Frank, A. U. "Macintosh: Rethinking Computer Education for Engineering

JStudents." Computers in Education (1985): 405-09.

COMPUTERS IN EDUCATION, K. Duncan and D, Harris (eds.)
Elsevier Science Publishers B.V, (North-Holland)
©IFIP, 1985

405

Macintosh: Rethinking computer education for engineering students

Andrew U, Frank

Department of Civil Engineering
~ University of Maine at Orono, Orono, Maine 04469

Computer education for engineering students is an open preblem. The advent of a new
type of affordable hardware, the Apple Macintosh, which introduced a new concept for
the user-machine interface opens new possmlllhes for computer education. This paper
discusses (1) the possible goals of computer education for engineering students, (2) a
new concept for introducing computers, and (3) how the Macintosh is being used to

achieve those goals at the University of Maine.

1. Introduction

Education in computer usage, ie. how o use a camputer o best
adventege to solve epplied prohlems, hes become a problem in
many science and engineering departments. Most students teke an
introductory progremming course early in ihe curriculum.
Because of the unforgiving nature of the mainfreme systems
usually employed, they spend enormous amounts of time on
trivial assignments end little is left for more realistic end
complex problems. When they are later asked to use computers
for solving technical or scientific assignments, they are il
prapared. As a result, compuiers are not used to full adventage in
our present educational system.

Modern personal computers, which are easier to operate, allow
students 1o concentrate more on the essenti! goals, and to
minimize extreneous problems related fo idiesynerasies in
complex operating systems. The new Apple Macintosh is perheps
the most outstending exemple of an easy to use machine. The
Macintosh incorporstes for the first time the concept of "direct
manipulatien in & mechine in the price range of @ personat
computer. i uses navel hardwere, {ie & powerfull&-bit
microprocessor and B high resolution, bit mapped grephics
screen) combined with innovelive operating system softwere to
provide the first low cost system with en effective 'visual
interface’. Operations inside the computer are made graphically
visible for the user which does not unly help the experienced
usar, but dremetically reduces tha beginning students problem of
understanding and using the system [9].

This paper describes a serie of wo courses offered by the Civil
Enginesring Department of the University of Maine al Orono, 838
new epproach io the challenge of more effective compulsr
education for enginesring students. The department is & typical
civil enginesring department with epproximelely 280 students.
It is part of the University of Maine sl Orona, a smaller land
grant university with sbout 11,000 studenis. The course
discussed in this paper is considered-to bs en sxperiment within
the College of Engineering end Science. 1T the course is sucoessful,
we expect it to be duplicated in other engineering depariments.
Moreaver, we feel that these ideas can be effeclively applied to
computer education in other fields es well. We advocale thal
others critically exsmine their present offerings in this srea,

and develop similar courses io belter respnncl 1o the needs of their
students.

2. ﬂda]s of education in computer usage

Everybody esks for computer literacy. However, no generally
accepied definition exists. The following is & 1ist of what we see s
importan goals for computer education for engineering students.
Computer education should enable students net only to use loday's
computer efficiently, bul also o understand the basic principles
involved so they will be able to stey shreast of futura changes. H
is thus obvious thet an effective course must do more than teach a
computer language, The course must cancentrate on the general
principles which are unlikely to change rapidly, and use preseni
syglems only 1o iflustrate these principles in computers.
Studenis must understend which parts of the compuler
envirenment they will find similer on other mechines, and which
are particuler for the mechine used for instruction.

2.1 Understanding compulsrs ~ 1§ sesms necessary that students
understand the herdware companents of today's computers, their
functions, limitelions end adventages. [is equally important o
know the besic principles of software; nal only the operating
system, bul also the compiler, Tinker, editor and olber utilities.

2.2 infermation end data ~ To undarstand how computers may be
used to solve problams is feciliteted by understanding the
theracters of information and date. Such knowledge mey prevent
the widespread confusion about whal compuiers can {essily} do
and what operations are (still) reserved for human beings.

