Frank, A. U. "Extending a Network Database with Prolog." 14. Orono,
Maine, USA: Department of Civil Engineering, 1984.

Department of Civil Engineering

SURVEYING ENGINEERING

Extending a Network
Database with Prolog

Andrew U. Frank

Report No. 40

Abstract

A network database management system is extended with a Prolog

interpreter built into it. This allows to store data structured according to

the database schema together with Prolog facts and rules, to represent

unstructured data. Further structured and unstructured data wil be

available for the Prolog interpreter, so that Prolog can be used as a query
- language for the complete database.

The change in the environment - database in }ieu of programming -
aggravates some of Prologs known problems, User input of new facts and
rules must be checked for consistency (spelling, no contradictions with
aiready stored facts) and execution speed with large data collections. We
conclude, that a typing mechanism for Prolog could help to maintain
consistency. To improve execution speed, similar methods as used in dbms
systems to optimize query processing can easily be applied.

This paper was presented at the First International Workshop on Expert
DataBase Systems, held at Kiawah Island, S.C. in October 1984 and
appeared in the proceedings, Editor Larry Kerschberg.

University of Maine at Orono
103 Boardman Hall
Orono, Maine 04469

gruber
Textfeld
Frank, A. U. "Extending a Network Database with Prolog." 14. Orono, Maine, USA: Department of Civil Engineering, 1984.

i.introduction

Prolog can be viewed strictly as a programming language, but a Prolog
system has also certain aspects of 2 database management system
[Kowalski 1979]. Many different proposals to use Protog or similar logic -
programming methods for database management can be found in recent
literature [Gallaire 1976} They either propose to use a Prolog systemasa
database {Motro 1984} or coupling an existing database system witha
separate existing Prolog system {Vassiiou 1983},

The first approach allows storage of unstructured (i.e. minimally
‘structured) facts, without bothering the user with a database schema and
with no problems of updating the database schema to changing
requirements. A browser lets the user search thru the database and the
metadata alike.

The second idea makes the potential of the Prolog programming language
availabie for user interaction in an interactive environment with an
existing, traditionally structured databass.

We started with the observation that database systems are extremely
beneficial to many large applications, but they are not easily suited to
organizing data in the personal environment, as found in the organization
of the data for a research projects, in office automation, or Computer
Alded Design etc. As an example, consider a data collection for your

- personal use: 1t should contain persons and their addresses, literature
references (there might be an overlap between authors and your friends),
Hsts of things to do, and other arbitrary clippings (look at your deskl).
Some of these data are easily classified into datatypes and a database
schema may be established. Other classes change often and finally there
are a number of odd data elements (the handwritten notes in your address
book) containing very different things. Including these in the db schema
produces an extremely large schema with many different types, but for
each type we will ever store only very few data (in the extreme case only
one). However, there are typical database problems associated with such
data collections, like consistency constraints (telephone numbers, form of
bibliographic references etc) and, of course, securing the data agatnst

loss. We conclude that the present db systems are not well suited for the
task.

Not only are they unable accomodate the changing requirements. A

2

personal database must follow the development of the job, the pro ject,
etc. A complete analysis of the requirements for drafting a db schema is
not possible, because the requirements are not known at the beginning;
this is an important problem but not the only one.

There are also quantitative differences. There will be a arge number of
schema relations populated with only a very few facts. This reflects the
quantitative difference between Al and database, as observed by
Mylopolous [Mylopoulos 1981} databases are for storage of very large
amounts of data elements (records) from a very few types(structured
data), artificial intelligence systems store a smaller number of facts, but
“of a much larger variety of types (unstructured data).

In order to cope with changes in the requirements, some of the dbms based
on the relational data mode) feature operations to change the db schema
and help the user to rearrange his data. The Hmitations in the number of
data types (record types, relation schemas) found in many dbms could .
principally be extended. Nevertheless, a traditional dbms does not seem to
be an adequate solution for storing facts in an expert system, where only a
few records of any type are stored, but extremely many different types are
encountered. Problems become most obvious if we consider the difficulty
of keeping track of the changing database schema.

