, Bool

Ops new: — ViewCont
insert: ViewCont x ltem — ViewCont
in: ViewCont x Item — Boo!

inCanter: ViewCont % ltem — Bool
partOf: [tem x ltem — Bool
closeUp: ViewCont — ViewCont
Eqs in{new,i) = false
in{insert(vec,i1),i2) = If i1=i2 then true else in{vc,i2)
in{closeUp(vc),i) = inCenter{ve,i) or (inCenter{vc,il) and partOf(i,i1))

Note that the closeUp operator is specified quite generally: It is only constrained to keep center
items in view and get their parts into view; no details about the degree of zooming or the extent of
the center region are given. More specific axioms would require metric concepts, while an image-
schematic analysis is only concerned with topological properties.

Further enrichments with metric concepts would lead to complete source (view) and target
(display) specifications for a particular user interface. They could involve, for example, a viewing
distance in the source domain and a zoom factor or view extent in the target domain.

It shouid be emphasized that DISPLAYS ARE VIEWS is a metaphor and not a literal equivalence.
The matching between the two domains of a metaphor is by definition pariial. Aspects which are
not image-schematic, such as the shape of the container boundary (elliptic, rectangular) or the type
of optical projection involved (central, parallel), need not be equal or even comparable.

6. Conclusions

An algebraic approach to the formalization of interface metaphors has been presented. Algebraic
specifications define metaphor domains as algebras, metaphorical mappings as morphisms, and
invariant image-schemas as categories. The gist of the approach should be captured in the
examples from a spatialization metaphor (DESKTOP). The sketched application to zoom operations
should demonstrate the relevance to the design of user interfaces for systems dealing with spatial
information.

The proposed formalization of interface metaphors is not a formal method for the design of
metapherical interfaces, but we believe it is a useful and immediately applicable step toward it. The
principal strengths of the proposal are that:

» the underlying understanding of metaphors is in agreement with recent findings in cognitive
science;

« the algebraic approach provides a comprehensive formalization of all essential aspects of
metaphors: conceptual domains, structure-mappings, and image-schemas;

« the technique of algebraic specifications is well established in software design and supported by
design tools,

The proposed formalization has yet to be validated in actual user interface designs. Our initial

experiences from applications to Geographic Information Systems [Jackson 1990] and to an

interface based on book metaphors [Volta, Cicogna, and Kuhn 1990] have been positive. The

12

¥

rigor imposed and the questions raised by the approach have clearly been beneficial in the design
process.

Formal approaches to design are mostly motivated by the need to evaluate designs.
Distinguishing different kinds of morphisms and separating the image-schematic structure from
surface-level structure are solid bases for such evaluations, but much more theoretical and
experimental work needs to be dene in this direction. Evaluating interface metaphors also involves
dealing with the coherence of composite metaphors. Since image-schemas are believed to play an
important role for coherence, their formalization is a key feature of this approach.

Some aspects of our work may have implications beyond human-computer interaction. The
description of metaphorical domains by algebraic specifications, for instance, is an attempt at
formalizing the notion of Idealized Cognitive Models (ICM) [Lakoff 1987]. It accommodates
propositional and image-schematic structure as well as metaphoric mappings. Another general
result is the formal version of the invariance hypothesis.

ACKNOWLEDGEMENT. Support from NSF under NCGIA grant No. SES 88-10917, from
Digital Equipment Corporation under grant No. TP-765536, and from Intergraph Corporation is
gratefully acknowledged. We also thank Max Egenhofer and Jeffrey Jackson for discussions on
the topic.

References

Apple Computer, Inc. 1987, Human Interface Guidelines: The Apple Desktop Interface. Reading,
MA: Addison-Wesley.

Blumenthal, B. 1990. Incorporating Metaphor in Automated Interface Design. Proceedings
Interact ‘90 : 659-664.

Burstall, R.M., and J.A. Goguen. 1981. An Informal Introduction to Formal Specifications Using
CLEAR. In The Correctness Problem in Computer Science. Edited by R. S. Boyer and I.
Moore. 185-213. New York: Academic Press.

Carroll, J.M., R.L. Mack, and W.A. Kellogg. 1988. Interface Metaphors and User Interface
Design. In Handbook of Human-Computer Interaction, Edited by M. Helander, 67-85. North-
Holland: Elsevier Science Publishers.

Conklin, J. 1987, Hypertext: An Introduction and Survey. IEEE Computer 20 (9) : 17-41.

Ehrich, H.-D., M. Gogolla, and U.W. Lipeck. 1989. Algebraische Spezifikation abstrakter
Datentypen. Leitfiden und Monographien der Informatik. Stuttgart: B.G. Teubner.

Ehrig, H., and B, Mahr, 1985, Fundamentals of Algebraic Specification. Berlin: Springer-Verlag.

Erickson, T.D. 1990a. Working with [nterface Metaphors. In The Art of Human-Computer
Interface Design. Edited by B. Laurel. 65-73. Addison-Wesley.

Erickson, T.D. 1990b. Personal communication.

Fairchild, K., G. Meredith, and A. Wexelblatt. 1989. The Tourist Artificial Reality. Proceedings
ACM CHI'89 : 299-304.