2.5 Communication ~ Communication of ideas and exchange of data
are becoming more and more important. The principles thet apply
both to communication between machines (networks), end to the
effective use of output for human understanding (prml streen,
graphics, vmce) must be understood.

2.4 Programming — All engmeering students should Tearn sl least
one programming language and hecome familiar with #. We do not
assume thal most precticing enginesra will write their own
programs; insiead, we foresee general use of soflwere packages,
produced by specialsts. Nevertheless, teaching a pregremming
anguege seems essentfal in order to provide the student with e

gruber
Textfeld
Frank, A. U. "Macintosh: Rethinking Computer Education for Engineering Students." Computers in Education (1985): 405-09.

406 AU Frank

fremework to explore and apply the more abstrac! topics
mentioned thus far. Additionally, students must e able to apply
programming in erder io solve preblems put forwerd in later
CoUrses.

We do nol agree with the approgch taken in {4] which provides
the students with finished progrems and discusses the
mathematical principles only; it appears too essy for students to
gloss over problems, end they ere not exposed to the tesk of
ranverting a mathematics! idea for a solution to & program.

3. Insufficience of ‘Introductory Progremming
courses

Judging from the aveilable textbooks, the eversge computer
course todsy is an introductory course in the use of &
programming lenguage; usually FORTRAN In enginsering
programs. This approach is insufficient for several ressons:

3.1 Batch orientation - Many books stitl sssume that the studant
will use punched cards even though punched cards ara now seldom
used in practice and will disappear cempletely in the immediate
future. All aspects of interactive programming are left aut in
maost books (& noteshie exception is [2]). This makes it difficult
for the student to ungerstand and essess the interactive progrems
she will later use,

5.2 Concentretion on 'programming languege’ - The course
intreduces students to the use of a programming languega alone.
Most often the use of the operating system and the utilities are
expleined only &5 far as absolutely necessary for the development
of small programs. Students are not explicitely told how ta use
the computer for other problems, nor are the principles of the
operating system explained to them. This greatly hinders futura
use of the computer in advanced courses,

3.3 Examples unrelated to enginesring - Examples in ganeral text
books ere unspecific in order to be understandable to students
from a1l fields. They are ofien simplistic and do not relsie to
studenis of engineering. Furthermore, the exemples do not
prepare the student for the type of programs she will later ses
when epplied 1o her field. Progratnming has become so broad an
activity that very different knowledge is necessary io work in a
apecific field of spplication. This can not be schieved by e general
caurss,

4. Integration of computer usege in the curriculum

If we want to equip our students with & sound understanding of the
best use of computers in their profession, we must integrate
computer usage in thetr curriculum. An independant course Tittle
related to the rest of the curriculum can not echieve this es i
remains an unconnected topic in the stedents experience (and
much too often an-unpieasant one).

Discussions in our callege have shown that students cen achieve
proper experience with computers anly if each sludent takes at
least one course with a sirong computer usege component each
semester. This means that we have to follow the introductary
caurse {in first or second year) with applied courses (e.g. an
enginearing design course) thet include sume use aof computers.
Such a component may be built into most prectical or design
caurses without taking time away from the principle subject.
Quite the contrery, we experiencs thet meny topics mey be

studied in more depth if computer simulation is available or if
more design alternatives can be explored,

5. Modern personal computers end their use in
teaching

If we snalyse what is difficult for students whan they deal with
the traditional mainframe computer, we can better assess the
improvements possible with the newest personal computers,

5.1 Invisibility: computers hendle ebjects ke files, records,
elc, which are invisible ta the user. 1t is diffieult for a beginner
to keep track of the mullitude of objects of different kinds she
operates on with commands. Eventually, users understand and
develop a feeling for these things - &s all of us have done - but
this s very time consuming and entails many 'trial and errar’
situations and disappointments.