2. Possible Solutions

Using an existing Prolog implementation may be attractive for
experimentation and research, but the known systems can not cope with
large numbers of facts simultaneously. Generally facts are grouped by the
user and stored in files. For use they are read into memory (‘consult’), and
only facts presently in memory are used in the interference process. The
amount of facts kept in memory is not only limited by the memory size and

the address range, but, at least in some implementations, influences aiso
the speed of Inference,

Coupling an existing dbms with an existing Prolog system, using the first
to store the structured data, the latter used as an expert system or to
create an enhanced user interface, is reported in [Jarke 1984]. This solves
the aforementioned problem, but cooperation between the two systems
may cause probiems. To pass control and data from the one to the other is
most likely time consuming and response time may then become a problem.

Third, it seems feasible to augment an existing dbms with an inference

engine (i.e. a Prolog interpreter), storing facts and rules in a few
additonal data type in the database. This permits the use of standard db
technigues for storing the data, especially storing large amounts of data
in structured form, but allows also for the inclusion of unstructured data
without requiring new db definitions (relation schemas) for each type of
fact. Having the Prolog interpreter within the dbms program gives fast
access to the database during inference and storing facts and rules as
database records within the database reduces the amount of programs for
data access etc,

. We had available the PANDA network database system [Frank 1982],
completely written in modular Pascal, so we could attempt to join a
Prolog intepreter internally with the database. This contribution will -
report this work and discuss the problems which became apparent.

The user’s expectations from a Prolog programming system and from a
database differ radically which should be reflected in the interface.

Second, applications which demand processing of large amounts of data
are not well suited for the backtracking processing style of Prolog which
is better suitable for treating the user interface. Providing the user with
application-oriented built-in processing predicates, e.g. for graphical
output which are written in a procedural and compiled language, may help

to achieve the necessary speed and provide nevertheless Prolog's high
level user interface.

3. Stering facts in a database

in order to store facts in a database a database schema had to be designed.
Figure 1 shows our soiution in an extended entity block diagram.

In this schema a Prolog fact ‘grandparent (x,y) :- parent (x,2), parent (z,y)
Is stored as one clause, two predicates (‘grandparent’ and ‘parent’), three
symbois (i, 'y', '2'), with three atomic formulae (abbreviated 'atom’)
‘grandparent (x,y) stored as the head (consequent) and the two parent
(x,2) and parent(z, y)' as two antecedent atomic formulae. For each atomic
formula, the variables used are recorded with their number in the clause
(here x=1, y,=2 etc) and for the clause each of the variable is then
connected {either as bound = constant or unbound = variablesymbol) with
the respective symbol,

The present implementation uses an array to store the variable indices and

4

is therefore limited in the number of variables in an atom. We pian to
install an extension mechanism for the rare predicates with higher arity.
This seems to result in better performance, then to further normalize the
‘atom’ record and introduce a ‘variable_in_atom{atom_key,
variable_number)' retation (or the equivalent record and set in the network
data mode?1).

Predicate ' Symboil

name hame

arity '
consequent symbel in Clause

antecedent variable number
kind (hound or unbound)

Atom

variables
Head consequent —
Clause
no of antecedents —[antecedent—— ho of variables

Figure 1

4. The implementation of inference engine

“The present implementation follows the Prolog 'depth first’ method and
uses the facts in the order they are encountered in the _
‘predicate-atom-consequent’ set {this represents at the moment the order
in which the predicates were stored). For use as a database retrieval
system, the interpreter has to return with each success, so the application
can use the data in any way it is necessary (i.e. the Prolog interpreter
works as If it were a co-routine).This excludes the simple recursive
implementation and requires explicit storage of the state of the
Interpreter in order to continue the search with backtracking after a
solution has been found and processed. In fact, a proof is initiated as a
backtracking on the null solution. The main body of the interpreter
contains about 80 lines of Pascal code (four nested 100p3), and we used
methods as introduced in [Dijkstraig76] for convincing us of its
correctness(simitar to [Emden1984)).