Gentner, D, 1983, Structure-Mapping: A Theoretical Framework for Analogy. Cognitive Science
7 : 155-170.

Gentmer, D, 1989, The mechanisms af analogical learning. In Similarity and Analogical
Reasoning. Edited by S. Vosniadou and A. Ortony. 199-241. Cambridge, UK: Cambridge
University Press.

13

Goguen, J. A., J. W. Thatcher, and E. G. Wagner. 1978. An Initial Algebraic Approach to the
Specification, Correctness, and Implementation of Abstract Data Types. In Current Trends in
Programming Methodology. Edited by R. Yeh. 80-149. Englewood Cliffs, N.J.: Prentice-
Hall.

Guttag, 1.V., and 1.J. Homing. 1978. The Algebraic Specification of Abstract Data Types. Acta
Informatica 10 (1) : 27-52.

Guttag, 1.V., I.I. Horning, and J.M. Wing. 1985. Larch in Five Easy Pieces. Digital Equipment
Corporation, Systems Research Center.

Halasz, F., and T.P. Moran. 1981. Analogy Considered Harmful. fnternational Journal of Man-
Machine Studies 14 : 383-386.

Hall, R.P. 1989. Computational Approaches to Analogical Reasoning: A Comparative Analysis.
Artificial Intelligence 39 : 39-120,

Henderson, D.A., Ir., and S.K. Card, 1986. Rooms: The Use of Multiple Virtual Workspaces to
Reduce Space Contention in a Window-Based Graphical User Interface. ACM Transactions on
Graphics 5 (3) : 211-243.

Indurkhya, B. 1989. Metaphor and Cognition. Manuscript.

Jackson, J.P. 1990. Visualization of Metaphors for Interaction With Geographic Information
Systems. Masters of Science Thesis, University of Maine, Department of Surveying
Engineering.

Johnson, J. 1987a. How faithfully should the electronic office simulate the real one? ACM
SIGCHI Bulletin 19 (2) . 21-25.

Johnson, M. 1981. Metaphor in the Philosophical Tradition. In Philosophical Perspectives on
Metaphor. Edited by M. Johnson. 3-47. Minneapolis: University of Minnesota Press.

Johnson, M. 1987b. The Body in the Mind. Chicago: The University of Chicago Press.

Kuhn, W. 1990. Are Displays Maps or Views? Technical Report, Department of Surveying
Engineering, University of Maine.

Lakoff, G. 1987. Women, Fire, and Dangerous Things. Chicago: The University of Chicago
Press.

Lakoff, G. 1988. Cognitive Semantics. In Meaning and Mental Representations. Edited by U.
Eco, M. Santambrogio and P. Violi. 119-154. Bloomington: Indiana University Press.

Lakoff, G. 1990. The Invariance Hypothesis: is abstract reason based on image-schemas?
Cognitive Linguistics 1 (1} : 39-74.

Lakoff, G., and M. Johnson, 1980, Metaphors We Live By. Chicago: The University of Chicago
Press.

Liskov, B., and J. Guttag. 1986. Abstraction and Specification in Program Development. The
MIT Electrical Engineering and Computer Science Series. Cambridge, MA: The MIT Press
{(MacGraw-Hill}.

Mac Cormac, E.R. 1985. A Cognitive Theory of Metaphor. Cambridge, MA: The MIT Press.

MacLane, S., and G. Birkhoff. 1967. Algebra. New York: Macmillan.

Mark, D. 1989. Cognitive Image-Schemata for Geographic Information: Relations to User Views
and GIS Interfaces. Proceedings GISILIS'89 2 . 551-560.

Martin, L.H, 1990. A Computational Model of Metaphor Interpretation. New York: Academic
Press. .

Nielsen, J. 1990. Designing User Interfaces for International Use. Amsterdam: Elsevier Science
Publishers. * ‘

Ortony, A. 1979. Metaphor and Thought. Cambridge, England: Cambridge University Press.

Smith, D.C.S., C. Irby, R. Kimball, B. Verplank, and E. Harslam. 1982. Designing the Star

14

User Interface. BYTE. 7 (4) April 1982 : 242-282,

Tauber, M.J. 1987. On Visual Interfaces and their Conceptual Analysis. In Visualization in
Programming. Edited by P. Gomy and M.J.Tauber. 106-123. Springer-Verlag.

Travers, M. 1989. A Visual Representation for Knowledge Structures. Proceedings Hypertext ‘89
:147-158.

Volta, G.S., R. Cicogna, and W. Kuhn. 1990. The MaineBook. Technical Report, Department of
Surveying Engineering, University of Maine,

VYosniadou, S., and A, Ortony. 1989. Similarity and Analogical Reasoning. Cambridge:
Cambridge University Press.

Woodcock, J., and M. Loomes. 1989. Software Engineering Mathematics. SEI Series in Software
Engineering. Reading, MA: Addison-Wesley.

Wozny, L.A. 1989. The application of metaphor, analogy, and conceptual models in computer
science, Interacting with Computers 1 (3) : 273-283.

15