5.2 inconsistant interfeces: e specific sction - say erass en object
- i5 expressed in very different ways, depending on ihe class of
the object and the situation (not oniy 8 dlﬁerent cormimand, but
also different syntax).

For exemple, compare the difference betwesn how you delete a
file and how you delete a ling in & file in the system you are
femiliar with. The problem is epgravaled s each utility and
application program presents another type of interface. Again,
users may eventuslly become proficient in their usas, but the
program beheviour is baffling to the beginner.

5.3 Overly complex systems: most generel purpose multi-user
mainframe computers now in use provide extremely versatile
commend languages. However, their funclionalily i3 much larger
than sludents normally nwd and students have difficulty
sglecting the subset they need. They may encounter problems if
they inardvertently use en unfamiliar mode. Typically menuals sre
saveral large binders with aver 500 pages each, written by
speciglists for specislisis - 8 languege completely
incomprehensible to ihe beginner, and unfur'tunatety often
specific to the menufaciurer.

5.4 Diffieult to get sterted with: starting to use 8
general-purpose meinframe is made sdditionally difficult by the
pravisions in their operating system for teiloring them to the
users need. Yery often, beginners have to deal with the “neked”
operating system until, much later, they heve created their set of
‘'mecros’ to abbreviate command sequences often used,

We may conclude thot @ machine suiteble for tesching computer
usage must be simple to use for the heginners. To judge 8 machine
to this end mey be difficult es &ll experienced computer users
have developed considerable skills to deal with even the most
intricale mechines. The following properties seem to be
fmportant ;

- visibla interface: the user's actions should causa visible
reactions on pictures of the objects manipulated (also
called 'direct manfpulation').

- consistent interfece: a similar uparatmn should he
performed with similar cammends and similar syntax.

- @ limited operstion system with the necessery
functionality, but not providing too meny edditional
features which only confuss beginners.

Macintosh: Retlinking Computer Education for Engineering Students 407

— et the user select or adapt a proposed commend in lieu of
gsking him to produce the commend [13].

Several etlempts to reslize these ooals heve besn meda
previousty. Notable in the pest are the Waterloo Environment o
reduce complexity of the IBM opersting systems on the
mainframe side, Single user workstations have been produced by
Xerax {Star), Apoilo {31 and Apple (1.isa end Mecintosh). The 1ast
one offers the necessary features for the lowesl price {around
$2000 per personal computer).

Seleciion of 8 compular for use in 8 computer course is similar io
other selections of compuiers: decide which qualities are essential
and select the one thet hes them. The danger lies in being tempted
{o buy 8 machine with more features than necesary. Such features
are never free, they may perhaps not increase the price, but they
will invarisbly incresse the complexily of the user interfece and
meke the mechine harder io use.

&. Buidelines for the new course sequence “computer
usage” ’

This chepter will discuss the maln assumptions and quidelines we
use in the course and present the outline of its contents.

6.1 Reduce complexity

We essume that complexity of the task is the mejor impedient in
gny programming course. Complexity can be reduced mainly by
jntroducing new topics one &t & time only, end have the student
exarcise this topic before anything new i5 added [6].

6.2 Reduce problems not related to the present goat

Beginning pregrammers have {o desl with a grest deal of detail,
especially [n order to gain access to the mainframe, cantrol the
invisible environment there, edit, compile, Yink end run their
programs. Single user systems can be made simpler as they serve
for B smaller selection of tesks. Persanal computers, like the
Apple Macintosh with its visible interface, further reduce the
amount of knowledge and experience @ beginning user needs in
order ta write a pregram. S

6.3 Fest reaction of the sysiem

The time lapse between a user's action and the system's resction,
far example during debugging a program, are ¢ritical. If response
time is extremely fast - say in less then len seconds between
editing en error and seeing the chenge in the output frem the
running program - program development for beginners is muth
faster. Not only does each slep ke less time, but the invoivment
wilh the prablem is not interupled end facts ere remembered in
the learner's short time memory. We believe this fast response
enhances learning by helping the user to assimilete patterns ina
way similer o ihe assimilation of typical patterns of behaviour
in ordinary life.