5

The rest of the programs were simple routines for storing and retrieving
data in a navigating manner in the database, routines for managing the
stack, input of facts and rules and output of results, and passing variables
for unification. That is about 2500 lines of highly modular Pascal code, No

new routines were necessary for memory management nor low level data
storage. '

3. Special requirements for a database to support inference
Principatly most doms based on the network or relational datamode! can be
used to support an inference mechanism in the described form. The dbms
then serves as a general form of storage and retrieval system for clauses
and replaces the specific systems built in present Prolog implementations.

Depending on the implementation of the dbms, the resulting system may
either be acceptable fast or impractically slow, The analysis must be
based on the time required for each inference step and particularily, on the
amount of disk access needed. The backtracking algorithm is inheritently
sequential, using one data element at a time, and can not easily take
advantage of the set oriented interface of a relational database and its
formulation in a navigational data manipulation language causes no
problems. In order to reduce the number of physical disk accesses
necessary for each step, physical clustering of records may be used
advantageous (e.g. System R[Astrahan1876] or in most network dbms).

Additional reduction results from buffering data once read in from disk.
The PANDA dbms contains a two level buf fering schema, first buffering db
pages and then providing a large (presently about 4000 records) buffer for
records, both managed in a least recently used strategy and fully
transparent for the application program. We expect that proving a clause
will use a limited number of database records over and over-again, and a

buffer of this size may reduce time consuming physical accesses to dlsk
storage during backtracking.

G.Changes in the Proloeg user interface necessary

In {Turner 1984] an interesting list of shortcomings of Prolog, as
presently used, is given. At least three of the disadvantages he mentions,
are of even greater concern in a database use of Prolog.

Profog was designed to express logical relations in a short lived

environment, were the user is fully conscient of all facts and rules stored.
Storing facts and rules is done using files, and the user recalls {'consults’)

6

them explicitly, when he wants to. This is radically different from a
database situation which is used for a long period of time, and we may not
assume that a user remembers all the previously entered facts and rules -
independetly thereof wether the database is only for one ar for several
users.

The schema definition in a database usuaily contains integrity constraints
to prevent users to enter data which are not in accordance to the stated
goals. This is necessary in order that application programs (and users) may
rely on certain properties of the data (invariants), and vioiation of these
rules makes programs produce incorrect results, including not finding

- stored data. Prolog contains no provisions to this end, Simple speliing
error in the name of a predicate when entering a rule will make this
predicate to fail always (such errors are extremely difficult to detect; if
the database contains large amounts of facts, visual inspection is not
possible any more).

if an expert system should work for a long time, integrity constraints
must be included and new data entered checked out. A few obvious
gxnamples:

- check predicate names against previously used ones and require
users to explicitly declare new predicates (Prolog implicitly declares a
predicate with its first use, which is similar to BASIC and FORTRAN where
variables are created by their first use),

- when a new predicate is declared, et the user state its arity and
check the arity in every later use

- when declaring a predicate, have the user enter a description of its
meaning and provide a query mechanism for tater use of this description
(how can we avoid to have the same or a very similar predicate declared
twic? cf. [Kent1982])

- use type constraints, fo check variables in predicates. W-Grammars
[vanWi jngaarden!965] could be used as a theoretical frameweork. Turner

works presently on a system WLOG, incorporating such ideas. {Turner
1984]

Further, systems using Prolog's type of inference mechanism are not well
protected against circles tn the rules (e.g a (x) :~ b{x); b(x) ;- a(x)).
Collections of rules set up for use during a short period of time, or used as
a package and not expected to be expanded by the user, are checked by the
programmer against circles. If a system is open ended however, it may be
appropriate to disallow storage of rules which lead to circles. How can

v

this be detected easiest? Check before storage of each rule if its reverse
can be proven? A similar problem comes from introducing rules which
contradict existing rules. Should the user be forbidden to insert such
rules?