6.4 Reduce technical details
The Paescal interpreter for the Apple Mecintosh (mate by Think
Technology inc.} is en integraled system, providing e lenguege
specific editor logether with edvenced debugging tools in cne
package with a uniform interfece. The editor checks the syntax of
the program during inpul and signals errars immediately; it also
indants the program according to standard rules (prettyprinting)
This should especially help beginmers who often have probiems

with some of the minule delails of Pescal syniax {especiaily
semicalans and begin - end pairs). Eliminating {hese hinderances
will allow increased concentration on the essentiels of program
design,

6.5 Include interective progremming

Design of inleractive programs §s cumbersome on most
mainframes, at least far the beginner. There re atways several
system itinsyncrasies to be considered so texthooks ususlly o not
discuss these aress, The input procedures of the Apple Macintos
ara quite simple to use lazy [/0). :

6.6 include graphic output

The high resalution scresn built in the Apple Mecintosh, together
with its high performance bit mepped grephic routines allow
integrstion of grephic output without adding much complexity.
@raphics can help enormously to make the user visualiize the
dynemic tehaviour of programs and lends itself o many
rewarding simple programs (see he publications of the LOGO
group [7] [101).

7. Teaching methods

7.1 Program plans

We assume that the problem of pregrammirg does not lie
primerily with the syntex end vocabulary of the chosen
programming lenguage, but in the difficully of devising a plan to
solve a problem. Fxperienced programmers have eccumulated 8
number of plans thet they have used previously. When they have
to solve a new problem, they choose from & stock of besic jdess,
which are then adepted.to the specific situation (often by copying
the previous progrem end editing: chenging is easier than
inventing [13]). Beginners, however, are asked to creste
solutions from the void - an immensely more difficult task.

7.2 Programs ere for reading

Programs must be considered primarily es accurate and forma)
descriplions of an algerithm, end should be readable by humans.
The edditiona] benefit of programming lengueges thet alporithms
can be executed by & computer should not infivence the design and
nolstion [5].

7.3 Reading essignments
Reading one's own progrems as well 85 programs writlen by
others must be en integral part of teaching programming.

7.4 No initial optimization

Algar-ithms should be described as clearly as possible and at first
no effort should be spent on optimizing (neither for run Lime nor
for storege utilization). Optimization invariably mekes &
program more difficull to understand. This is not o edvocate
inefficient algorithms, bul to avaid optimizalion tricks thet
obscure the meaning of a program. [T 8 progrem later is running
too slowly, program transformations cen be used to apeed it up.

7.5 Programming style

Students should not oaly learn to write 8 program thet produces
the carreel results, bul to compose a well wrritten program. This
is not en end in itseMf, bul experience shows thel clumsy
programs seldom work carrectly, are difficult lo debug and
impogsible to change later. It s a disservice to the learner not to
ingist on pregremming style.

408 AU, Frank

7.6 Reasoning about programs o

The mathemalically founded meihods fer ressoning sbout
programs, as used in formal proofs [S5] (15] [6], must be
introduced early to the students.

7.7 Modutarization

Even small prebiems are too big for the beginner, and students
shouid learn from the very beginning how to split e problem in o
smaller problems which ere eesier to solve. Our personai
experience is more with the date ebstrection technique (elso
called abstract data types or initial elgebra) [11,12] than with
procedura] ebstraction, and we fesl thet it is important to
understand end apply these methods even in cases that seem too
simple . It is too lets to learn new technigues when complex
problems are calling for them. Personal experience with writing
large and complex programs hos shown that routines that are
very smatl and embody anly one idea are essy lo write and saldom
cantaln an error (by our standards, reutines with more than 10
executable stalements are considered long!).

7.8 Functional programming style

Small reutines designed using the principles of data abstraction
lend themselves to being writlen as functions. Functionat
programming lenguages and functional programming style were
quite successful in the past and - &t least applied with judgement
- seem to lead to progrems easy to understand. Moresver, the
idea of a function is well established with university students and
this allows us to exploi previous knnwledge

8. The uutlmla of the course

The goal of the course is to have students undarstand compulers
end become familiar with their use. The first goal is schisved
through the later - “learning by doing' {s the catchwerd
Therefore a greal number of small assignments are given to the
students, twp eech week and - if one is done after the other - esch
teking about two to three hours to fullfil. Many of them will be
assignments to change en existing program. Some assignments
may form & sequence, where the progrem written in the previous
assignment is expanded over several steps. This should provide
the students with exparienca in building programs using slepwise
refinement { 15].

The books used for the courses are the following:

- Systematic Programming' by N. Wirth[151, which is ane of the
few intraduetory texts, which discuss progremming n general
and are not concerned unlv with synlax and vocebulery, It is
also the only book | found that introduces formst reasunlng
sbout progrems.

- "Numerical Methods Using Pascal” by L Atkinson and P. Harley
[11 for the numericat part.

We slso recommend the following addional fexts to students who

are interested in further resding:

- 'Mec: The Apple Macintosh Book® by C. Lul9] for more datsils
about hardware.

- An Introductory text in Pescal about non numeric programming

if they feel they need it.

A lab is set up with 8 Apple Macintosh for exclusive use by
students of this course, yielding 8 1 in 8 ratio between students
and machines, The leb is open every weskday from 9 am. til 9
p.m. We encoursge the use of the Mecintosh for work relaled to
other courses.

The eourse js divided in three parts:

8.1 Familiarize students with the Macintash

The firsl week is used to familiarize the students with the
interface of the operating system and the editer to write short
documents, We essume that students will, on their own
initiative, also explore the grephics edilor {MecPaint). The
consistency of the inferfece across all programs should make this
period short; nevertheless, two assignments will insure that all
students get the necessary practice before the next step. Lectures
will be used tn discuss the hardwere perts and the first
presentation of the tesk of the operating systems .

8.2 Introduction to programming

Several weeks (three to five) will be devoted to the general 1dea
of progremming. Students will be presenied with complete,
running pregrams to resd end change. Gnly a limiled part of the
Pascal vocabulary will be used, mot with the intention. of
subsetting, but rather by excluding all but the most chvious
constructs (including functions with value parsmeters),

We start with the ‘triengle example’ from [7] and mativate the
introduction of procedures end functions es aebstractions
(ebbrevistions} of repeatedly used task. This leads in & natura)
way to recursion, end we did not observe any problems with
studants understanding this.

The next group of exemples are operations on pumber syslems
{integer, rational numbers, complex numbers and ultimately
palynoms). This provides us with mathematically clean slgebraic
examples for ebsiract data types. The ires can then be expanded
and applied to less ‘clean’ practical applications. Assignments in
this phese are program resding and small changes 85 well as
wriling larger sels of subroutines. This period concentrates
theoretically on the idea of abstraction end layered architecture
of syslerns _

8.3 Programming language Pascal

When the sludents heve gained some experience with programs,
the time s ripe to introduce them to the detsils of the Pescal
languege in a syslematic way. We present the languege in 8 logica)
order nd explain details which either have nol vet tieen covered
ar have been covered incompletely. Here the siress is on showing
the students the systematic construction behind programming
langueges in genersl, end Pascel as a specific example.
Progremming essignments will be split belwesn reading end
writing, with examples preferably showing some building blocks
often used (e.g. filling and searching arrays). All constructs of
Pascal but poirters are introduced in the first semester.