Finally, some Prolog program rely on the order in which facts and rules are
entered into the database. This is clearly impractical in the envisaged
environment, as a first writer of a rule may not know what other rules are
later stored. We can differentiate order of facts and order of rules. Order
of facts should not disturb the execution of a Prolog program (it may
produce the results in a different order, but the resutts should be the
same). Order of rules however are very important for many recursive uses
of rules, where a special stop rule comes first (with a ‘cut’), and the
general recursive rule second. It may be necessary to extend the
datastructure in figure 1 to include an entity ‘program’, consisting of
several rules which are maintained and used in the given order.

7. Using the structured data in the database as facts

Obviously, the structured data in the database can be interpreted as facts
and used by the inference mechanism, They can be interpreted as Prolog
structures, or each record (tuple) split in several binary{ternary ..) facts.
Similarly, informatton bearing sets in a network database can be regarded
as binary fact. Logically this does not pose any problems; performance
fssues must be studied, however,

Assume a goal of the form a(x,Ann) :- b(x, 2}, c(z,Ann). If b(x,z) is a large
database relation then it s clearly unpractical to use every fact stored to
bind X, and z and then try to prove the rest of the clause. A more
sophisticated method must take into account the approximate size of
database relations and the existence of access paths. [Warren1981}
explains a simple method, relying on estimates of the size of a relation
and the size of the domains of the arguments. Principally, the database can
keep track of the size of the realtion, whereas the domain size must be
estimated by the user. The next goal to prove from a conjunction is then
selected as to least increase the number of alternatives to be considered
Further, a conjunction of goals is checked to detect parts of it, which are
independent from each other and can therefore be caried out separately ~
reducing backtracking greatly.

These are essentially the same methods that are used in query planning in
database systems[Astrahan!976] However, many Prolag rules are

8

sensitive to the order in which the atomic formulae in the antecedent are
executed and reordering is not possible; this includes all rules using the

‘cut’ predicate and many others which use predicates with side effects. in
a typed logic progamming system tike WLOG, the 'not’ predicate becomes a
more natural interpretation and may make the ‘cut’ predicate unnecessary.

8. Access from the inference mechanism to the database

schema
The database schema, including the estimates on relation size, integerity
constraints, etc., must be considered as an additonal set of facts and
rules which should be available for inference. Such information is useful
- for guery planning and may reduce the amount of data to be retrieved (e.g.
if a query can be answered using integrity constraints alone), in extremis,

it may even help to answer questions when the pertinent facts are not
stored at ail.

This leads to a reduction of the difference between data and metadata in a
database, a separation which is certainly necessary in a dbms to achieve
fast response time, but not warranted on togical grounds. Considering a
database with integrated inference mechanism, this difference vanishes
and the previously established categories for metadata (relational schema
domain constraints, existency constraints [Fagin1980]) seem to be a very
limited seiection. We plan to use facts to store the schema information in
the database and study at the moment, how to solve the bootstrap problem
(the data structure to store the facts in must be described...) and methods
to cache metadata for fast accesss during database operations.

3

Motro advocates that metadata should be available for answering user
queries, and gives a number of interesting exampies how generalization
hierarchies can be used to improve responses [Motro| 984} Very similar
data are necessary for the above mentioned typing structure to control
consistency of facts and rules input by the user.

9. Building procedural rules into an inference mechanism
Despite the fact that almost any problem can be stated as a collection of
rules, many problems are easily stated in a procedural language and
execution of compiled loops is most of the time much faster than
backtracking. Each Prolog system contains a number of built inrules,
which can be understood as rules, but are implemented otherwise. In our
area of application (cartography), a number of additonal built in
procedures would be helpful, especially for graphical output, and

9

operations on geometric objects (e.g.calculating the surface of on area).
This poses generally the question how to integrate a facility for the user
to define additional built in operations into a Prolog environment. Beside
of technical problems like argument passing, the solutions of which are
heavily dependent on the programming language used, there are _
fundamental differences between a Prolog system and a usual high level
procedural language subroutine.