8.4 Programming for engineering epplication

The second half of the first semester and the first helf of the

second semester will be devoted to building a library of modules

usaful for building applicetion pregrems in enginesring end

science. Tapics to he treated include;

~handling polynomials, including derivetives and integration,
finding zeros and maxima/minime, and graphical cutput

-gealing with erbifrary functions, including finding zeres,
differentiation and integration, using numerical methods

-advanced matrix operations, i.e. solution to systems of Yinear
equations, inversion of metrices, eigenvalue and sigenvectors

- simple cases of systems of { non Tinear) equations

-introduction 1o numerical solution of differentis] equations.

Muacintosh: Rethinking Computer Education for Engineering Students 409

Numerical methods teke a large shars of time, but we will alsp
treat st lesst one example of celculetions related to networks
(either flow or critical path} in order o introduce the techniques
applicable in this area [14]. This is also the occasion to explain
the use of pointer variebles in Pascal.

8.5 Transitien o the mainframe and FORTRAN

Starting in the second semester, students are gradually
introduced io use the mainframe (IBM under YM/CMS). The goal
is to ensble the users to decide for themsalves when to use what
mechine, and to become aware of the reletive advaniages of each.
An introduction {o FORTRAN is also included which should enable
students to use and possibly edepl existing programs written in
FORTRAN. According 1o [8] siudents do nol sncountar problems
when moving o the mainframe, and the skills they learned firsl
are trensported easily.

9. General changes in the curriculum

A computer ussge course with the contents explained above can
show mathematics in 2 new, more applied light. During
development of the course, we looked carefully at the use of
mathematics in enginesring disciplines, especially civil
engineering, end compared it with the presenl contents of the
compuTsary mathematics courses.

9.1 Calculus and differential equation

Calculus is the foundation of medern mechanics, and therefore of
prime importance for most engineering sciences. Nevertheless,
it should be asked if the present nearly exclusive concentration
on calcutus in our mathemalics introduction is justified. The
present contents ofien seems 1o be more direcled towards
mathemalical proofs and results of theoretical vatue bul very
seldom motivaled by the way caleutus is applied in engineering
sciences. In my opinion, the reasen for this is thel most
epplications of calculus in engineering lead to problems which
can only be deasit with using numerical methods (eg. most
integrals defy formal integration, most differential equations of
inierest 1o engineers can only be solved spproximatively).
However, numericel methods heve become accessible only naw,
using computers and programming.

9.2 Algebra

Datas ebstraction - a very impertant methed in specifying end
designing compuler progrems - is directly connected to abstract
algebre. Understanding the abstract properties of algebra and
being able to look at probiems using these methods are helpful.
The besic concepls of sel theory should be availebie to all
students. Such concepts ere epplied in many cases of
programming end provide powerful tools io enalyze the
operetions of programs (&nd some programming lenguages
include sels as besic date types end provide the necessary
operatians).

Boolean elgebra (inciuding predicete calculus) must be
introduced to students to ensble them {0 resson ebout conditionsl
statements in programs.

Further, the generally used number systems (integers, rational
numbers, resls end complex numbers) should be understood es
forming diffarant elgebras with some differences in their axioms.
A theoretical understanding here will help o understend the

peculierities of the numbsr systems used by computers with
their limited precision (this will incresse in importance as the
new |EEE stendard for real operations is used more often).

9.3 Topology

Many branches of engineering science deal with topological
structures (electrical and other water retworks, eritical path,
gtc.). The Computer Aided Designing systems now available to
menipulation of geometric or graphical structur&s rely {open or
covered) on tnpnlnglcal prmmples

9.4 Theory of formal languages and autumatons

Programming langusges and, in generel, ail user interfaces to
computer programs can be considered es formal langueges.
Theary can supply us with e few basic tools to describe a formal
language { production rules, generally in the form of synlex
diagrams), and to classify formal lenguages eccarding to criteria
of prime importance when the program to interprete the lenguage
is written. Simflarily, some fundsmental concepts from ihe
theory of finile stele sutomatons, the beckground for most
theoretical studies in computer science, can furnish better
modeals to illustrate computers’ operation.