A Prolog rule may be used with any of its variables initialized and
computes result in any case, either one or many using backtracking. | ligh
level languages provide routines which have a fixed set of input

- parameters and compute thereof the output values. One possible solution
to combine the two worlds is to write the compiled functions as standard
routines producing output for one set of input parameters only and have
them fail in all other cases. it is then possible to wrap these into a more
general Prolog program which contains as a first rule a check for the
binding of the arguments, a cut and a call to the compiled rute, and a
Prolog formulation of the same operation ag the second rule. If the first
rule fails because it got the wrong input parameters, the second rule
executes and uses backtracking to generate ali possibie answers. If the
first rule has the correct arguments, the "cut’ excludes the second rule
from later being tried by backiracking,

The Prolog interpreter impiemented on the Lilith personal computer
realized a comfortable and efficient interface to procedures written in

. Modula 2 using a precompiler, The necessary additional definitions are

" specified in a simple language and used to produce the procedure heads for
the Modula 2 procedures and also to extend the Prolog interpreter with the
new bullt in predicate [Schorn 1984],

10. Conclusion
We have augmented a network database system with an inference
mechantsm, interpreting Prolog. This raises a number of new questions,
Which were presented in this paper-

~ thecking user input of facts and rules, and applying consistency
constraints in a Prolog system.

- optimizing the order of selecting goals to prove,

- extension of meta information in the database and diminishing the
difference between meta data and data,

Assuming that the methods relational databases use to optimize query

10

execution can be transported to a Prolog interpreter, it should be
discussed, what additional performance gains are to be expected from the
approach of coupling an existing database with a separate inference
mechanism. The transtation from the sequential proceSsing of the
inference mechanism to the set oriented formulation in a query language
may well result in better clustered access to disk storage and run faster.
On the other hand, the same effect can be attained by increased buffer
space for the database.

Finally we found that a typing mechanism may benefit different areas
(consistency of the data collection, execution speed and the user
interface). It seems worthwile to continue investigating this possiblity.

The implementation of the inference mechanism is complete and we expect
to attain about 000 inferences per second, and future optimization will
be possible. we presently work on the mechanism to let the user extend
the built in predicates and study the order of executing goals.

11

References 1

Astrahan, MM. et al., System R: Relationa! Approach to Database
Management, ACM TODS, Vol.1,No.1, p, 97,1976

Clocksin, W.F,, Mellish, C.S., Programming in Prolog, Springer Verlag, 1981

Dijkstra, E.W., A Discipline of Programming, Prentice-Hall, Englewood -
Cliffs, NY. 1976

Fagin, R, Multivalued dependencies and a new normal form for relational
data bases, ACM TODS, Vol. 2, No. 2, p. 262, 1977

Frank, A., PANDA, A Pascal network database system,Proceedings ACM
SIGSMALL conference, Colorado Sorings Co. ,1982

. Gallaire, H Minker, J. {eds.), Logic and Databases, Plenum, 1978

~ Jarke, M, Clifford, J. Vassiliou, Y., An optimizing front~end to a relational
query system, in: B. Yormark (ed.), Proceedings ACM SIGMOD '84,
Boston, SIGMOD Record, Vol. 14, No.2, 1984

Kent, W., Data mode} theory meets a practical application, in: C. Zaniolo, C.
Dlobel (eds.) Proceedings 7th Internat. on Conf, Very Large Data Bases
Cannes (France) 1981

Kowalski, R. Logic for Problem Solving, North Holland, 1979

Motro, A., Browsing in a loosely structured database, in: B. Yormark (ed.),
Proceedings ACM SIGMOD ‘84, Boston, SIGMOD Record, Vo, 14, No.2,
1984

Mylopoulos, J. An overview of knowledge representation, Procedings of the
workshop on data abstraction, data bases and conceptual
modelling, Pingree Park, Co., SIGMOD Record, Vol. 11, No.2, 1981

Schorn, P, Schulz, T, Description of LOGULA (in german) Swiss Federal
Institue of Technology, institute for computer scienc, Zurich
(Switzerland) 1984

Turner, S.J. W-Grammars for logic programming, in: J.A. Campbell (ed.),
implementations of Proiog, Chichester, England, 1984 1984

van Emden, MH., An interpreting algorithm for Prolog programs,

vanWijngaarden, et. al, Revised report on the algorithmic language ALGOL
1968, Acta informatica, Vol. 5, pl, 1975

Vassiloy, Y., Clifford, J., Jarke, M., How does an expert system get its
data?, tn: M.Schiolnick, C.Thanos (eds.) Proceedings 9th Internat. Conf.
on Very Large Data Bases, Florence (Italy), 1984

Warren, HD.H, Efficient processing of interactive relational database
gueries expressed in logic, in: C. Zaniolo, C. Diobel (eds.) Proceedings
7th Internat. on Conf. Very Large Data Bases, Cannes (France) 1981

2

REPORT: Surveying Engineering Publications and Reprints
The following reports were published and are available upon request

1. Defining the Celestial Pole, A. Leick, Manuscripta Geodetica, Vol. 4, No. 2.

2. A New Generation of Surveying Instrumentation, A. Leick, The Maine Land
Surveyor, VYol. 79, No. 3.

3. The Teaching of Adjustment Computations at UMQ, A. Leick, The Maine Land
Surveyor, Vol. 79, No. 3.

4. Spaceborne Ranging Systems - A useful tool for network densification,
A. Leick, The Maine Land Surveyor, Vol. 80, No. 1.

b, Potentiality of Lunar Laser Range - Differencing for Measuring the Earth's
Orientation, A. Leick, Bulletin Geodesique.

6. Crustal Subsidence in Eastern Maine, D. Tyler, J. Ladd and H. Borns;
: NUREG/CR-0887, Maine Geological Survey, June 1979.

7. Land Information Systems for the Twenty-First Century, E. Epstein and
W. Chatterton, Real Property, Probate and Trust Journal, American Bar
Association, Vol. 15, No. 4, 890-900 (1980).

8. Analysis of Land Data Resources and Requirements for the City of Boston,
Epstein, E,F., L.T. Fisher, A. Leick and D.A. Tyler, Technical Report,
Office of Property Equalization, City of Boston, December 1980,

9. Legal Studies for Students of Surveying Engineering, E. Epstein and
d. McLaughlin, Proceedings, 41st Annual Meeting, American Congress on
Surveying and Mapping, Feb. 22-27, 1981, Washington, D.C.

10. Record of Boundary: A Surveying Analog to the Record of Title, E. Epstein,
ACSM Fall Technical Meeting, San Francisco, Sept. 9, 1981.

11, The Geodetic Component of Surveying Engineering at UMO, A. Leick, Proceedings
- of 41st Annual Meeting of ACSM, Feb. 22-24, 1981.

12. Use of Microcomputers in Network Adjustments, A. Leick, ACSM Fall Technical
Meeting, San Francisco. Sept, 9, 1981. (co-author: Waynn Welton, Senior
in Surveying Engineering). _

13. Vertical Crustal Movement in Maine, Tyler, D.A. and dJ. Ladd, Maine Geo-
Togical Survey, Augusta, Maine, January 1981,

14, Minimal Constraints in Two-Dimensional] Networks, A. Leick, Journal of the
Surveying and Mapping Division (renamed to Journal of Surveying

Engineering), American Society of Civil Engineers, Voi. 108, No. Suz,
August 1982.

15,

16.

17.

18.
19.
20.

21.

22.
23.
24.

25,
26.

27.
28.
29.

30.

31.

32.

"Storage Methods for Space Related Data: The FIELD TREE", A. Frank in:

MacDonald Barr (Ed.) Spatial Algorithms for Processing Land Data
with a Minicomputer. Lincoin Institute of Land Policy 1983, :

"Structure des donndes pour les systemes d'information du territoire",
(Date Structures for Land Information Systems), A. Frank in: Proceedings
'Gestion du territoire assistee par ordinateur's, November 1983,
Montreal.