We do not propose that all these subjects from the more abstract
parts of modern mathematics should be included. We dao propose
that we shouid critically examing the role of methematics in the
engineering curriculum. When we reconsider the place of
computers in the curriculum, it is chviously appropriate to
reconsider methematics es well. We would edvocate & much closer
relationship betwean the two, end assume thet computers can help
students solve complex mathemstical problems end, therefore,
foster learning.

10. Conclusions

This paper presenis & philosophy of computer educstion for
engineering or science departments. It should be clearly noted
thet we do nat advocele a single software, hardware ar teaching
technigue, nor an isoiated chenge in the curriculum. Such simpla
solutions ere never edequate to coping with such complex &
problem as integrating computing into education. We hope that we
have canvinced the resder that the measures we heve teken are
promising, namely:

- integrating compuler usage in many courses so thet students
take at lesst one course with a strong computer usege component
esch semester

- expanding the introductory course from & ‘programming
language course’ to @ general course sbout computers and the
principles of computer science

- teaching 8 programming language and & progrem development
method which can be used for solving farge technical problems

- sglecting examples while teaching the pregraminitg languages
that are relsled to enginesring end science and form useful
building blocks for the student for Teter use in preblem soiving.

- use inleractive systems and computer graphics to make
complex sbatract topics visible (which is only possible on the
most modern personal computers with the ‘visible htuman
interface' [9] and a consistent end simple command langusge).

410 A U Frank

Experience so far shows enthusisstic response from stutents and
faculty in the course, but longlerm success or feilure of the
expariment will depend on the fecully of following coursas
enhencing their tesching with computer related essignments,

Referances:

[11 Atkinson, L.U.; Harley, P.J.; An Introduction to Numerical
Mathods with Pescal, Internations! Computer Science
Series, Addison-Weslay Publishing Co., Lonton, 1983

[2] Bowiles, K.L.; Franklin 5.D.; Volper, D.J.; Problem Solving
Using UCSD Pascal Springer Verlag. New York, 1984
(2nd Edition)

[3] Brown, MarcH.; Sedgewick, R.; Technical Report
C5-83-28, Brown University, R.1,,1983

[4] Chapra, 5.C., Canale, R.P., Numericat Methods fnr
Engineers, I"lner‘aw Hiil, |985

[S] Dahl, 0..; Difkslra, E.W.; Hoare, CA;; Structureg
Progremming, Academic Press, New York, 1972

[6] Dijkstra, E.W.; A Discipline of Programming,
Prentice-Hall, Englewncd Cliffs, N.J., 1976

[7] Feurzeig, W.; Lukss, 8.; Lukes,J.0,; The LOGO Language,
1973

8] Garlen, D.B.; Milter, P.L.; GNOME: An Introductory
Programming Environment Besedon e Family of Structure
Editors, ACM Saftware Engineering Notes, Yal. 9, No 3,
May 1954

[9] Lu,Cary; Mac; The Apple Mecintosh Book, Bellevue,
Washinglnn Microsoft Press !984

[10] Papert, 5.; Mindstorms: Chﬂdrsn Computers and Powarfu}
fdess, Basm Books, New York, 1960

1111 Parnss, D.L.; A Technigue for Sofiware Module
Spemficatwn with Exemples, Communications of AGN Yoi,
15, No. 5 May 1972, p. 330

[12] Parnas. oL.; On the criteria to be used in Decompesing
Systems into Madules, Communications of ACM, Vol, 15, No.
12, Dec. 1972, p. 1053

[13] Smith, D.C.; et al; Designing the Star User Interfacs, Byte
Magazine, Yol, 7, No. 4, April 1982

114] Sysla, M.; Deg, N.; Kowalik, J.; Discrete Optimization
: Atgorithms w1th Pascal Prngrams Prentice Hell,
Englewood Clifis, N.J., 1983 :

[15] Wirth, N.; Systamatic Prugrammmg Anlntroduclmn
Pr'enhceHan 1573 :