"Semantische, topologische und raumliche Datenstrukturen in Landinformations-
systemen (Semantic, topological and spatial data structures in Land
Information Systems) A. Frank and B. Studenman, FIG XVII Congress Sofia,
June 1983. Paper 301.1.

Adjustment Computations, A. Leick, 250 pages.

Geometric Geodesy, 3D-Geodesy, Conformal Mapping, A. Leick.

-Text for the First Winter Institute in Surveying Engineering, A. Leick,

D. Tyler, 340 pages.

Adjustment Computations for the Surveying Practitioner, A. Leick, {(co-
author: D. Humphrey, Senior in Surveying Engineering).

Advanced Survey Computations, A. Leick, 320 pages.

Surveying Engineering Annual Report, 1983-84.

Macrometer Satellite Surveying, A. Leick, ASCE Journal of Surveying Engineering,

August, 1984,

Geodetic Program Library at UMD, A. Leick, Proceedings, ACSM Fall Convention,
San Antonio, October, 1984, :

GPS Surveying and Data Management, A. Leick, URISA Proceedings, Seatle,
August, 1984. .

-Adjustments with Exampies, A. Leick, 450 pages.

Geodetic Programs Library, A. Leick.

Data Analysis of Montgomery County (Penn) GPS Satellite Survey, A. Leick,
Technical Report, August, 1984.

Macintosh: Rethinking Computer Education for Engineering Students, A. Frank,
August, 1984,

Surveying Engineering at the University of Maine (Towards a Center of
Excellence), D. Tyler and E. Epstein, Proceedings, MOLDS Session,
ACSM Annual Meeting, Washington, March, 1984.

Innovations in Land Data Systems, D. Tyler, Proceedings, Association of State
Flood Plain Managers, Annual Meeting, Portland, Maine, June 1984,

33.
34.

35.

36.

37.

38,

39.

40.

41.

4z,
43,

44,

Crustal Warping in Coastal Maine, D. Tyler et. al., Geology, August, 1984,

St. Croix Region Crustal Strain Study, D. Tyler and A. Leick, Technical Report
submitted to the Maine Geological Survey, June 1984.

Applications of DBMS to Land Information Systems, A, Frank, in: C. Zaniolo,
C. Delobel (Ed.), Proceedings, Seventh International Conference on Very
Large Databases, Cannes (France), September, 1981. '

MAPQUERY: Database Query Language for Retrieval of Geometric Data and Their
Graphical Representation, A. Frank, Computer Graphics Vol, 16, No. 3,
July 1982, p. 199 (Proceedings of SIGGRAPH '82, Boston).

PANDA: A Pascal Network Data Base Management System, A. Frank, in:

G.W. Gorsline (Ed.). Proceedings of the Fifth Symposium on Small Systems,
(ACM SIGSMALL), Colorado Springs (CO), August, 1982.

Conceptual Framework for Land Information Systems - A First Approach,
A. Frank, paper presented to the 1982 Meeting of Commission 3 of the FIG
in Rome (Italy} in March 1982.

Requirements for Database Systems Suitable to Manage Large Spatial Databases,
A. Frank, in: Duane F. Marble, et. al., Proceedings of the International
Symposium of Spatial Data Handling, August, 1984, Zurich, Switzerland.

Extending a Network Database with Prolog, A. Frank, in First International
Workshop on Expert Databases Systems, October, 1984, Kiawah Island, SC,

The Influence of the Model Underlying the User Interface: A Case Study in
2D Geometric Construction, W. Kuhn and A. Frank.

Canonical Geometric Representations, A. Frank

Computer Assisted Cartography - Graphics or Geometry, A. Frank,

dournal of Survaying Engineering, American Society of Civil Engineers,
Vol. 110, No. 2, August 1984, pp 159-168.

Datenstrukturen von Messdaten, A, Frank and B. Studemann. paper presented at

IX International Course for Engineering Surveying (Graz, Austria)
September 198%, _

